Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease
Abstract
:1. Introduction
2. Mechanisms of HD Pathogenesis
3. Treatments of HD
3.1. Symptomatic Treatment Approaches
3.2. Clinical Trials
3.2.1. Genetic Manipulation
3.2.2. Mitochondrial Function and Biogenesis
3.2.3. Modulation of BDNF Levels
3.2.4. Synaptic Modulation
3.2.5. Stem Cell Therapies
4. Zinc Homeostasis, Reproduction and Huntington’s Disease
4.1. Neuronal Zinc Homeostasis
4.2. Zinc Dysregulation in HD
4.3. Role of Zinc in Sperm Maturation
5. HD Implications in Male Fertility
5.1. Dysregulation of Neurodegenerative Pathway Genes Linked with Subfertility
5.2. Zinc-Interacting Proteins of Boar Spermatozoa and Neurodegenerative Pathways
6. Spermatozoon as a Potential Model for Studying HD
In Vitro Spermatogenesis Model for Studying HD
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, A.; Lalonde, K.; Truesdell, A.; Gomes Welter, P.; Brocardo, P.S.; Rosenstock, T.R.; Gil-Mohapel, J. New Avenues for the Treatment of Huntington’s Disease. Int. J. Mol. Sci. 2021, 22, 8363. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.J.; Douglas, I.; Rawlins, M.D.; Wexler, N.S.; Tabrizi, S.J.; Smeeth, L. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, C.; Fisher, E.; Hyden, M.R. Epidemiology. In Huntington’s Disease, 4th ed.; Bates, G.P., Tabrizi, S.J., Jones, L., Eds.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Langbehn, D.R.; Hayden, M.R.; Paulsen, J.S. CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. Am. J. Med. Genetics Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2010, 153, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatto, E.M.; Rojas, N.G.; Persi, G.; Etcheverry, J.L.; Cesarini, M.E.; Perandones, C. Huntington disease: Advances in the understanding of its mechanisms. Clin. Parkinsonism Relat. Disord. 2020, 3, 100056. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020, 16, 529–546. [Google Scholar] [CrossRef]
- Caterino, M.; Squillaro, T.; Montesarchio, D.; Giordano, A.; Giancola, C.; Melone, M.A.B. Huntingtin protein: A new option for fixing the Huntington’s disease countdown clock. Neuropharmacology 2018, 135, 126–138. [Google Scholar] [CrossRef]
- Desmond, C.R.; Atwal, R.S.; Xia, J.; Truant, R. Identification of a karyopherin β1/β2 proline-tyrosine nuclear localization signal in huntingtin protein. J. Biol. Chem. 2012, 287, 39626–39633. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Lee, D.H.; Taylor, J.; Vandelft, M.; Truant, R. Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet. 2003, 12, 1393–1403. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, A.; Holmes, B.B.; Marasa, J.C.; Diamond, M.I. An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1. J. Biol. Chem. 2013, 288, 6063–6071. [Google Scholar] [CrossRef] [Green Version]
- Nasir, J.; Floresco, S.B.; O’Kusky, J.R.; Diewert, V.M.; Richman, J.M.; Zeisler, J.; Borowski, A.; Marth, J.D.; Phillips, A.G.; Hayden, M.R. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995, 81, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Zeitlin, S.; Liu, J.P.; Chapman, D.L.; Papaioannou, V.E.; Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 1995, 11, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.D.; Gokhan, S.; Molero, A.E.; Mehler, M.F. Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS ONE 2013, 8, e64368. [Google Scholar] [CrossRef] [Green Version]
- Hoffner, G.; Kahlem, P.; Djian, P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: Relevance to Huntington’s disease. J. Cell Sci. 2002, 115, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Caviston, J.P.; Ross, J.L.; Antony, S.M.; Tokito, M.; Holzbaur, E.L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. USA 2007, 104, 10045–10050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godin, J.D.; Colombo, K.; Molina-Calavita, M.; Keryer, G.; Zala, D.; Charrin, B.C.; Dietrich, P.; Volvert, M.L.; Guillemot, F.; Dragatsis, I.; et al. Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 2010, 67, 392–406. [Google Scholar] [CrossRef] [Green Version]
- Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 2003, 35, 76–83. [Google Scholar] [CrossRef]
- McFarland, K.N.; Huizenga, M.N.; Darnell, S.B.; Sangrey, G.R.; Berezovska, O.; Cha, J.H.; Outeiro, T.F.; Sadri-Vakili, G. MeCP2: A novel Huntingtin interactor. Hum. Mol. Genet. 2014, 23, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- McKinstry, S.U.; Karadeniz, Y.B.; Worthington, A.K.; Hayrapetyan, V.Y.; Ozlu, M.I.; Serafin-Molina, K.; Risher, W.C.; Ustunkaya, T.; Dragatsis, I.; Zeitlin, S.; et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 9455–9472. [Google Scholar] [CrossRef]
- Martin, D.D.; Heit, R.J.; Yap, M.C.; Davidson, M.W.; Hayden, M.R.; Berthiaume, L.G. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin. Hum. Mol. Genet. 2014, 23, 3166–3179. [Google Scholar] [CrossRef] [Green Version]
- Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron 2016, 89, 910–926. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.P.; Albin, R.L.; Penney, J.B.; Young, A.B.; Anderson, K.D.; Reiner, A. Differential loss of striatal projection systems in Huntington’s disease: A quantitative immunohistochemical study. J. Chem. Neuroanat. 2004, 27, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Ehrnhoefer, D.E.; Sutton, L.; Hayden, M.R. Small changes, big impact: Posttranslational modifications and function of huntingtin in Huntington disease. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2011, 17, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Hensman Moss, D.J.; Flower, M.D.; Lo, K.K.; Miller, J.R.; van Ommen, G.B.; t Hoen, P.A.; Stone, T.C.; Guinee, A.; Langbehn, D.R.; Jones, L.; et al. Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease. Sci. Rep. 2017, 7, 44849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golas, M.M. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci. 2018, 209, 179–196. [Google Scholar] [CrossRef]
- Liang, J.J.H.; McKinnon, I.A.; Rankin, C.H. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J. Neurogenet. 2020, 34, 527–548. [Google Scholar] [CrossRef]
- Lewis, E.A.; Smith, G.A. Using Drosophila models of Huntington’s disease as a translatable tool. J. Neurosci. Methods 2016, 265, 89–98. [Google Scholar] [CrossRef]
- Farshim, P.P.; Bates, G.P. Mouse Models of Huntington’s Disease. Methods Mol. Biol. (Clifton N.J.) 2018, 1780, 97–120. [Google Scholar] [CrossRef]
- Jacobsen, J.C.; Bawden, C.S.; Rudiger, S.R.; McLaughlan, C.J.; Reid, S.J.; Waldvogel, H.J.; MacDonald, M.E.; Gusella, J.F.; Walker, S.K.; Kelly, J.M.; et al. An ovine transgenic Huntington’s disease model. Hum. Mol. Genet. 2010, 19, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Baxa, M.; Hruska-Plochan, M.; Juhas, S.; Vodicka, P.; Pavlok, A.; Juhasova, J.; Miyanohara, A.; Nejime, T.; Klima, J.; Macakova, M.; et al. A transgenic minipig model of Huntington’s Disease. J. Huntingt. Dis. 2013, 2, 47–68. [Google Scholar] [CrossRef]
- Yan, S.; Tu, Z.; Liu, Z.; Fan, N.; Yang, H.; Yang, S.; Yang, W.; Zhao, Y.; Ouyang, Z.; Lai, C.; et al. A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington’s Disease. Cell 2018, 173, 989–1002.e1013. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.H.; Cheng, P.H.; Banta, H.; Piotrowska-Nitsche, K.; Yang, J.J.; Cheng, E.C.; Snyder, B.; Larkin, K.; Liu, J.; Orkin, J.; et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 2008, 453, 921–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.W.; Jiang, J.; Chen, Y.; Li, C.; Prucha, M.S.; Hu, Y.; Chi, T.; Moran, S.; Rahim, T.; Li, S.; et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS ONE 2015, 10, e0122335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howland, D.; Ellederova, Z.; Aronin, N.; Fernau, D.; Gallagher, J.; Taylor, A.; Hennebold, J.; Weiss, A.R.; Gray-Edwards, H.; McBride, J. Large Animal Models of Huntington’s Disease: What We Have Learned and Where We Need to Go Next. J. Huntingt. Dis. 2020, 9, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Zigo, M.; Kerns, K.; Sen, S.; Essien, C.; Oko, R.; Xu, D.; Sutovsky, P. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun. Biol. 2022, 5, 538. [Google Scholar] [CrossRef] [PubMed]
- Illarioshkin, S.N.; Klyushnikov, S.A.; Vigont, V.A.; Seliverstov, Y.A.; Kaznacheyeva, E.V. Molecular Pathogenesis in Huntington’s Disease. Biochemistry 2018, 83, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb. Perspect. Med. 2017, 7, a024240. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.J.; Renoir, T.; Gray, L.J.; Hannan, A.J. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. Adv. Neurobiol. 2017, 15, 93–128. [Google Scholar] [CrossRef]
- Arrasate, M.; Mitra, S.; Schweitzer, E.S.; Segal, M.R.; Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 431, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Nucifora, L.G.; Burke, K.A.; Feng, X.; Arbez, N.; Zhu, S.; Miller, J.; Yang, G.; Ratovitski, T.; Delannoy, M.; Muchowski, P.J.; et al. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J. Biol. Chem. 2012, 287, 16017–16028. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Y.; Shyu, Y.C.; Barbaro, B.A.; Lin, Y.T.; Chern, Y.; Thompson, L.M.; James Shen, C.K.; Marsh, J.L. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington’s disease. Hum. Mol. Genet. 2015, 24, 1602–1616. [Google Scholar] [CrossRef] [Green Version]
- Zuccato, C.; Cattaneo, E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol. 2007, 81, 294–330. [Google Scholar] [CrossRef] [PubMed]
- Bassi, S.; Tripathi, T.; Monziani, A.; Di Leva, F.; Biagioli, M. Epigenetics of Huntington’s Disease. Adv. Exp. Med. Biol. 2017, 978, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Hong, Y.; Li, X.J.; Li, S.H. Subcellular Clearance and Accumulation of Huntington Disease Protein: A Mini-Review. Front. Mol. Neurosci. 2016, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Valionyte, E.; Yang, Y.; Roberts, S.L.; Kelly, J.; Lu, B.; Luo, S. Lowering Mutant Huntingtin Levels and Toxicity: Autophagy-Endolysosome Pathways in Huntington’s Disease. J. Mol. Biol. 2020, 432, 2673–2691. [Google Scholar] [CrossRef]
- Harding, R.J.; Tong, Y.F. Proteostasis in Huntington’s disease: Disease mechanisms and therapeutic opportunities. Acta Pharmacol. Sin. 2018, 39, 754–769. [Google Scholar] [CrossRef] [Green Version]
- Jodeiri Farshbaf, M.; Ghaedi, K. Huntington’s Disease and Mitochondria. Neurotox. Res. 2017, 32, 518–529. [Google Scholar] [CrossRef]
- Sharma, A.; Behl, T.; Sharma, L.; Aelya, L.; Bungau, S. Mitochondrial Dysfunction in Huntington’s disease: Pathogenesis and Therapeutic Opportunities. Curr. Drug Targets 2021, 22, 1637–1667. [Google Scholar] [CrossRef]
- Roe, A.J.; Qi, X. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington’s disease. Biochem. Biophys. Res. Commun. 2018, 496, 706–711. [Google Scholar] [CrossRef]
- Sawant, N.; Morton, H.; Kshirsagar, S.; Reddy, A.P.; Reddy, P.H. Mitochondrial Abnormalities and Synaptic Damage in Huntington’s Disease: A Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol. Neurobiol. 2021, 58, 6350–6377. [Google Scholar] [CrossRef]
- Franco-Iborra, S.; Plaza-Zabala, A.; Montpeyo, M.; Sebastian, D.; Vila, M.; Martinez-Vicente, M. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy 2021, 17, 672–689. [Google Scholar] [CrossRef] [PubMed]
- Shirendeb, U.P.; Calkins, M.J.; Manczak, M.; Anekonda, V.; Dufour, B.; McBride, J.L.; Mao, P.; Reddy, P.H. Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum. Mol. Genet. 2012, 21, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Sepers, M.D.; Raymond, L.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov. Today 2014, 19, 990–996. [Google Scholar] [CrossRef]
- Labbadia, J.; Morimoto, R. Huntington’s Disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013, 38, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain J. Neurol. 2007, 130, 1759–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshnan, A.; Ko, J.; Watkin, E.E.; Paige, L.A.; Reinhart, P.H.; Patterson, P.H. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 7999–8008. [Google Scholar] [CrossRef] [Green Version]
- Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med. 2008, 205, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Valadão, P.A.C.; Santos, K.B.S.; Ferreira, E.V.T.H.; Macedo, E.C.T.; Teixeira, A.L.; Guatimosim, C.; de Miranda, A.S. Inflammation in Huntington’s disease: A few new twists on an old tale. J. Neuroimmunol. 2020, 348, 577380. [Google Scholar] [CrossRef]
- Grima, J.C.; Daigle, J.G.; Arbez, N.; Cunningham, K.C.; Zhang, K.; Ochaba, J.; Geater, C.; Morozko, E.; Stocksdale, J.; Glatzer, J.C.; et al. Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron 2017, 94, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Dash, D.; Mestre, T.A. Therapeutic Update on Huntington’s Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies. Neurotherapeutics 2020, 17, 1645–1659. [Google Scholar] [CrossRef]
- Estevez-Fraga, C.; Flower, M.D.; Tabrizi, S.J. Therapeutic strategies for Huntington’s disease. Curr. Opin. Neurol. 2020, 33, 508–518. [Google Scholar] [CrossRef]
- Heo, Y.A.; Scott, L.J. Deutetrabenazine: A Review in Chorea Associated with Huntington’s Disease. Drugs 2017, 77, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.H.; Kang, G.A.; Lee, A.J. Role of tetrabenazine for Huntington’s disease-associated chorea. Ann. Pharm. 2010, 44, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Beister, A.; Kraus, P.; Kuhn, W.; Dose, M.; Weindl, A.; Gerlach, M. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington’s disease. J. Neural Transm. Suppl. 2004, 68, 117–122. [Google Scholar] [CrossRef]
- Galts, C.P.C.; Bettio, L.E.B.; Jewett, D.C.; Yang, C.C.; Brocardo, P.S.; Rodrigues, A.L.S.; Thacker, J.S.; Gil-Mohapel, J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci. Biobehav. Rev. 2019, 102, 56–84. [Google Scholar] [CrossRef] [PubMed]
- Wyant, K.J.; Ridder, A.J.; Dayalu, P. Huntington’s Disease-Update on Treatments. Curr. Neurol. Neurosci. Rep. 2017, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Pioneering antisense drug heads into pivotal trials for Huntington disease. Nat. Rev. Drug Discov. 2019, 18, 161–163. [Google Scholar] [CrossRef]
- Leavitt, B.R.; Kordasiewicz, H.B.; Schobel, S.A. Huntingtin-Lowering Therapies for Huntington Disease: A Review of the Evidence of Potential Benefits and Risks. JAMA Neurol. 2020, 77, 764–772. [Google Scholar] [CrossRef]
- Valero, T. Mitochondrial biogenesis: Pharmacological approaches. Curr. Pharm. Des. 2014, 20, 5507–5509. [Google Scholar] [CrossRef]
- Adanyeguh, I.M.; Rinaldi, D.; Henry, P.G.; Caillet, S.; Valabregue, R.; Durr, A.; Mochel, F. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 2015, 84, 490–495. [Google Scholar] [CrossRef]
- Vázquez-Manrique, R.P.; Farina, F.; Cambon, K.; Dolores Sequedo, M.; Parker, A.J.; Millán, J.M.; Weiss, A.; Déglon, N.; Neri, C. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington’s disease. Hum. Mol. Genet. 2016, 25, 1043–1058. [Google Scholar] [CrossRef]
- Sanchis, A.; García-Gimeno, M.A.; Cañada-Martínez, A.J.; Sequedo, M.D.; Millán, J.M.; Sanz, P.; Vázquez-Manrique, R.P. Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Exp. Mol. Med. 2019, 51, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.C.; Buescher, J.L.; Oatis, B.; Funk, J.A.; Nash, A.J.; Carrier, R.L.; Hoyt, K.R. Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci. Lett. 2007, 411, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Hervás, D.; Fornés-Ferrer, V.; Gómez-Escribano, A.P.; Sequedo, M.D.; Peiró, C.; Millán, J.M.; Vázquez-Manrique, R.P. Metformin intake associates with better cognitive function in patients with Huntington’s disease. PLoS ONE 2017, 12, e0179283. [Google Scholar] [CrossRef] [Green Version]
- Eddings, C.R.; Arbez, N.; Akimov, S.; Geva, M.; Hayden, M.R.; Ross, C.A. Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol. Dis. 2019, 129, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.M.; Anbar, H.S.; El-Gamal, M.I. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur. J. Med. Chem. 2021, 213, 113216. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.A.; Choi, Y.; Hong, S. Stem cell transplantation for Huntington’s diseases. Methods 2018, 133, 104–112. [Google Scholar] [CrossRef]
- Mu, S.; Han, L.; Zhou, G.; Mo, C.; Duan, J.; He, Z.; Wang, Z.; Ren, L.; Zhang, J. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington’s animal model. Neuropathol. Appl. Neurobiol. 2016, 42, 521–534. [Google Scholar] [CrossRef]
- Mu, S.; Wang, J.; Zhou, G.; Peng, W.; He, Z.; Zhao, Z.; Mo, C.; Qu, J.; Zhang, J. Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS ONE 2014, 9, e101185. [Google Scholar] [CrossRef]
- Grochowski, C.; Blicharska, E.; Krukow, P.; Jonak, K.; Maciejewski, M.; Szczepanek, D.; Jonak, K.; Flieger, J.; Maciejewski, R. Analysis of Trace Elements in Human Brain: Its Aim, Methods, and Concentration Levels. Front. Chem. 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Oldereid, N.B.; Thomassen, Y.; Attramadal, A.; Olaisen, B.; Purvis, K. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J. Reprod. Fertil. 1993, 99, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.R.; Levenson, C.W. Neurotoxicity of Zinc. Adv. Neurobiol. 2017, 18, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.T.; Graham, T.C.; Ogden, L.; Ali, S.; Salwa; Thompson, S.J.; Shireen, K.F.; Mahboob, M. A two-generational reproductive toxicity study of zinc in rats. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2007, 42, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Sandstead, H.H. Subclinical zinc deficiency impairs human brain function. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2012, 26, 70–73. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Miura, C.; Kikuchi, K.; Celino, F.T.; Agusa, T.; Tanabe, S.; Miura, T. Zinc is an essential trace element for spermatogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 10859–10864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krall, R.F.; Tzounopoulos, T.; Aizenman, E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021, 457, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Taylor, K.M.; Fu, D. Zinc transporters and their functional integration in mammalian cells. J. Biol. Chem. 2021, 296, 100320. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef]
- Niu, L.; Li, L.; Yang, S.; Wang, W.; Ye, C.; Li, H. Disruption of zinc transporter ZnT3 transcriptional activity and synaptic vesicular zinc in the brain of Huntington’s disease transgenic mouse. Cell Biosci. 2020, 10, 106. [Google Scholar] [CrossRef]
- Granzotto, A.; Canzoniero, L.M.T.; Sensi, S.L. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front. Mol. Neurosci. 2020, 13, 600089. [Google Scholar] [CrossRef]
- Watt, N.T.; Griffiths, H.H.; Hooper, N.M. Neuronal zinc regulation and the prion protein. Prion 2013, 7, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the Brain: Friend or Foe? Int. J. Mol. Sci. 2020, 21, 8941. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.J.; Park, M.H.; Choi, S.Y.; Koh, J.Y. Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J. Biol. Chem. 2005, 280, 11995–12001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.Z.; Pan, E.; Xiong, Z.Q.; McNamara, J.O. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 2008, 57, 546–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portbury, S.D.; Adlard, P.A. Zinc Signal in Brain Diseases. Int. J. Mol. Sci. 2017, 18, 2506. [Google Scholar] [CrossRef] [Green Version]
- Kerns, K.; Zigo, M.; Sutovsky, P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int. J. Mol. Sci. 2018, 19, 4097. [Google Scholar] [CrossRef] [Green Version]
- Foresta, C.; Garolla, A.; Cosci, I.; Menegazzo, M.; Ferigo, M.; Gandin, V.; De Toni, L. Role of zinc trafficking in male fertility: From germ to sperm. Hum. Reprod. 2014, 29, 1134–1145. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.E.; Stanfield, G.M. The regulation of spermatogenesis and sperm function in nematodes. Semin. Cell Dev. Biol. 2014, 29, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tan, C.H.; Krauchunas, A.; Scharf, A.; Dietrich, N.; Warnhoff, K.; Yuan, Z.; Druzhinina, M.; Gu, S.G.; Miao, L.; et al. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol. 2018, 16, e2005069. [Google Scholar] [CrossRef] [Green Version]
- Kumari, D.; Nair, N.; Bedwal, R.S. Effect of dietary zinc deficiency on testes of Wistar rats: Morphometric and cell quantification studies. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2011, 25, 47–53. [Google Scholar] [CrossRef]
- Kumari, D.; Nair, N.; Bedwal, R.S. Testicular apoptosis after dietary zinc deficiency: Ultrastructural and TUNEL studies. Syst. Biol. Reprod. Med. 2011, 57, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Tuncer, I.; Sunar, F.; Toy, H.; Baltaci, A.K.; Mogulkoc, R. Histological effects of zinc and melatonin on rat testes. Bratisl. Lek. Listy 2011, 112, 425–427. [Google Scholar] [PubMed]
- Croxford, T.P.; McCormick, N.H.; Kelleher, S.L. Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J. Nutr. 2011, 141, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemzadeh-Hasankolai, M.; Batavani, R.; Eslaminejad, M.B.; Sedighi-Gilani, M. Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol. Trace Elem. Res. 2012, 150, 137–146. [Google Scholar] [CrossRef]
- Vickram, S.; Rohini, K.; Srinivasan, S.; Nancy Veenakumari, D.; Archana, K.; Anbarasu, K.; Jeyanthi, P.; Thanigaivel, S.; Gulothungan, G.; Rajendiran, N.; et al. Role of Zinc (Zn) in Human Reproduction: A Journey from Initial Spermatogenesis to Childbirth. Int. J. Mol. Sci. 2021, 22, 2188. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Wei, L.; Fan, S.; Yang, W.; Liu, X.; Wang, G.; Man, Y.; Pan, Z.; Feng, W. Expression pattern of Zinc finger protein 185 in mouse testis and its role in regulation of testosterone secretion. Mol. Med. Rep. 2017, 16, 2101–2106. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, M.; Ohtsuka, E.; Inoue, A.; Odaka, M.; Ohshima, H.; Tamura, N.; Yoshida, K.; Sako, N.; Baba, T.; Kashiwabara, S.; et al. Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice. Dev. Growth Differ. 2016, 58, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Bjorndahl, L.; Kvist, U. Human sperm chromatin stabilization: A proposed model including zinc bridges. Mol. Hum. Reprod. 2010, 16, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Henkel, R.; Baldauf, C.; Bittner, J.; Weidner, W.; Miska, W. Elimination of zinc from the flagella of spermatozoa during epididymal transit is important for motility. Reprod. Technol. 2001, 10, 280–285. [Google Scholar]
- Clermont, Y.; Oko, R.; Hermo, L. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: An electron microscope study. Anat. Rec. 1990, 227, 447–457. [Google Scholar] [CrossRef]
- Beigi Harchegani, A.; Dahan, H.; Tahmasbpour, E.; Bakhtiari Kaboutaraki, H.; Shahriary, A. Effects of zinc deficiency on impaired spermatogenesis and male infertility: The role of oxidative stress, inflammation and apoptosis. Hum. Fertil. 2020, 23, 5–16. [Google Scholar] [CrossRef]
- Calvin, H.I. Comparative labelling of rat epididymal spermatozoa by intratesticularly administered 65ZnCl2 and [35S]cysteine. J. Reprod. Fertil. 1981, 61, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminska, B.; Rozewicka, L.; Dominiak, B.; Mielnicka, M.; Mikulska, D. Zinc content in epididymal spermatozoa of metoclopramide-treated rats. Andrologia 1987, 19, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Henkel, R.; Baldauf, C.; Schill, W.B. Resorption of the element zinc from spermatozoa by the epididymal epithelium. Reprod. Domest. Anim. Zuchthyg. 2003, 38, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Macias, V.; Martinez-Pastor, F.; Alvarez, M.; Garde, J.J.; Anel, E.; Anel, L.; de Paz, P. Assessment of chromatin status (SCSA) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog. Theriogenology 2006, 66, 1921–1930. [Google Scholar] [CrossRef]
- Henkel, R.; Bittner, J.; Weber, R.; Hüther, F.; Miska, W. Relevance of zinc in human sperm flagella and its relation to motility. Fertil. Steril. 1999, 71, 1138–1143. [Google Scholar] [CrossRef]
- Kerns, K.; Zigo, M.; Drobnis, E.Z.; Sutovsky, M.; Sutovsky, P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 2018, 9, 2061. [Google Scholar] [CrossRef] [Green Version]
- Allouche-Fitoussi, D.; Breitbart, H. The Role of Zinc in Male Fertility. Int. J. Mol. Sci. 2020, 21, 7796. [Google Scholar] [CrossRef]
- Bjorndahl, L.; Kvist, U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst. Biol. Reprod. Med. 2011, 57, 86–92. [Google Scholar] [CrossRef]
- Kvist, U. Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol. Scand. 1980, 109, 79–84. [Google Scholar] [CrossRef]
- Kvist, U. Sperm nuclear chromatin decondensation ability. An in vitro study on ejaculated human spermatozoa. Acta Physiol. Scand. Suppl. 1980, 486, 1–24. [Google Scholar]
- Riffo, M.; Leiva, S.; Astudillo, J. Effect of zinc on human sperm motility and the acrosome reaction. Int. J. Androl. 1992, 15, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Bettger, W.J.; O’Dell, B.L. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981, 28, 1425–1438. [Google Scholar] [CrossRef]
- O’Dell, B.L. Role of zinc in plasma membrane function. J. Nutr. 2000, 130, 1432s–1436s. [Google Scholar] [CrossRef] [PubMed]
- Narasimhaiah, M.; Arunachalam, A.; Sellappan, S.; Mayasula, V.K.; Guvvala, P.R.; Ghosh, S.K.; Chandra, V.; Ghosh, J.; Kumar, H. Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats. Reprod. Domest. Anim. Zuchthyg. 2018, 53, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Sabeti, P.; Pourmasumi, S. Comparison between sperm parameters and chromatin in recurrent pregnancy loss couples after antioxidant therapy. J. Fam. Med. Prim. Care 2020, 9, 597–601. [Google Scholar] [CrossRef]
- Suarez, S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016, 363, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Kerns, K.; Sharif, M.; Zigo, M.; Xu, W.; Hamilton, L.E.; Sutovsky, M.; Ellersieck, M.; Drobnis, E.Z.; Bovin, N.; Oko, R.; et al. Sperm Cohort-Specific Zinc Signature Acquisition and Capacitation-Induced Zinc Flux Regulate Sperm-Oviduct and Sperm-Zona Pellucida Interactions. Int. J. Mol. Sci. 2020, 21, 2121. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, R.; Deppe, M.; Schulz, M.; Bravo, P.; Villegas, J.; Morales, P.; Risopatron, J. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia 2011, 43, 114–120. [Google Scholar] [CrossRef]
- Ferrer, M.; Rodriguez, H.; Zara, L.; Yu, Y.; Xu, W.; Oko, R. MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 2012, 349, 881–895. [Google Scholar] [CrossRef] [Green Version]
- Seeler, J.F.; Sharma, A.; Zaluzec, N.J.; Bleher, R.; Lai, B.; Schultz, E.G.; Hoffman, B.M.; LaBonne, C.; Woodruff, T.K.; O’Halloran, T.V. Metal ion fluxes controlling amphibian fertilization. Nat. Chem. 2021, 13, 683–691. [Google Scholar] [CrossRef]
- Kim, A.M.; Bernhardt, M.L.; Kong, B.Y.; Ahn, R.W.; Vogt, S.; Woodruff, T.K.; O’Halloran, T.V. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem. Biol. 2011, 6, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Duncan, F.E.; Que, E.L.; Zhang, N.; Feinberg, E.C.; O’Halloran, T.V.; Woodruff, T.K. The zinc spark is an inorganic signature of human egg activation. Sci. Rep. 2016, 6, 24737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Que, E.L.; Duncan, F.E.; Lee, H.C.; Hornick, J.E.; Vogt, S.; Fissore, R.A.; O’Halloran, T.V.; Woodruff, T.K. Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2019, 127, 41–48. [Google Scholar] [CrossRef]
- Meizel, S. The sperm, a neuron with a tail: ‘Neuronal’ receptors in mammalian sperm. Biol. Rev. Camb. Philos. Soc. 2004, 79, 713–732. [Google Scholar] [CrossRef]
- Meizel, S.; Son, J.H. Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol. Reprod. Dev. 2005, 72, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Urra, J.A.; Villaroel-Espíndola, F.; Covarrubias, A.A.; Rodríguez-Gil, J.E.; Ramírez-Reveco, A.; Concha, I.I. Presence and function of dopamine transporter (DAT) in stallion sperm: Dopamine modulates sperm motility and acrosomal integrity. PLoS ONE 2014, 9, e112834. [Google Scholar] [CrossRef] [Green Version]
- Gorodeski, G.I. Purinergic Signalling in the Reproductive System. Auton. Neurosci. Basic. Clin. 2015, 191, 82–101. [Google Scholar] [CrossRef]
- Kumar, P.; Meizel, S. Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J. Biol. Chem. 2005, 280, 25928–25935. [Google Scholar] [CrossRef] [Green Version]
- Gianzo, M.; Muñoa-Hoyos, I.; Urizar-Arenaza, I.; Larreategui, Z.; Quintana, F.; Garrido, N.; Subirán, N.; Irazusta, J. Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Fertil. Steril. 2016, 105, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Amoako, A.A.; Marczylo, T.H.; Marczylo, E.L.; Elson, J.; Willets, J.M.; Taylor, A.H.; Konje, J.C. Anandamide modulates human sperm motility: Implications for men with asthenozoospermia and oligoasthenoteratozoospermia. Hum. Reprod. 2013, 28, 2058–2066. [Google Scholar] [CrossRef] [Green Version]
- Flegel, C.; Vogel, F.; Hofreuter, A.; Schreiner, B.S.; Osthold, S.; Veitinger, S.; Becker, C.; Brockmeyer, N.H.; Muschol, M.; Wennemuth, G.; et al. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front. Mol. Biosci. 2015, 2, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés-Rodriguez, M.; Royo, J.L.; Reyes-Palomares, A.; Lendínez, A.M.; Ruiz-Galdón, M.; Reyes-Engel, A. Sperm count and motility are quantitatively affected by functional polymorphisms of HTR2A, MAOA and SLC18A. Reprod. Biomed. Online 2018, 36, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhu, P.; Wu, C.; Yu, L.; Zhao, S.; Gu, X. In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet. Genome Res. 2003, 103, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.H.; Ross, C.A. Neurobiology of Huntington’s disease. Neurobiol. Dis. 1996, 3, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Clever, F.; Cho, I.K.; Yang, J.; Chan, A.W.S. Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington’s Disease Monkeys. J. Huntingt. Dis. 2019, 8, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telenius, H.; Almqvist, E.; Kremer, B.; Spence, N.; Squitieri, F.; Nichol, K.; Grandell, U.; Starr, E.; Benjamin, C.; Castaldo, I.; et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Hum. Mol. Genet. 1995, 4, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Mangiarini, L.; Sathasivam, K.; Mahal, A.; Mott, R.; Seller, M.; Bates, G.P. Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat Genet. 1997, 15, 197–200. [Google Scholar] [CrossRef]
- Dragileva, E.; Hendricks, A.; Teed, A.; Gillis, T.; Lopez, E.T.; Friedberg, E.C.; Kucherlapati, R.; Edelmann, W.; Lunetta, K.L.; MacDonald, M.E.; et al. Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 2009, 33, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Mollersen, L.; Rowe, A.D.; Larsen, E.; Rognes, T.; Klungland, A. Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genet. 2010, 6, e1001242. [Google Scholar] [CrossRef]
- Im, W.; Chung, J.; Lee, S.T.; Chu, K.; Kim, M.W.; Kim, M. Nuclear localization of huntingtin during spermatogenesis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2014, 35, 459–462. [Google Scholar] [CrossRef]
- Leavitt, B.R.; Guttman, J.A.; Hodgson, J.G.; Kimel, G.H.; Singaraja, R.; Vogl, A.W.; Hayden, M.R. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 2001, 68, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Zhang, H.; Liu, Y.; Zhao, F.; Zhu, S.; Xie, C.; Tang, T.S.; Guo, C. Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice. J. Cell Sci. 2016, 129, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raamsdonk, J.M.; Murphy, Z.; Selva, D.M.; Hamidizadeh, R.; Pearson, J.; Petersén, A.; Björkqvist, M.; Muir, C.; Mackenzie, I.R.; Hammond, G.L.; et al. Testicular degeneration in Huntington disease. Neurobiol. Dis. 2007, 26, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Vidinská, D.; Vochozková, P.; Šmatlíková, P.; Ardan, T.; Klíma, J.; Juhás, Š.; Juhásová, J.; Bohuslavová, B.; Baxa, M.; Valeková, I.; et al. Gradual Phenotype Development in Huntington Disease Transgenic Minipig Model at 24 Months of Age. Neuro-Degener. Dis. 2018, 18, 107–119. [Google Scholar] [CrossRef]
- Macakova, M.; Bohuslavova, B.; Vochozkova, P.; Pavlok, A.; Sedlackova, M.; Vidinska, D.; Vochyanova, K.; Liskova, I.; Valekova, I.; Baxa, M.; et al. Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars. Neuro. Degener. Dis. 2016, 16, 245–259. [Google Scholar] [CrossRef]
- Krizova, J.; Stufkova, H.; Rodinova, M.; Macakova, M.; Bohuslavova, B.; Vidinska, D.; Klima, J.; Ellederova, Z.; Pavlok, A.; Howland, D.S.; et al. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. Neuro-Degener. Dis. 2017, 17, 213–226. [Google Scholar] [CrossRef]
- Paul, N.; Kumaresan, A.; Das Gupta, M.; Nag, P.; Guvvala, P.R.; Kuntareddi, C.; Sharma, A.; Selvaraju, S.; Datta, T.K. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front. Vet. Sci. 2020, 7, 609518. [Google Scholar] [CrossRef]
- Prakash, M.A.; Kumaresan, A.; Ebenezer Samuel King, J.P.; Nag, P.; Sharma, A.; Sinha, M.K.; Kamaraj, E.; Datta, T.K. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front. Cell Dev. Biol. 2021, 9, 647717. [Google Scholar] [CrossRef]
- Walters, E.M.; Wells, K.D.; Bryda, E.C.; Schommer, S.; Prather, R.S. Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab. Anim. 2017, 46, 167–172. [Google Scholar] [CrossRef]
- Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.; Harlizius, B.; Lee, K.T.; Milan, D.; Rogers, J.; Rothschild, M.F.; et al. Pig genome sequence--analysis and publication strategy. BMC Genom. 2010, 11, 438. [Google Scholar] [CrossRef] [Green Version]
- Marsh, J.L.; Pallos, J.; Thompson, L.M. Fly models of Huntington’s disease. Hum. Mol. Genet. 2003, 12, R187–R193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; et al. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro. Cell Stem Cell 2016, 18, 330–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easley, C.A.t.; Phillips, B.T.; McGuire, M.M.; Barringer, J.M.; Valli, H.; Hermann, B.P.; Simerly, C.R.; Rajkovic, A.; Miki, T.; Orwig, K.E.; et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012, 2, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khampang, S.; Cho, I.K.; Punyawai, K.; Gill, B.; Langmo, J.N.; Nath, S.; Greeson, K.W.; Symosko, K.M.; Fowler, K.L.; Tian, S.; et al. Blastocyst Development after Fertilization with in vitro Spermatids Derived from Non-Human Primate Embryonic Stem Cells. F S Sci. 2021, 2, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Saitou, M.; Hayashi, K. Mammalian in vitro gametogenesis. Science 2021, 374, eaaz6830. [Google Scholar] [CrossRef]
- Symosko, K.M.; Schatten, G.; Easley, C.A. Gamete Production from Stem Cells. In Female and Male Fertility Preservation; Grynberg, M., Patrizio, P., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 395–407. [Google Scholar] [CrossRef]
- Steinberger, A. Factors affecting spermatogenesis in organ cultures of mammalian testes. J. Reprod. Fertil. Suppl. 1967, 2, 117–124. [Google Scholar]
- Ishikura, Y.; Yabuta, Y.; Ohta, H.; Hayashi, K.; Nakamura, T.; Okamoto, I.; Yamamoto, T.; Kurimoto, K.; Shirane, K.; Sasaki, H.; et al. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Rep. 2016, 17, 2789–2804. [Google Scholar] [CrossRef] [Green Version]
- Irie, N.; Weinberger, L.; Tang, W.W.; Kobayashi, T.; Viukov, S.; Manor, Y.S.; Dietmann, S.; Hanna, J.H.; Surani, M.A. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015, 160, 253–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, K.; Yokobayashi, S.; Nakamura, T.; Okamoto, I.; Yabuta, Y.; Kurimoto, K.; Ohta, H.; Moritoki, Y.; Iwatani, C.; Tsuchiya, H.; et al. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 2015, 17, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Bucay, N.; Yebra, M.; Cirulli, V.; Afrikanova, I.; Kaido, T.; Hayek, A.; Montgomery, A.M. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem. Cells 2009, 27, 68–77. [Google Scholar] [CrossRef]
- Fukunaga, N.; Teramura, T.; Onodera, Y.; Takehara, T.; Fukuda, K.; Hosoi, Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram 2010, 12, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Kee, K.; Angeles, V.T.; Flores, M.; Nguyen, H.N.; Reijo Pera, R.A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009, 462, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Panula, S.; Medrano, J.V.; Kee, K.; Bergstrom, R.; Nguyen, H.N.; Byers, B.; Wilson, K.D.; Wu, J.C.; Simon, C.; Hovatta, O.; et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum. Mol. Genet. 2011, 20, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Galic, Z.; Conway, A.E.; Lindgren, A.; van Handel, B.J.; Magnusson, M.; Richter, L.; Teitell, M.A.; Mikkola, H.K.; Lowry, W.E.; et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 2009, 27, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Teramura, T.; Takehara, T.; Kawata, N.; Fujinami, N.; Mitani, T.; Takenoshita, M.; Matsumoto, K.; Saeki, K.; Iritani, A.; Sagawa, N.; et al. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells 2007, 9, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Tilgner, K.; Atkinson, S.P.; Golebiewska, A.; Stojkovic, M.; Lako, M.; Armstrong, L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008, 26, 3075–3085. [Google Scholar] [CrossRef]
- Yamauchi, K.; Hasegawa, K.; Chuma, S.; Nakatsuji, N.; Suemori, H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS ONE 2009, 4, e5338. [Google Scholar] [CrossRef] [Green Version]
- Eguizabal, C.; Montserrat, N.; Vassena, R.; Barragan, M.; Garreta, E.; Garcia-Quevedo, L.; Vidal, F.; Giorgetti, A.; Veiga, A.; Izpisua Belmonte, J.C. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011, 29, 1186–1195. [Google Scholar] [CrossRef]
- Alves-Lopes, J.P.; Stukenborg, J.B. Testicular organoids: A new model to study the testicular microenvironment in vitro? Hum. Reprod. Update 2018, 24, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Huleihel, M.; Nourashrafeddin, S.; Plant, T.M. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J. Androl. 2015, 17, 972–980. [Google Scholar] [CrossRef]
- Pendergraft, S.S.; Sadri-Ardekani, H.; Atala, A.; Bishop, C.E. Three-dimensional testicular organoid: A novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol. Reprod. 2017, 96, 720–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simard, O.; Gregoire, M.C.; Arguin, M.; Brazeau, M.A.; Leduc, F.; Marois, I.; Richter, M.V.; Boissonneault, G. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum. Mutat. 2014, 35, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Usdin, K.; House, N.C.; Freudenreich, C.H. Repeat instability during DNA repair: Insights from model systems. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 142–167. [Google Scholar] [CrossRef]
- Yoon, S.R.; Dubeau, L.; de Young, M.; Wexler, N.S.; Arnheim, N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc. Natl. Acad. Sci. USA 2003, 100, 8834–8838. [Google Scholar] [CrossRef] [Green Version]
- Ehmcke, J.; Wistuba, J.; Schlatt, S. Spermatogonial stem cells: Questions, models and perspectives. Hum. Reprod. Update 2006, 12, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Fayomi, A.P.; Orwig, K.E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem. Cell Res. 2018, 29, 207–214. [Google Scholar] [CrossRef]
- Khampang, S.; Parnpai, R.; Mahikul, W.; Easley, C.A.t.; Cho, I.K.; Chan, A.W.S. CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington’s disease monkey. J. Assist. Reprod. Genet. 2021, 38, 1215–1229. [Google Scholar] [CrossRef]
Drug/Sponsor | Class | Specificity | Target | Mechanism of Action | Trials |
---|---|---|---|---|---|
WVE-120101, WVE-120102/WAVE Life Sciences | ASO | Allele-specific | RNA | mHTT-lowering antisense Pre-mRNA degradation | Phase I/II |
Imperial College London | ZFP | Allele-specific | DNA | Transcriptional repression | Pre-clinical |
Sangamo Therapeutics/Takeda | ZFP | Allele-specific | DNA | Transcriptional repression | Pre-clinical |
RG6042 (IONIS-HTTRx)/Roche/Ionis Pharmaceuticals | ASO | Non-specific | RNA | HTT-lowering antisense Pre-mRNA degradation | Phase III |
AMT-130/uniQure | RNAi | Non-specific | RNA | HTT-lowering miRNA-based silencing mRNA degradation | Phase I/II |
VY-HTT01/Voyager Therapeutics | RNAi | Non-specific | RNA | HTT-lowering miRNA-based silencing mRNA degradation | Pre-clinical |
Gene | Protein | Function(s) |
---|---|---|
ATP5A1 | ATP synthase subunit alpha, mitochondrial | ADP binding; angiostatin binding; ATP binding; MHC class I protein binding; proton-transporting ATP synthase activity, rotational mechanism; RNA binding |
ATP5G1 | ATP synthase F(0) complex subunit C1, mitochondrial | lipid binding; proton-transporting ATP synthase activity, rotational mechanism |
ATP5G3 | ATP synthase F(0) complex subunit C3, mitochondrial | lipid binding; proton-transporting ATP synthase activity, rotational mechanism |
ATP5H | ATP synthase subunit d, mitochondrial | protein-containing complex; proton transmembrane transporter activity |
BDNF | Brain-derived neurotrophic factor | growth factor activity; nerve growth factor receptor binding; activation of phospholipase C activity; axon guidance; brain-derived neurotrophic factor receptor signaling pathway; collateral sprouting; modulation of chemical synaptic transmission; negative regulation of apoptotic signaling pathway; negative regulation of myotube differentiation; negative regulation of neuron apoptotic process; nerve development; nerve growth factor signaling pathway; nervous system development; neuron projection morphogenesis; neurotrophin TRK receptor signaling pathway; peripheral nervous system development; positive regulation of brain-derived neurotrophic factor receptor signaling pathway; positive regulation of collateral sprouting; positive regulation of neuron projection development; positive regulation of non-membrane spanning protein tyrosine kinase activity; positive regulation of peptidyl-serine phosphorylation; positive regulation of receptor binding; positive regulation of synapse assembly; regulation of neuron differentiation; regulation of protein localization to cell surface; synapse assembly; transmembrane receptor protein tyrosine kinase signaling pathway |
COX5A | Cytochrome c oxidase subunit 5A, mitochondrial | cytochrome-c oxidase activity; electron transfer activity; metal ion binding |
COX6B1 | Cytochrome c oxidase subunit 6B1 | cytochrome-c oxidase activity |
COX6C | Cytochrome c oxidase subunit 6C | cytochrome-c oxidase activity |
COX7A2 | Cytochrome c oxidase subunit 7A2, mitochondrial | cytochrome-c oxidase activity |
COX7B | Cytochrome c oxidase subunit 7B, mitochondrial | cytochrome-c oxidase activity |
COX7C | Cytochrome c oxidase subunit 7C, mitochondrial | cytochrome-c oxidase activity |
COX8A | Cytochrome c oxidase subunit 8A, mitochondrial | cytochrome-c oxidase activity |
NDUFA4 | Cytochrome c oxidase subunit NDUFA4 | NADH dehydrogenase (ubiquinone) activity; protein-containing complex binding; mitochondrial electron transport, cytochrome c to oxygen; mitochondrial electron transport, NADH to ubiquinone; proton transmembrane transport |
NDUFA5 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 | NADH dehydrogenase (ubiquinone) activity; mitochondrial electron transport, NADH to ubiquinone; mitochondrial respiratory chain complex I assembly |
NDUFB1 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 | NADH dehydrogenase (ubiquinone) activity; mitochondrial electron transport, NADH to ubiquinone; mitochondrial respiratory chain complex I assembly |
NDUFS4 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial | NADH dehydrogenase; brain development; cellular respiration; mitochondrial electron transport, NADH to ubiquinone; mitochondrial respiratory chain complex I assembly; positive regulation of fibroblast proliferation; reactive oxygen species metabolic process; regulation of protein phosphorylation; response to cAMP |
POLR2E | DNA-directed RNA polymerases I, II, and III subunit RPABC1 | a component of RNA polymerases I, II, and III which synthesizes ribosomal RNA precursors; catalyzes the transcription of DNA into RNA |
PPARGC1A | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha | alpha-tubulin binding; chromatin DNA binding; DNA binding; estrogen receptor binding; nuclear receptor binding; nuclear receptor coactivator activity; peroxisome proliferator-activated receptor binding; promoter-specific chromatin binding; RNA binding; sequence-specific DNA binding; transcription coactivator activity; transcription coregulator activity; transcription factor binding; ubiquitin protein ligase binding |
SLC25A4 | ADP/ATP translocase 1 | adenine transmembrane transporter activity; ATP:ADP antiporter activity; oxidative phosphorylation uncoupler activity; proton transmembrane transporter activity; adaptive thermogenesis; ADP transport; apoptotic mitochondrial changes; generation of precursor metabolites and energy; mitochondrial ADP transmembrane transport; mitochondrial ATP transmembrane transport; mitochondrial genome maintenance; negative regulation of necroptotic process; positive regulation of mitophagy; regulation of mitochondrial membrane permeability; viral process |
SLC25A5 | ADP/ATP translocase 2 | adenine nucleotide transmembrane transporter activity; adenine transmembrane transporter activity; ATP:ADP antiporter activity; oxidative phosphorylation uncoupler activity; proton transmembrane transporter activity; RNA binding; ubiquitin protein ligase binding; adaptive thermogenesis; adenine nucleotide transport; B cell differentiation; cellular response to leukemia inhibitory factor; chromosome segregation; erythrocyte differentiation; mitochondrial ADP transmembrane transport; mitochondrial ATP transmembrane transport; negative regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway; positive regulation of cell population proliferation; positive regulation of mitophagy; regulation of mitochondrial membrane permeability |
SP1 | E3 ubiquitin-protein ligase SP1 | bHLH transcription factor binding; cis-regulatory region sequence-specific DNA binding; DNA binding; DNA-binding transcription activator activity, RNA polymerase II-specific; DNA-binding transcription factor activity; DNA-binding transcription factor activity, RNA polymerase II-specific; double-stranded DNA binding; histone acetyltransferase binding; histone deacetylase binding; HMG box domain binding; metal ion binding; protein C-terminus binding; protein homodimerization activity; repressing transcription factor binding; RNA polymerase II cis-regulatory region sequence-specific DNA binding; RNA polymerase II repressing transcription factor binding; RNA polymerase II transcription regulatory region sequence-specific DNA binding; sequence-specific DNA binding; sequence-specific double-stranded DNA binding; transcription factor binding; transcription regulatory region sequence-specific DNA binding |
TBP | TATA-box-binding protein | general transcription initiation factor activity; RNA polymerase II core promoter sequence-specific DNA binding; RNA polymerase II general transcription initiation factor activity; acrosome assembly; DNA-templated transcription, initiation; dTTP biosynthetic process; spermatid nucleus differentiation; transcription by RNA polymerase II |
UQCRB | Cytochrome b-c1 complex subunit 7 | aerobic respiration; mitochondrial electron transport, ubiquinol to cytochrome c; oxidative phosphorylation |
UQCRH | Cytochrome b-c1 complex subunit 6, mitochondrial | ubiquinol-cytochrome-c reductase activity; aerobic respiration; mitochondrial electron transport, ubiquinol to cytochrome c; oxidative phosphorylation |
VDAC1 | Voltage-dependent anion-selective channel protein 1 | ceramide binding; cholesterol binding; identical protein binding; ion channel binding; phosphatidylcholine binding; porin activity; protein-containing complex binding; protein kinase binding; voltage-gated anion channel activity |
Gene | Protein | Zinc-Binding or Containing? | Protein Class | Function(s) |
---|---|---|---|---|
ACTA1 | Actin, alpha skeletal muscle | zinc-containing | actin and actin-related protein | ADP binding; ATP binding; myosin binding; structural constituent of cytoskeleton |
ACTA2 | Actin, aortic smooth muscle | zinc-containing | actin and actin-related protein | ATP binding; protein kinase binding |
ACTB | Actin, cytoplasmic 1 | zinc-containing | actin and actin-related protein | ATP binding; identical protein binding; kinesin binding; nitric-oxide synthase binding; protein kinase binding; structural constituent of cytoskeleton; structural constituent of postsynaptic actin cytoskeleton |
ACTBL2 | Beta-actin-like protein 2 | zinc-containing | actin and actin-related protein | nucleosome binding; chromatin DNA binding; protein kinase binding; cell motility; ATP-dependent chromatin remodeling; axonogenesis |
ACTC1 | Actin, alpha cardiac muscle 1 | zinc-containing | actin and actin-related protein | ATPase activity; ATP binding; myosin binding |
ACTG1 | Actin, cytoplasmic 2 | zinc-containing | actin and actin-related protein | ATP binding; identical protein binding; profilin binding; structural constituent of cytoskeleton; structural constituent of postsynaptic actin cytoskeleton; ubiquitin protein ligase binding |
ACTG2 | Actin, gamma-enteric smooth muscle | zinc-containing | actin and actin-related protein | regulation of blood vessel diameter; smooth muscle contraction |
ACTR2 | Actin-related protein 2 | zinc-containing | actin and actin-related protein | actin filament binding; actin filament polymerization; Arp2/3 complex-mediated actin nucleation |
ARF1 | ADP-ribosylation factor 1 | zinc-containing | G-protein | anion binding; purine nucleotide binding; carbohydrate derivative binding; intracellular protein transport; vesicle-mediated transport |
ARF2 | ADP-ribosylation factor 4 | zinc-containing | G-protein | anion binding; purine nucleotide binding; carbohydrate derivative binding; intracellular protein transport; vesicle-mediated transport |
ARF3 | ADP-ribosylation factor 3 | zinc-containing | G-protein | anion binding; purine nucleotide binding; carbohydrate derivative binding; intracellular protein transport; vesicle-mediated transport |
ARF6 | ADP-ribosylation factor 6 | zinc-containing | G-protein | anion binding; purine nucleotide binding; carbohydrate derivative binding; intracellular protein transport; vesicle-mediated transport |
ARPC1A | Actin-related protein 2/3 complex subunit 1A | zinc-containing | actin or actin-binding cytoskeletal protein | actin filament binding; actin filament polymerization; Arp2/3 complex-mediated actin nucleation |
CAPN1 | Calpain-1 catalytic subunit | zinc-containing | cysteine protease | cysteine-type endopeptidase activity; proteolysis |
CAPN11 | Calpain-11 | zinc-containing | cysteine protease | cysteine-type endopeptidase activity; proteolysis |
CAPNS1 | Calpain small subunit 1 | zinc-containing | N/A | calcium-dependent cysteine-type endopeptidase activity; calcium ion binding |
CLTA | Clathrin light chain A | zinc-containing | vesicle coat protein | clathrin binding; cellular protein-containing complex assembly; clathrin-dependent endocytosis; membrane invagination; vesicle budding from membrane |
CLTB | Clathrin light chain B | zinc-containing | vesicle coat protein | clathrin binding; cellular protein-containing complex assembly; clathrin-dependent endocytosis; membrane invagination; vesicle budding from membrane |
CRYZ | Quinone oxidoreductase | zinc-binding | oxidoreductase | identical protein binding; mRNA 3’-UTR binding; NADPH:quinone reductase activity; NADPH binding; zinc ion binding |
CYC1 | Cytochrome c1, heme protein, mitochondrial | zinc-binding | N/A | heme binding; metal ion binding; ubiquinol-cytochrome-c reductase activity |
DCTN1 | Dynactin subunit 1 | zinc-containing | chaperone | microtubule binding; microtubule plus-end binding; protein kinase binding; tau protein binding; tubulin binding |
DNAH1 | Dynein heavy chain 1, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity, microtubule motor activity; protein binding; cilium movement |
DNAH10 | Dynein heavy chain 10, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity, microtubule motor activity; protein binding; microtubule-based movement |
DNAH3 | Dynein heavy chain 3, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity, microtubule motor activity; protein binding; cilium movement |
DNAH5 | Dynein heavy chain 5, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity, microtubule motor activity; protein binding; vesicle targeting; trans-Golgi to periciliary membrane compartment; ciliary transition zone assembly; protein localization to cilium; outer dynein arm assembly; intraciliary transport involved in cilium assembly |
DNAH7 * | Dynein heavy chain 7, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity; microtubule motor activity; protein binding; cilium movement |
DNAH8 * | Dynein heavy chain 8, axonemal | zinc-containing | microtubule-binding motor protein | ATPase activity, microtubule motor activity; protein binding; vesicle targeting; trans-Golgi to periciliary membrane compartment; ciliary transition zone assembly; protein localization to cilium; outer dynein arm assembly; intraciliary transport involved in cilium assembly |
DNAI2 * | Dynein intermediate chain 2, axonemal | zinc-containing | microtubule or microtubule-binding cytoskeletal protein | dynein heavy chain binding; vesicle targeting; trans-Golgi to periciliary membrane compartment; ciliary transition zone assembly; cilium movement; protein localization to cilium; outer dynein arm assembly; intraciliary transport involved in cilium assembly |
DNAL4 | Dynein light chain 4, axonemal | zinc-containing | microtubule or microtubule-binding cytoskeletal protein | protein binding; positive regulation of hydrolase activity |
DYNC1H1 | Cytoplasmic dynein 1 heavy chain 1 | zinc-containing | microtubule-binding motor protein | ATPase activity; microtubule motor activity; protein binding; vesicle transport along microtubule; mitotic nuclear division; establishment of spindle localization; cytoplasmic microtubule organization; nuclear migration |
DYNC1I2 | Cytoplasmic dynein 1 intermediate chain 2 | zinc-containing | microtubule or microtubule-binding cytoskeletal protein | dynein heavy chain binding; transport along microtubule |
DYNLL2 | Dynein light chain 2, cytoplasmic | zinc-containing | microtubule or microtubule-binding cytoskeletal protein | protein binding; vesicle targeting, trans-Golgi to periciliary membrane compartment; ciliary transition zone assembly; positive regulation of hydrolase activity; protein localization to cilium; intraciliary transport involved in cilium assembly; axoneme assembly |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | zinc-containing | dehydrogenase | oxidoreductase activity; oxidation-reduction process; glycolytic process |
GAPDHS | Glyceraldehyde-3-phosphate dehydrogenase, testes-specific | zinc-containing | dehydrogenase | oxidoreductase activity; oxidation-reduction process; glycolytic process |
HIP1 * | Huntingtin-interacting protein 1 | zinc-containing | non-motor actin-binding protein | phosphatidylinositol bisphosphate binding; protein-macromolecule adaptor activity; actin filament binding; clathrin binding; positive regulation of cellular component organization; actin filament organization; regulation of receptor-mediated endocytosis; apoptotic process; cellular protein metabolic process; cellular protein-containing complex assembly; positive regulation of transport receptor-mediated endocytosis; proteolysis; membrane invagination; activation of cysteine-type endopeptidase activity involved in apoptotic process vesicle budding from membrane |
HIP1R | Huntingtin-interacting protein 1-related protein | zinc-containing | non-motor actin-binding protein | phosphatidylinositol bisphosphate binding; protein-macromolecule adaptor activity; actin filament binding; clathrin binding; positive regulation of cellular component organization; actin filament organization; regulation of receptor-mediated endocytosis; apoptotic process; cellular protein metabolic process; cellular protein-containing complex assembly; positive regulation of transport receptor-mediated endocytosis; proteolysis; membrane invagination; activation of cysteine-type endopeptidase activity involved in apoptotic process vesicle budding from membrane |
RAB8A | Ras-related protein Rab-8A | zinc-containing | N/A | regulation of exocytosis; vesicle fusion to plasma membrane; protein secretion; protein localization to plasma membrane; organelle localization; neurotransmitter receptor transport to postsynaptic membrane; cellular response to insulin stimulus; Golgi vesicle transport |
TUBB | Tubulin beta chain | zinc-containing | tubulin | structural molecule activity; anion binding; purine nucleotide binding; carbohydrate derivative binding; microtubule cytoskeleton organization; mitotic nuclear division |
TUBB4A | Tubulin beta-4A chain | zinc-containing | tubulin | structural molecule activity; anion binding; purine nucleotide binding; carbohydrate derivative binding; microtubule cytoskeleton organization; mitotic nuclear division |
TUBB4B * | Tubulin beta-4B chain | zinc-containing | tubulin | structural molecule activity; anion binding; purine nucleotide binding; carbohydrate derivative binding; microtubule cytoskeleton organization; mitotic nuclear division |
TUBB6 | Tubulin beta-6 chain | zinc-containing | tubulin | structural molecule activity; anion binding; purine nucleotide binding; carbohydrate derivative binding; microtubule cytoskeleton organization; mitotic nuclear division |
VAT1 | Synaptic vesicle membrane protein VAT-1 homolog | zinc-binding | N/A | oxidoreductase activity; zinc ion binding |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawlor, M.; Zigo, M.; Kerns, K.; Cho, I.K.; Easley IV, C.A.; Sutovsky, P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int. J. Mol. Sci. 2022, 23, 7163. https://doi.org/10.3390/ijms23137163
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. International Journal of Molecular Sciences. 2022; 23(13):7163. https://doi.org/10.3390/ijms23137163
Chicago/Turabian StyleLawlor, Meghan, Michal Zigo, Karl Kerns, In Ki Cho, Charles A. Easley IV, and Peter Sutovsky. 2022. "Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease" International Journal of Molecular Sciences 23, no. 13: 7163. https://doi.org/10.3390/ijms23137163
APA StyleLawlor, M., Zigo, M., Kerns, K., Cho, I. K., Easley IV, C. A., & Sutovsky, P. (2022). Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. International Journal of Molecular Sciences, 23(13), 7163. https://doi.org/10.3390/ijms23137163