18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography
Abstract
:1. Introduction
2. Results
2.1. Design and Cloning of Targeted-ScFv and Mutated-ScFv
2.2. Production of Targeted-ScFv and Mutated-ScFv
2.3. Radiolabelling and Immunoreactivity
2.4. Biodistribution
2.5. Small Animal PET Imaging
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. General
5.2. Cloning and Design of Targeted-ScFv and Mutated-ScFv
5.3. Production of Targeted-ScFv and Mutated-ScFv
5.4. Radiolabelling
5.5. PET Imaging and Biodistribution Studies
5.6. Flow Cytometry
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudd, J.; Warburton, E.; Fryer, T.; Jones, H.; Clark, J.; Antoun, N.; Johnström, P.; Davenport, A.; Kirkpatrick, P.; Arch, B.; et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002, 105, 2708–2711. [Google Scholar] [CrossRef] [Green Version]
- Dobrucki, L.W.; Sinusas, A.J. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol. 2010, 7, 38–47. [Google Scholar] [CrossRef]
- Fraum, T.J.; Fowler, K.J.; McConathy, J. PET/MRI: Emerging clinical applications in oncology. Acad. Radiol. 2016, 23, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Kostakoglu, L.; Cheson, B.D. Current role of FDG PET/CT in lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1004–1027. [Google Scholar] [CrossRef]
- Fried, D.V.; Mawlawi, O.; Zhang, L.; Fave, X.; Zhou, S.; Ibbott, G.; Liao, Z.; Court, L.E. Stage III non-small cell lung cancer: Prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors. Radiology 2016, 278, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Mudd, S.R.; Comley, R.A.; Bergstrom, M.; Holen, K.D.; Luo, Y.; Carme, S.; Fox, G.B.; Martarello, L.; Beaver, J.D. Molecular imaging in oncology drug development. Drug Discov. Today 2017, 22, 140–147. [Google Scholar] [CrossRef]
- Gatidis, S.; Bender, B.; Reimold, M.; Schäfer, J.F. PET/MRI in children. Eur. J. Radiol. 2017, 94, A64–A70. [Google Scholar] [CrossRef]
- Sabaté-Llobera, A.; Cortés-Romera, M.; Mercadal, S.; Hernández-Gañán, J.; Pomares, H.; González-Barca, E.; Gámez-Cenzano, C. Low-dose PET/CT and full-dose contrast-enhanced CT at the initial staging of localized diffuse large B-cell lymphomas. Clin. Med. Insights Blood Disord. 2016, 9, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Bomanji, J. PET/MRI in Neuroendocrine Tumours. In PET/MRI in Oncology; Springer: Cham, Switzerland, 2018; pp. 291–304. [Google Scholar] [CrossRef]
- Leuschner, F.; Nahrendorf, M. Molecular imaging of coronary atherosclerosis and myocardial infarction: Considerations for the bench and perspectives for the clinic. Circ. Res. 2011, 108, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Dweck, M.R.; Aikawa, E.; Newby, D.E.; Tarkin, J.; Rudd, J.H.; Narula, J.; Fayad, Z.A. Noninvasive molecular imaging of disease activity in atherosclerosis. Circ. Res. 2016, 119, 330–340. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013; Available online: https://apps.who.int/iris/handle/10665/94384 (accessed on 28 March 2022).
- Wendelboe, A.M.; Raskob, G.E. Global burden of thrombosis: Table. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef]
- Schäfer, A.; Bauersachs, J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr. Vasc. Pharmacol. 2008, 6, 52–60. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Rondina, M.T.; Weyrich, A.S.; Zimmerman, G.A. Platelets as cellular effectors of inflammation in vascular diseases. Circ. Res. 2013, 112, 1506–1519. [Google Scholar] [CrossRef]
- Finn, A.V.; Nakano, M.; Narula, J.; Kolodgie, F.D.; Virmani, R. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1282–1292. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hagemeyer, C.; Hohmann, J.D.; Leitner, E.; Armstrong, P.; Jia, F.; Olschewski, M.; Needles, A.; Peter, K.; Ahrens, I. Novel single chain antibody targeted microbubbles for molecular ultrasound imaging pf thrombosis: Validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure in mice. Circulation 2012, 125, 3117–3126. [Google Scholar] [CrossRef] [Green Version]
- Paterson, B.M.; Alt, K.; Jeffery, C.M.; Price, R.I.; Jagdale, S.; Rigby, S.; Williams, C.C.; Peter, K.; Hagemeyer, C.E.; Donnelly, P.S. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: Sortase-mediated coupling of copper-64 to a single-chain antibody. Angew. Chem. Int. Ed. 2014, 53, 6115–6119. [Google Scholar] [CrossRef]
- Ardipradja, K.; Yeoh, S.D.; Alt, K.; O’Keefe, G.; Rigopoulos, A.; Howells, D.; Scott, A.; Peter, K.; Ackerman, U.; Hagemeyer, C.E. Detection of activated platelets in a mouse model of carotid artery thrombosis with 18F-labeled single-chain antibodies. Nucl. Med. Biol. 2014, 41, 229–237. [Google Scholar] [CrossRef]
- Cai, W.; Chen, K.; Li, Z.-B.; Gambhir, S.S.; Chen, X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 2007, 48, 1862–1870. [Google Scholar] [CrossRef]
- Liu, H.; May, K. Disulfide bond structures of IgG molecules. mAbs 2012, 4, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.-X.; Yang, L.; Gu, Z.-N.; Chen, H.-Q.; Tian, F.-W.; Chen, Y.-Q.; Zhang, H.; Chen, W. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int. J. Mol. Sci. 2010, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Partis, M.D.; Griffiths, D.G.; Roberts, G.C.; Beechey, R.B. Cross-linking of protein by ω-maleimido alkanoylN-hydroxysuccinimido esters. J. Protein Chem. 1983, 2, 263–277. [Google Scholar] [CrossRef]
- Lehr, R.V.; Elefante, L.C.; Kikly, K.K.; O’Brien, S.P.; Kirkpatrick, R.B. A modified metal-ion affinity chromatography procedure for the purification of histidine-tagged recombinant proteins expressed in Drosophila S2 cells. Protein Expr. Purif. 2000, 19, 362–368. [Google Scholar] [CrossRef]
- Ackermann, U.; Plougastel, L.; Wichmann, C.; Goh, Y.W.; Yeoh, S.D.; Poniger, S.S.; Tochon-Danguy, H.J.; Scott, A.M. Fully automated synthesis and coupling of [18F]FBEM to glutathione using the iPHASE FlexLab module. J. Label. Compd. Radiopharm. 2014, 57, 115–120. [Google Scholar] [CrossRef]
- Wang, Y.; Vivekananda, S.; Men, L.; Zhang, Q. Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. J. Am. Soc. Mass Spectrom. 2004, 15, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Muhlen, C.V.Z.; von Elverfeldt, D.; Moeller, J.; Choudhury, R.; Paul, D.; Hagemeyer, C.; Olschewski, M.; Becker, A.; Neudorfer, I.; Bassler, N.; et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 2008, 118, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Ta, H.T.; Li, Z.; Hagemeyer, C.E.; Cowin, G.; Zhang, S.; Palasubramaniam, J.; Alt, K.; Wang, X.; Peter, K.; Whittaker, A.K. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017, 134, 31–42. [Google Scholar] [CrossRef]
- Alt, K.; Paterson, B.M.; Ardipradja, K.; Schieber, C.; Buncic, G.; Lim, B.; Poniger, S.S.; Jakoby, B.; Wang, X.; O’Keefe, G.J.; et al. Single-Chain antibody conjugated to a cage amine chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets. Mol. Pharm. 2014, 11, 2855–2863. [Google Scholar] [CrossRef]
- Sun, M.M.C.; Beam, K.S.; Cerveny, C.G.; Hamblett, K.J.; Blackmore, R.S.; Torgov, M.Y.; Handley, F.G.M.; Ihle, N.C.; Senter, P.D.; Alley, S.C. Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005, 16, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Saerens, D.; Conrath, K.; Govaert, J.; Muyldermans, S. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J. Mol. Biol. 2008, 377, 478–488. [Google Scholar] [CrossRef]
- Govaert, J.; Pellis, M.; Deschacht, N.; Vincke, C.; Conrath, K.; Muyldermans, S.; Saerens, D. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J. Biol. Chem. 2012, 287, 1970–1979. [Google Scholar] [CrossRef] [Green Version]
- Schmiedl, A.; Breitling, F.; Winter, C.H.; Queitsch, I.; Dübel, S. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J. Immunol. Methods 2000, 242, 101–114. [Google Scholar] [CrossRef]
- Junutula, J.R.; Flagella, K.M.; Graham, R.A.; Parsons, K.L.; Ha, E.; Raab, H.; Bhakta, S.; Nguyen, T.; Dugger, D.L.; Li, G.; et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res. 2010, 16, 4769–4778. [Google Scholar] [CrossRef] [Green Version]
- Stimmel, J.B.; Merrill, B.M.; Kuyper, L.F.; Moxham, C.P.; Hutchins, J.T.; Fling, M.E.; Kull, F.C. Site-specific conjugation on serine → cysteine variant monoclonal antibodies. J. Biol. Chem. 2000, 275, 30445–30450. [Google Scholar] [CrossRef] [Green Version]
- Bichet, P.; Mollat, P.; Capdevila, C.; Sarubbi, E. Endogenous glutathione-binding proteins of insect cell lines: Characterization and removal from glutathione S-transferase (GST) fusion proteins. Protein Expr. Purif. 2000, 19, 197–201. [Google Scholar] [CrossRef]
- Cai, W.; Wu, Y.; Chen, K.; Cao, Q.; Tice, D.A.; Chen, X. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Res. 2006, 66, 9673–9681. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, S.; Schäfer, K.; Thinnes, T.; Loskutoff, D.J. Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation 2001, 103, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q. Mouse models of arteriosclerosis: From arterial injuries to vascular grafts. Am. J. Pathol. 2004, 165, 1–10. [Google Scholar] [CrossRef]
- Shen, B.-Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K.L.; Tien, J.; Yu, S.-F.; Mai, E.; et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 2012, 30, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; MacNee, W. Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 2000, 16, 534–554. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.M.; Fells, G.A.; Hubbard, R.C.; Crystal, R.G. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J. Clin. Investig. 1990, 86, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, A.D.; Kiick, K.L. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjug. Chem. 2011, 22, 1946–1953. [Google Scholar] [CrossRef] [Green Version]
- Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 2008, 19, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, S.D.; Reid, R.; Robinson, L.; Ashley, G.W.; Santi, D.V. Long-term stabilization of maleimide–thiol conjugates. Bioconjug. Chem. 2015, 26, 145–152. [Google Scholar] [CrossRef]
- Ackermann, U.; Yeoh, S.D.; Sachinidis, J.I.; Poniger, S.S.; Scott, A.M.; Tochon-Danguy, H.J. A simplified protocol for the automated production of succinimidyl 4-[18F]fluorobenzoate on an IBA synthera module. J. Label. Compd. Radiopharm. 2011, 54, 671–673. [Google Scholar] [CrossRef]
- Han, K. An efficient DDAB-mediated transfection of Drosophila S2 cells. Nucleic Acids Res. 1996, 24, 4362–4363. [Google Scholar] [CrossRef]
- Meier, S.; Pütz, G.; Massing, U.; Hagemeyer, C.; von Elverfeldt, D.; Meissner, M.; Ardipradja, K.; Barnert, S.; Peter, K.; Bode, C.; et al. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis. Biomaterials 2015, 53, 137–148. [Google Scholar] [CrossRef]
- Wang, X.; Palasubramaniam, J.; Gkanatsas, Y.; Hohmann, J.D.; Westein, E.; Kanojia, R.; Alt, K.; Huang, D.; Jia, F.; Ahrens, I.; et al. Towards effective and safe thrombolysis and thromboprophylaxis: Preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ. Res. 2014, 114, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardipradja, K.S.; Wichmann, C.W.; Hickson, K.; Rigopoulos, A.; Alt, K.M.; Pearce, H.A.; Wang, X.; O’Keefe, G.; Scott, A.M.; Peter, K.; et al. 18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography. Int. J. Mol. Sci. 2022, 23, 6886. https://doi.org/10.3390/ijms23136886
Ardipradja KS, Wichmann CW, Hickson K, Rigopoulos A, Alt KM, Pearce HA, Wang X, O’Keefe G, Scott AM, Peter K, et al. 18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography. International Journal of Molecular Sciences. 2022; 23(13):6886. https://doi.org/10.3390/ijms23136886
Chicago/Turabian StyleArdipradja, Katie S., Christian W. Wichmann, Kevin Hickson, Angela Rigopoulos, Karen M. Alt, Hannah A. Pearce, Xiaowei Wang, Graeme O’Keefe, Andrew M. Scott, Karlheinz Peter, and et al. 2022. "18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography" International Journal of Molecular Sciences 23, no. 13: 6886. https://doi.org/10.3390/ijms23136886
APA StyleArdipradja, K. S., Wichmann, C. W., Hickson, K., Rigopoulos, A., Alt, K. M., Pearce, H. A., Wang, X., O’Keefe, G., Scott, A. M., Peter, K., Hagemeyer, C. E., & Ackermann, U. (2022). 18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography. International Journal of Molecular Sciences, 23(13), 6886. https://doi.org/10.3390/ijms23136886