Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury
Abstract
:1. Introduction
2. Results
2.1. Implantation of Human IL12p80 and NSCs within PLA Conduits Improved Functional Recovery and Nerve Conduction of Sciatic Nerve Injury FVB Mice
2.2. Implantation of hIL12p80 and NSCs with PLA Conduits Promoted Regeneration of Injured Nerves in FVB Mice
2.3. Human IL12p80 Stimulated Differentiation of Mouse NSCs to Oligodendrocyte Lineages through the Phosphorylation of Stat3
2.4. Implantation of PLGA Conduit 2.1 with NSCs and hIL12p80 Promotes the Functional Recovery and Nerve Conduction of Sciatic Nerve Injury in FVB Mice
2.5. Implantation of hIL12p80 and NSCs with PLGA Conduit 2.1 Promoted Functional Recovery and Nerve Conduction of Sciatic Nerve Injury in a B6 Mouse Model
3. Discussion
4. Materials and Methods
4.1. Neural Stem Cells Isolation, Neurosphere Formation, and Cell Culture
4.2. Sciatic Nerve Injury Regeneration Mouse Model
4.3. Functional Assessments: Walking Track Analyses and Rotarod Test
4.4. Compound Muscle Action Potential Measurement
4.5. Hematoxylin and Eosin (H&E) Staining and Immunohistochemistry Staining
4.6. Cell Differentiation Assay
4.7. Western Blotting
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Z.; Peng, J.; Wang, Y.; Zhao, Q.; Lu, S. Role of stem cells in the regeneration and repair of peripheral nerves. Rev. Neurosci. 2012, 23, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Navarro, X.; Vivó, M.; Valero-Cabré, A. Neural plasticity after peripheral nerve injury and regeneration. Prog. Neurobiol. 2007, 82, 163–201. [Google Scholar] [CrossRef] [PubMed]
- Scheib, J.; Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 2013, 9, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, N.G.; Meppelink, A.M.; Ng-Glazier, J.; Randolph, M.A.; Winograd, J.M. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J. Stem Cells 2015, 7, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, S.; Zhang, X.F.; Boyd, D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury 2012, 43, 553–572. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.T.; Tsang, K.S.; Sun, C.R.; Li, J.; Huang, H.; Cui, F.Z.; An, Y.H. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model. J. Transl. Med. 2008, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-H.; Su, C.-H.; Chiu, I.-M. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: A feasibility study. Artif. Organs 2009, 33, 26–35. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, L.; Tian, J.; Wang, Y. Transplantation of neural stem cells overexpressing glia-derived neurotrophic factor promotes facial nerve regeneration. Acta Oto-Laryngol. 2009, 129, 906–914. [Google Scholar] [CrossRef]
- Kaliński, P.; Hilkens, C.M.; Snijders, A.; Snijdewint, F.G.; Kapsenberg, M.L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 1997, 159, 28–35. [Google Scholar]
- Kobayashi, M.; Fitz, L.; Ryan, M.; Hewick, R.M.; Clark, S.C.; Chan, S.; Loudon, R.; Sherman, F.; Perussia, B.; Trinchieri, G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 1989, 170, 827–845. [Google Scholar] [CrossRef]
- Stern, A.S.; Podlaski, F.J.; Hulmes, J.D.; Pan, Y.C.; Quinn, P.M.; Wolitzky, A.G.; Familletti, P.C.; Stremlo, D.L.; Truitt, T.; Chizzonite, R.; et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 1990, 87, 6808–6812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; He, C.; Nair, L.; Yeung, J.; Egwuagu, C.E. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015, 75, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, P.; Gately, M.K.; Gubler, U.; Stern, A.S.; Lin, P.; Hollfelder, K.; Su, C.; Pan, Y.C.; Hakimi, J. Human IL-12 p40 homodibinds to the IL-12 receptor but does not mediate biologic activity. J. Immunol. 1995, 154, 116–127. [Google Scholar] [PubMed]
- Heinzel, F.P.; Hujer, A.M.; Ahmed, F.N.; Rerko, R.M. In vivo production and function of IL-12 p40 homodimers. J. Immunol. 1997, 158, 4381–4388. [Google Scholar] [PubMed]
- Ha, S.J.; Chang, J.; Song, M.K.; Suh, Y.S.; Jin, H.T.; Lee, C.H.; Nam, G.H.; Choi, G.; Choi, K.Y.; Lee, S.H.; et al. Engineering N-glycosylation mutations in IL-12 enhances sustained cytotoxic T lymphocyte responses for DNA immunization. Nat. Biotechnol. 2002, 20, 381–386. [Google Scholar] [CrossRef]
- Zundler, S.; Neurath, M.F. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev. 2015, 26, 559–568. [Google Scholar] [CrossRef]
- Chung, I.Y.; Benveniste, E.N. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J. Immunol. 1990, 144, 2999–3007. [Google Scholar]
- Gillen, C.; Jander, S.; Stoll, G. Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in the rat peripheral nervous system: Comparison between immune-mediated demyelination and Wallerian degeneration. J. Neurosci. Res. 1998, 51, 489–496. [Google Scholar] [CrossRef]
- Lin, H.; Hikawa, N.; Takenaka, T.; Ishikawa, Y. Interleukin-12 promotes neurite outgrowth in mouse sympathetic superior cervical ganglion neurons. Neurosci. Lett. 2000, 278, 129–132. [Google Scholar] [CrossRef]
- Lee, D.-C.; Chen, J.-H.; Hsu, T.-Y.; Chang, L.-H.; Chang, H.; Chi, Y.-H.; Chiu, I.-M. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Mol. Cell. Neurosci. 2017, 79, 1–11. [Google Scholar] [CrossRef]
- Hasirci, V.; Arslantunali, D.; Dursun, T.; Yucel, D.; Hasirci, N. Peripheral nerve conduits: Technology update. Med Devices 2014, 7, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.-W.; Li, C.-W.; Chiu, I.-M.; Wang, G.-J. Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane. Int. J. Nanomed. 2017, 12, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, H.-C.; Tseng, T.-C.; Chen, J.-R.; Hsu, S.-H.; Chiu, I.-M. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap. Biofabrication 2013, 5, 035010. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lin, H.; Chiu, H.; Lee, D.; Chung, Y.; Chiu, I. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice. Dev. Neurobiol. 2015, 75, 232–248. [Google Scholar] [CrossRef]
- Lee, D.-C.; Hsu, Y.-C.; Chung, Y.-F.; Hsiao, C.-Y.; Chen, S.-L.; Chen, M.-S.; Lin, H.-K.; Chiu, I.-M. Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Mol. Cell. Neurosci. 2009, 41, 348–363. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Lee, D.-C.; Chen, S.-L.; Liao, W.-C.; Lin, J.-W.; Chiu, W.-T.; Chiu, I.-M. Brain-specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self-renewal and multipotent capacities. Dev. Dyn. 2009, 238, 302–314. [Google Scholar] [CrossRef]
- Kuhlbrodt, K.; Herbarth, B.; Sock, E.; Hermans-Borgmeyer, I.; Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 1998, 18, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Stolt, C.C.; Rehberg, S.; Ader, M.; Lommes, P.; Riethmacher, D.; Schachner, M.; Bartsch, U.; Wegner, M. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 2002, 16, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Stolt, C.C.; Lommes, P.; Friedrich, R.P.; Wegner, M. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 2004, 131, 2349–2358. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lu, Y.; Smith, H.K.; Richardson, W.D. Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J. Neurosci. 2007, 27, 14375–14382. [Google Scholar] [CrossRef] [Green Version]
- Pozniak, C.D.; Langseth, A.J.; Dijkgraaf, G.J.; Choe, Y.; Werb, Z.; Pleasure, S.J. Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing suppressor of fused expression. Proc. Natl. Acad. Sci. USA 2010, 107, 21795–21800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays 2001, 23, 161–169. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Gadina, M.; O’Shea, J.J.; Presky, D.H.; Magram, J. IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol. 2000, 165, 6221–6228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, A.O.; Wilkinson, V.L.; Presky, D.H.; Gubler, U. Cloning and characterization of a mouse IL-12 receptor-beta component. J. Immunol. 1995, 155, 4286–4294. [Google Scholar]
- Ni, H.-C.; Lin, Z.-Y.; Hsu, S.-H.; Chiu, I.-M. The use of air plasma in surface modification of peripheral nerve conduits. Acta Biomater. 2010, 6, 2066–2076. [Google Scholar] [CrossRef]
- Fu, K.-Y.; Dai, L.-G.; Chiu, I.-M.; Chen, J.-R.; Hsu, S.-H. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif. Organs 2011, 35, 363–372. [Google Scholar] [CrossRef]
- Rubinstein, R.E.; Deem, K.C.; Jensen, J.; MacKinnon, S.E.; Tung, T.H. Strain differences in autotomy in mice after peripheral nerve transection or repair. Microsurgery 2003, 23, 363–368. [Google Scholar] [CrossRef]
- Lerch, J.K.; Alexander, J.K.; Madalena, K.M.; Motti, D.; Quach, T.; Dhamija, A.; Zha, A.; Gensel, J.C.; Marketon, J.W.; Lemmon, V.P.; et al. Stress increases peripheral axon growth and regeneration through glucocorticoid receptor-dependent transcriptional programs. Eneuro 2017, 4, ENEURO.0246-17.2017. [Google Scholar] [CrossRef] [Green Version]
- Ferraiuolo, L.; Meyer, K.; Sherwood, T.W.; Vick, J.; Likhite, S.; Frakes, A.; Miranda, C.J.; Braun, L.; Heath, P.R.; Pineda, R.; et al. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, E6496–E6505. [Google Scholar] [CrossRef] [Green Version]
- Karagiannis, P.; Inoue, H. ALS, a cellular whodunit on motor neuron degeneration. Mol. Cell. Neurosci. 2020, 107, 103524. [Google Scholar] [CrossRef]
- Franklin, R.J.M.; Frisen, J.; Lyons, D.A. Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 2021, 116, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Izrael, M.; Slutsky, S.G.; Revel, M. Rising stars: Astrocytes as a therapeutic target for ALS disease. Front. Neurosci. 2020, 14, 824. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.-F.; Chen, J.-H.; Li, C.-W.; Hsu, H.-Y.; Chen, Y.-P.; Wang, C.-C.; Chiu, I.-M. Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury. Int. J. Mol. Sci. 2022, 23, 7002. https://doi.org/10.3390/ijms23137002
Chung Y-F, Chen J-H, Li C-W, Hsu H-Y, Chen Y-P, Wang C-C, Chiu I-M. Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury. International Journal of Molecular Sciences. 2022; 23(13):7002. https://doi.org/10.3390/ijms23137002
Chicago/Turabian StyleChung, Yu-Fen, Jong-Hang Chen, Ching-Wen Li, Hui-Yu Hsu, Ya-Ping Chen, Chiao-Chan Wang, and Ing-Ming Chiu. 2022. "Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury" International Journal of Molecular Sciences 23, no. 13: 7002. https://doi.org/10.3390/ijms23137002
APA StyleChung, Y. -F., Chen, J. -H., Li, C. -W., Hsu, H. -Y., Chen, Y. -P., Wang, C. -C., & Chiu, I. -M. (2022). Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury. International Journal of Molecular Sciences, 23(13), 7002. https://doi.org/10.3390/ijms23137002