Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model
Abstract
:1. Introduction
2. Results
2.1. NPC-CM Significantly Reduced the Infarct Area in the Rat Stroke Model
2.2. NPC-CM Improved Behavioral Recovery following pMCAO
2.3. NPC-CM Decreased Inflammation and Induced Neurogenesis in Ischemic Areas
2.4. NPC-CM Contains Neurotrophic Factors
2.5. NPC-CM Upregulated Transcripts of Anti-Inflammatory Pathway and Neurogenesis
3. Discussion
4. Materials and Methods
4.1. Culture of Human hESC-Derived NPCPSA-NCAM+
4.2. Preparation of Conditioned Medium of NPCPSA-NCAM+(NPC-CM)
4.3. Permanent Brain Ischemic Stroke Model and NPC-CM Treatment
4.4. Behavioral Tests and Modified Neurological Severity Score (mNSS)
4.5. Immunohistochemical Analysis and Quantification
4.6. Mass Spectrometry-Based Proteome Analysis of NPC-CM
4.7. Quantitative Real-Time RT-PCR
4.8. Total RNA Extraction and RNA-Seq Data Processing from NPC-CM-Treated Rat Brains
4.9. Functional Analysis of Transcriptomic and Proteomic Data
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donkor, E.S. Stroke in the 21st century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [PubMed] [Green Version]
- Lee, J.M.; Grabb, M.C.; Zipfel, G.J.; Choi, D.W. Brain tissue responses to ischemia. J. Clin. Investig. 2000, 106, 723–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.R.; Chen, M.; Wang, F.L.; Dai, L.H.; Fei, A.H.; Liu, J.F.; Li, H.; Shen, S.; Liu, M.; Pan, S.M. Comparison of therapeutic effect of recombinant tissue plasminogen activator by treatment time after onset of acute ischemic stroke. Sci. Rep. 2015, 5, 11743. [Google Scholar] [CrossRef] [PubMed]
- Emberson, J.; Lees, K.R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014, 384, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Lees, K.R.; Emberson, J.; Blackwell, L.; Bluhmki, E.; Davis, S.M.; Donnan, G.A.; Grotta, J.C.; Kaste, M.; von Kummer, R.; Lansberg, M.G.; et al. Effects of alteplase for acute stroke on the distribution of functional outcomes: A pooled analysis of 9 trials. Stroke 2016, 47, 2373–2379. [Google Scholar] [CrossRef]
- Bang, O.Y.; Lee, J.S.; Lee, P.H.; Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005, 57, 874–882. [Google Scholar] [CrossRef]
- Nam, H.S.; Kwon, I.; Lee, B.H.; Kim, H.; Kim, J.; An, S.; Lee, O.H.; Lee, P.H.; Kim, H.O.; Namgoong, H.; et al. Effects of mesenchymal stem cell treatment on the expression of mtrix metalloproteinases and angiogenesis during ischemic stroke recovery. PLoS ONE 2015, 10, e0144218. [Google Scholar] [CrossRef] [Green Version]
- Rikhtegar, R.; Yousefi, M.; Dolati, S.; Kasmaei, H.D.; Charsouei, S.; Nouri, M.; Shakouri, S.K. Stem cell-based cell therapy for neuroprotection in stroke: A review. J. Cell. Biochem. 2019, 120, 8849–8862. [Google Scholar] [CrossRef]
- Ouyang, Q.; Li, F.; Xie, Y.; Han, J.; Zhang, Z.; Feng, Z.; Su, D.; Zou, X.; Cai, Y.; Zou, Y.; et al. Meta-Analysis of the Safety and Efficacy of Stem Cell Therapies for Ischemic Stroke in Preclinical and Clinical Studies. Stem Cells Dev. 2019, 28, 497–514. [Google Scholar] [CrossRef]
- Li, Z.; Dong, X.; Tian, M.; Liu, C.; Wang, K.; Li, L.; Liu, Z.; Liu, J. Stem cell-based therapies for ischemic stroke: A systematic review and meta-analysis of clinical trials. Stem Cell Res. Ther. 2020, 11, 252. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, H.Y.; Kim, J.H.; Park, D.H. Mannitol augments the effects of systemical stem cell transplantation without increasing cell migration in a stroke animal model. Tissue Eng. Reg. Med. 2020, 17, 695–704. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.S.; Kim, S.H.; Kim, H.S.; Cho, B.P. Combination of human mesenchymal stem cells and repetitive transcranial magnetic stimulation enhances neurological recovery of 6-hydroxydopamine model of Parkinsonian’s disease. Tissue Eng. Reg. Med. 2020, 17, 67–80. [Google Scholar] [CrossRef]
- Kan, I.B.Y.; Melamed, E.; Offen, D. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev. Rep. 2011, 7, 404–412. [Google Scholar] [CrossRef]
- Heo, J.S.; Choi, S.M.; Kim, H.O.; Kim, E.H.; You, J.; Park, T.; Kim, E.; Kim, H.S. Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 2013, 238, 305–318. [Google Scholar] [CrossRef]
- Kim, H.S.; Choi, S.M.; Yang, W.; Kim, D.S.; Lee, D.R.; Cho, S.R.; Kim, D.W. PSA-NCAM(+) neural precursor cells from human embryonic stem cells promote neural tissue integrity and behavioral performance in a rat stroke model. Stem Cell Rev. Rep. 2014, 10, 761–771. [Google Scholar] [CrossRef]
- Lindvall, O.; Kokaia, Z.; Martinez-Serrano, A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med. 2004, 10, S42–S50. [Google Scholar] [CrossRef]
- Jeong, S.W.; Chu, K.; Jung, K.H.; Kim, S.U.; Kim, M.; Roh, J.K. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 2003, 34, 2258–2263. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.; Bliss, T.M.; Shah, A.K.; Sun, G.H.; Ma, M.; Foo, W.C.; Masel, J.; Yenari, M.A.; Weissman, I.L.; Uchida, N.; et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 11839–11844. [Google Scholar] [CrossRef] [Green Version]
- Darsalia, V.; Kallur, T.; Kokaia, Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur. J. Neurosci. 2007, 26, 605–614. [Google Scholar] [CrossRef]
- Andres, R.H.; Horie, N.; Slikker, W.; Keren-Gill, H.; Zhan, K.; Sun, G.; Manley, N.C.; Pereira, M.P.; Sheikh, L.A.; McMillan, E.L.; et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011, 134, 1777–1789. [Google Scholar] [CrossRef]
- Kim, H.O.; Choi, S.M.; Kim, H.S. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng. Reg. Med. 2013, 10, 93–101. [Google Scholar] [CrossRef]
- Willis, C.M.; Nicaise, A.M.; Peruzzotti-Jametti, L.; Pluchino, S. The neural stem cell secretome and its role in brain repair. Brain Res. 2020, 1729, 146615. [Google Scholar] [CrossRef]
- Doeppner, T.R.; Traut, V.; Heidenreich, A.; Kaltwasser, B.; Bosche, B.; Bähr, M.; Hermann, D.M. Conditioned medium derived from neural progenitor cells induces long-term post-ischemic neuroprotection, sustained neurological recovery, neurogenesis, and angiogenesis. Mol. Neurobiol. 2017, 54, 1531–1540. [Google Scholar] [CrossRef]
- Teixeira, F.G.; Carvalho, M.M.; Panchalingam, K.M.; Rodrigues, A.J.; Mendes-Pinheiro, B.; Anjo, S.; Manadas, B.; Behie, L.A.; Sousa, N.; Salgado, A.J. Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease. Stem Cells Transl. Med 2017, 6, 634–646. [Google Scholar] [CrossRef]
- Kappy, N.S.; Chang, S.; Harris, W.M.; Plastini, M.; Ortiz, T.; Zhang, P.; Hazelton, J.P.; Carpenter, J.P.; Brown, S.A. Human adipose-derived stem cell treatment modulates cellular protection in both in vitro and in vivo traumatic brain injury models. J. Trauma Acute Care Surg. 2018, 84, 745–751. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Chen, H.; Li, L.; Ma, S.; Wang, H.; Fu, Y.; Qu, T. Neural stem cell-conditioned medium ameliorated cerebral ischemia-reperfusion injury in rats. Stem Cells Int. 2018, 2018, 4659159. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Song, H.S.; Bhang, S.; Lee, S.; Kang, B.G.; Lee, J.C.; An, J.; Cha, C.I.; Nam, D.H.; Kim, B.S.; et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J. Neurosci. Res. 2019, 90, 1794–1802. [Google Scholar] [CrossRef]
- Asgari Taei, A.; Dargahi, L.; Nasoohi, S.; Hassanzadeh, G.; Kadivar, M.; Farahmandfar, M. The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J. Cell. Physiol. 2021, 236, 1967–1979. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; He, C. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci. Bull. 2013, 29, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lendahl, U.; Zimmerman, L.B.; McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 1990, 60, 585–595. [Google Scholar] [CrossRef]
- Nishie, H.; Nakano-Doi, A.; Sawano, T.; Nakagomi, T. Establishment of a Reproducible Ischemic Stroke Model in Nestin-GFP Mice with High Survival Rates. Int. J. Mol. Sci. 2021, 22, 12997. [Google Scholar] [CrossRef]
- Červenka, J.; Tylečková, J.; Skalníková, H.K.; Kepková, K.V.; Poliakh, I.; Valeková, I.; Pfeiferová, L.; Kolář, M.; Vaškovičová, M.; Pánková, T.; et al. Proteomic characterization of human neural stem cells and their secretome during in vitro differentiation Front. Cell. Neurosci. 2021, 14, 612560. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.; Zhang, N.; Zhu, X.; Liang, H.; Sun, L.; Cheng, Y. Neuroprotective effects of brain-derived neurotrophic factor and noggin-modified bone mesenchymal stem cells in focal cerebral ischemia in rats. J. Stroke Cerebrovasc. Dis. 2016, 25, 410–418. [Google Scholar] [CrossRef]
- Fouda, A.Y.; Pillai, B.; Dhandapani, K.M.; Ergul, A.; Fagan, S.C. Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. Eur. J. Pharmacol. 2017, 799, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.; Di Meglio, T.; Andrews, W.D.; Hernández-Miranda, L.R.; Murakami, F.; Chédotal, A.; Parnavelas, J.G. The role of Robo3 in the development of cortical interneurons. Cereb. Cortex 2009, 19, i22–i31. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.A.; Yun, J.H.; Kim, J.H.; Kim, H.Y.; Choi, D.H.; Lee, J. Sequential transcriptome changes in the penumbra after ischemic stroke. Int. J. Mol. Sci. 2019, 20, 6349. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Cejudo, J.; Gutiérrez-Fernández, M.; Rodríguez-Frutos, B.; Expósito Alcaide, M.; Sánchez-Cabo, F.; Dopazo, A.; Díez–Tejedor, E. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: A microarray analysis. PLoS ONE 2012, 7, e52121. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.M.; Asakura, A.; Snider, L.; Hawkes, R.; Strand, A.; Stoeck, J.; Hallahan, A.; Pritchard, J.; Tapscott, S.J. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev. Biol. 2001, 234, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, G.; Harhausen, D.; Schepers, C.; Hoffmann, O.; Röhr, C.; Prinz, V.; König, J.; Lehrach, H.; Nietfeld, W.; Trendelenburg, G. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem. Biophys. Res. Commun. 2007, 359, 574–579. [Google Scholar] [CrossRef]
- Okun, E.; Griffioen, K.; Barak, B.; Roberts, N.J.; Castro, K.; Pita, M.A.; Cheng, A.; Mughal, M.R.; Wan, R.; Ashery, U. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 15625–15630. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Ander, B.P.; Jickling, G.; Turner, R.; Stamova, B.; Xu, H.; Liu, D.; Davis, R.R.; Sharp, F.R. Brief focal cerebral ischemia that simulates transient ischemic attacks in humans regulates gene expression in rat peripheral blood. J. Cereb. Blood Flow Metab. 2010, 30, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Buga, A.M.; Margaritescu, C.; Scholz, C.J.; Radu, E.; Zelenak, C.; Popa-Wagner, A. Transcriptomics of post-stroke angiogenesis in the aged brain. Front. Aging Neurosci. 2014, 6, 44. [Google Scholar] [CrossRef]
- Horinokita, I.; Hayashi, H.; Oteki, R.; Mizumura, R.; Yamaguchi, T.; Usui, A.; Yuan, B.; Takagi, N. Involvement of progranulin and granulin expression in inflammatory responses after cerebral ischemia. Int. J. Mol. Sci. 2019, 20, 5210. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, E.; Choi, S.M.; Kim, D.W.; Kim, K.; Lee, I.; Kim, H.S. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci. Rep. 2016, 6, 33038. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, H.-S. Extracellular vesicles in neurodegenerative diseases: A double-edged sword. Tissue Eng. Regen. Med. 2017, 14, 667–678. [Google Scholar] [CrossRef]
- Cunningham, C.J.; Wong, R.; Barrington, J.; Tamburrano, S.; Pinteaux, E.; Allan, S.M. Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Res. Ther. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, Z.; Wang, H.; Yu, Y.; Chen, W.; Waqas, A.; Wang, Y.; Chen, L. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J. Adv. Res. 2020, 24, 435–445. [Google Scholar] [CrossRef]
- Salikhova, D.; Bukharova, T.; Cherkashova, E.; Namestnikova, D.; Leonov, G.; Nikitina, M.; Gubskiy, I.; Akopyan, G.; Elchaninov, A.; Midiber, K. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int. J. Mol. Sci. 2021, 22, 4694. [Google Scholar] [CrossRef]
- Taei, A.A.; Nasoohi, S.; Hassanzadeh, G.; Kadivar, M.; Dargahi, L.; Farahmandfar, M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed. Pharmacother. 2021, 140, 111709. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L.; Kuang, Y.; Venkataramani, V.; Jin, F.; Hein, K.; Zafeiriou, M.P.; Lenz, C.; Moebius, W.; Kilic, E. Extracellular Vesicles Derived from Neural Progenitor Cells—A Preclinical Evaluation for Stroke Treatment in Mice. Transl. Stroke Res. 2021, 12, 185–203. [Google Scholar] [CrossRef]
- Schilling, M.; Besselmann, M.; Müller, M.; Strecker, J.K.; Ringelstein, E.B.; Kiefer, R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 2005, 196, 290–297. [Google Scholar] [CrossRef]
- Schilling, M.; Strecker, J.-K.; Schäbitz, W.-R.; Ringelstein, E.; Kiefer, R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009, 161, 806–812. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, T.; Gong, S.-X.; Huang, W.-Q.; Zhou, Q.-Y.; Wang, A.-P.; Tian, Y. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen. Res. 2021, 16, 6. [Google Scholar]
- Allen, S.J.; Watson, J.J.; Shoemark, D.K.; Baruna, N.U.; Patel, N.K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 2013, 138, 155–175. [Google Scholar] [CrossRef]
- Pöyhönen, S.; Er, S.; Domanskyi, A.; Airavaara, M. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front. Physiol. 2019, 10, 486. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.; Sun, G.; Zhang, J.; Edwards, N.J.; Aronowski, J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci. 2015, 35, 11281–11291. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, H.; Zhang, B.S.; Soares, J.C.; Zhang, X.Y. Low BDNF is associated with cognitive impairments in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2016, 29, 66–71. [Google Scholar] [CrossRef]
- Xiong, X.; Barreto, G.E.; Xu, L.; Ouyang, Y.B.; Xie, X.; Giffard, R.G. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 2011, 42, 2026–2032. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhu, W.; Xu, F.; Dai, X.; Shi, L.; Cai, W.; Mu, H.; Hitchens, T.K.; Foley, L.M.; Liu, X.; et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019, 17, e3000330. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Panaro, M.A. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 2020, 10, 1017. [Google Scholar] [CrossRef]
- Ooboshi, H.; Ibayashi, S.; Shichita, T.; Kumai, Y.; Takada, J.; Ago, T.; Arakawa, S.; Sugimori, H.; Kamouchi, M.; Kitazono, T.; et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 2005, 111, 913–919. [Google Scholar] [CrossRef] [Green Version]
- Liesz, A.; Bauer, A.; Hoheisel, J.D.; Veltkamp, R. Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: An experimental microarray study. Neurosci. Lett. 2014, 579, 18–23. [Google Scholar] [CrossRef]
- Budni, J.; Bellettini-Santos, T.; Mina, F.; Garcez, M.L.; Zugno, A.I. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis. 2015, 6, 33–41. [Google Scholar]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Qin, L.; Kim, E.; Ratan, R.; Lee, F.S.; Cho, S. Genetic variant of BDNF (Val66Met) polymorphism attenuates stroke-induced angiogenic responses by enhancing anti-angiogenic mediator CD36 expression. J. Neurosci. 2011, 31, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Pencea, V.; Bingaman, K.D.; Wiegand, S.J.; Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001, 21, 6706–6717. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Lee, J.S.; Leem, J.W.; Huh, Y.J.; Kim, J.Y.; Kim, H.S.; Park, I.H.; Daley, G.Q.; Hwang, D.Y.; Kim, D.W. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. Rep. 2010, 6, 270–281. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, D.R.; Kim, H.S.; Yoo, J.E.; Jung, S.J.; Lim, B.Y.; Jang, J.; Kang, H.C.; You, S.; Hwang, D.Y.; et al. Highly pure and expandable PSA-NCAM-positive neural precursors from human ESC and iPSC-derived neural rosettes. PLoS ONE 2012, 7, e39715. [Google Scholar] [CrossRef] [Green Version]
- Hara, H.; Huang, P.L.; Panahian, N.; Fishman, M.C.; Moskowitz, M.A. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow Metab. 1996, 16, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, J.; Liu, H.; Chen, S.; Zhang, Y.; Li, P.; Thierry-Mieg, D.; Thierry-Mieg, J.; Mattes, W.; Ning, B. Comprehensive identification and characterization of human secretome based on integrative proteomic and transcriptomic data. Front. Cell Dev. Biol. 2019, 7, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Gene Name | Protein | Family/Subfamily |
---|---|---|---|
HUMAN|HGNC = 4852|UniProtKB = Q13547 * | HDAC1 | Histone deacetylase 1 | HISTONE DEACETYLASE 1 (PTHR10625:SF188) |
HUMAN|HGNC = 6972|UniProtKB = P21741 | MK | Midkine | MIDKINE (PTHR13850:SF2) |
HUMAN|HGNC = 5241|UniProtKB = P11142 | HSP7C | Heat shock cognate 71 kDa protein | HEAT SHOCK COGNATE 71 KDA PROTEIN (PTHR19375:SF379) |
HUMAN|HGNC = 18540|UniProtKB = Q8TCG5 | CATL1 | Cathepsin L1 | CATHEPSIN L1 (PTHR12411:SF57) |
HUMAN|HGNC = 6510|UniProtKB = P16949 | STMN1 | Stathmin | STATHMIN (PTHR10104:SF5) |
HUMAN|HGNC = 5187|UniProtKB = Q99873 | ANM1 | Protein arginine N-methyltransferase 1 | PROTEIN ARGININE N-METHYLTRANSFERASE 1 (PTHR11006:SF54) |
HUMAN|HGNC = 12665|UniProtKB = P18206 | VINC | Vinculin | VINCULIN (PTHR46180:SF1) |
HUMAN|HGNC = 6824|UniProtKB = Q16706 | MA2A1 | Alpha-mannosidase 2 | ALPHA-MANNOSIDASE 2-RELATED (PTHR11607:SF3) |
HUMAN|HGNC = 169|UniProtKB = P61160 | ARP2 | Actin-related protein 2 | ACTIN-RELATED PROTEIN 2 (PTHR11937:SF37) |
HUMAN|HGNC = 10723|UniProtKB = Q14563 | SEM3A | Semaphorin-3A | SEMAPHORIN-3A (PTHR11036:SF23) |
HUMAN|HGNC = 26373|UniProtKB = Q2VWP7 | PRTG | Protogenin | PROTOGENIN (PTHR12231:SF228) |
HUMAN|HGNC = 12692|UniProtKB = P08670 | VIME | Vimentin | VIMENTIN (PTHR45652:SF5) |
HUMAN|HGNC = 3233|UniProtKB = Q7Z7M0 | MEGF8 | Multiple epidermal growth factor-like domains protein 8 | MULTIPLE EPIDERMAL GROWTH FACTOR-LIKE DOMAINS PROTEIN 8 (PTHR10574:SF287) |
HUMAN|HGNC = 8951|UniProtKB = P07093 | GDN | Glia-derived nexin | GLIA-DERIVED NEXIN (PTHR11461:SF48) |
HUMAN|HGNC = 17104|UniProtKB = Q4KMG0 | CDON | Cell adhesion molecule-related/downregulated by oncogenes | CELL ADHESION MOLECULE-RELATED/DOWN-REGULATED BY ONCOGENES (PTHR44170:SF1) |
HUMAN|HGNC = 2339|UniProtKB = P29373 | RABP2 | Cellular retinoic acid-binding protein 2 | CELLULAR RETINOIC ACID-BINDING PROTEIN 2 (PTHR11955:SF60) |
HUMAN|HGNC = 4449|UniProtKB = P35052 | GPC1 | Glypican-1 | GLYPICAN-1 (PTHR10822:SF8) |
HUMAN|HGNC = 12754|UniProtKB = O75083 | WDR1 | WD repeat-containing protein 1 | WD REPEAT-CONTAINING PROTEIN 1 (PTHR19856:SF0) |
HUMAN|HGNC = 3594|UniProtKB = P49327 | FAS | Tumor necrosis factor receptor superfamily member 6 | TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY MEMBER 6 (PTHR46874:SF1) |
HUMAN|HGNC = 7007|UniProtKB = P61006 | RAB8A | Ras-related protein Rab-8A | RAS-RELATED PROTEIN RAB-8A (PTHR47980:SF33) |
HUMAN|HGNC = 3720|UniProtKB = Q02790 | FKBP4 | Peptidyl-prolyl cis-trans isomerase FKBP4 | PEPTIDYL-PROLYL CIS-TRANS ISOMERASE FKBP4 (PTHR10516:SF25) |
HUMAN|HGNC = 12684|UniProtKB = O15240 | VGF | Neurosecretory protein VGF | NEUROSECRETORY PROTEIN VGF (PTHR15159:SF2) |
HUMAN|HGNC = 12855|UniProtKB = P63104 | 1433Z | 14-3-3 protein zeta/delta | 14-3-3 PROTEIN ZETA/DELTA (PTHR18860:SF7) |
HUMAN|HGNC = 7656|UniProtKB = P13591 | NCAM1 | Neural cell adhesion molecule 1 | NEURAL CELL ADHESION MOLECULE 1 (PTHR12231:SF239) |
HUMAN|HGNC = 19308|UniProtKB = Q58EX2 | SDK2 | Sidekick cell adhesion molecule 2 | PROTEIN SIDEKICK-2 (PTHR13817:SF59) |
HUMAN|HGNC = 1455|UniProtKB = P27797 | CALR | Calreticulin | CALRETICULIN (PTHR11073:SF16) |
HUMAN|HGNC = 20001|UniProtKB = Q8NBP7 | PCSK9 | Proprotein convertase subtilisin/kexin type 9 | PROPROTEIN CONVERTASE SUBTILISIN/KEXIN TYPE 9 (PTHR43806:SF11) |
HUMAN|HGNC = 11086|UniProtKB = O94813 | SLIT2 | Slit homolog 2 protein | SLIT HOMOLOG 2 PROTEIN (PTHR45836:SF2) |
HUMAN|HGNC = 4638|UniProtKB = P09211 | GSTP1 | Glutathione S-transferase P | GLUTATHIONE S-TRANSFERASE P 1-RELATED (PTHR11571:SF235) |
HUMAN|HGNC = 6759|UniProtKB = P29966 | MARCS | Myristoylated alanine-rich C-kinase substrate | MYRISTOYLATED ALANINE-RICH C-KINASE SUBSTRATE (PTHR14353:SF9) |
HUMAN|HGNC = 9325|UniProtKB = P50897 | PPT1 | Palmitoyl-protein thioesterase 1 | PALMITOYL-PROTEIN THIOESTERASE 1 (PTHR11247:SF8|) |
HUMAN|HGNC = 11179|UniProtKB = P00441 | SODC | Superoxide dismutase (Cu-Zn) | SUPEROXIDE DISMUTASE [CU-ZN] (PTHR10003:SF66) |
HUMAN|HGNC = 5033|UniProtKB = P22626 | ROA2 | Heterogeneous nuclear ribonucleoproteins A2/B1 | HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS A2/B1 (PTHR48026:SF13) |
HUMAN|HGNC = 30747|UniProtKB = P61201 | CSN2 | COP9 signalosome complex subunit 2 | COP9 SIGNALOSOME COMPLEX SUBUNIT 2 (PTHR10678:SF3) |
HUMAN|HGNC = 6871|UniProtKB = P28482 | MK01 | Mitogen-activated protein kinase 1 | MITOGEN-ACTIVATED PROTEIN KINASE 1 (PTHR24055:SF203) |
HUMAN|HGNC = 15667|UniProtKB = P58546 | MTPN | Myotrophin | MYOTROPHIN (PTHR24189:SF52) |
HUMAN|HGNC = 14889|UniProtKB = Q9UBS4 | DJB11 | DnaJ homolog subfamily B member 11 | DNAJ HOMOLOG SUBFAMILY B MEMBER 11 (PTHR44298:SF1) |
HUMAN|HGNC = 12852|UniProtKB = P61981 | 1433G | 14-3-3 protein gamma | 14-3-3 PROTEIN GAMMA (PTHR18860:SF22) |
HUMAN|HGNC = 9674|UniProtKB = Q15262 | PTPRK | Protein tyrosine phosphatase receptor type K | RECEPTOR-TYPE TYROSINE-PROTEIN PHOSPHATASE KAPPA (PTHR19134:SF209) |
HUMAN|HGNC = 4983|UniProtKB = P09429 | HMGB1 | High mobility group protein B1 | HIGH MOBILITY GROUP PROTEIN B1 (PTHR48112:SF12) |
HUMAN|HGNC = 9583|UniProtKB = P26599 | PTBP1 | Polypyrimidine tract-binding protein 1 | POLYPYRIMIDINE TRACT-BINDING PROTEIN 1 (PTHR15592:SF19) |
HUMAN|HGNC = 2695|UniProtKB = Q16643 | DREB | Drebrin | DREBRIN (PTHR10829:SF1) |
HUMAN|HGNC = 6694|UniProtKB = P98164 | LRP2 | Low-density lipoprotein receptor-related protein 2 | LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 2 (PTHR22722:SF5) |
HUMAN|HGNC = 6836|UniProtKB = P46821 | MAP1B | Microtubule-associated protein 1B | MICROTUBULE-ASSOCIATED PROTEIN 1B (PTHR13843:SF5) |
HUMAN|HGNC = 7156|UniProtKB = P09238 | MMP 10 | Stromelysin-2 | STROMELYSIN-2 (PTHR10201:SF270) |
HUMAN|HGNC = 8574|UniProtKB = P43034 | LIS1 | Platelet-activating factor acetylhydrolase IB subunit alpha | PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB SUBUNIT ALPHA (PTHR44129:SF6) |
HUMAN|HGNC = 667|UniProtKB = P61586 | RHOA | Transforming protein RhoA | TRANSFORMING PROTEIN RHOA (PTHR24072:SF153) |
HUMAN|HGNC = 12412|UniProtKB = Q13885 | TBB2A | Tubulin beta-2A chain | TUBULIN BETA-2A CHAIN (PTHR11588:SF100) |
HUMAN|HGNC = 2514|UniProtKB = P35222 | CTNB1 | Catenin beta-1 | CATENIN BETA-1 (PTHR45976:SF4) |
HUMAN|HGNC = 5258|UniProtKB = P08238 | HS90B | Heat shock protein HSP 90-beta | HEAT SHOCK PROTEIN HSP 90-BETA-RELATED (PTHR11528:SF79) |
HUMAN|HGNC = 9685|UniProtKB = P23471 | PTPRZ | Receptor-type tyrosine-protein phosphatase zeta | RECEPTOR-TYPE TYROSINE-PROTEIN PHOSPHATASE ZETA (PTHR19134:SF461) |
HUMAN|HGNC = 5000|UniProtKB = P26583 | HMGB2 | High mobility group protein B2 | HIGH MOBILITY GROUP PROTEIN B2 (PTHR48112:SF3) |
HUMAN|HGNC = 2172|UniProtKB = Q02246 | CNTN2 | Contactin-2 | ROUNDABOUT HOMOLOG 2 (PTHR44170:SF9) |
HUMAN|HGNC = 17896|UniProtKB = Q9UMS4 | PRP19 | Pre-mRNA-processing factor 19 | PRE-MRNA-PROCESSING FACTOR 19 (PTHR43995:SF1) |
HUMAN|HGNC = 29943|UniProtKB = Q9NT68 | TEN2 | Teneurin-2 | TENEURIN-2 (PTHR11219:SF8) |
HUMAN|HGNC = 4226|UniProtKB = P31150 | GDIA | Rab GDP dissociation inhibitor alpha | RAB GDP DISSOCIATION INHIBITOR ALPHA (PTHR11787:SF3) |
HUMAN|HGNC = 4450|UniProtKB = Q8N158 | GPC2 | Glypican-2 | GLYPICAN-2 (PTHR10822:SF24) |
HUMAN|HGNC = 329|UniProtKB = O00468 | AGRIN | Agrin | AGRIN (PTHR10574:SF375) |
HUMAN|HGNC = 8661|UniProtKB = Q9HC56 | PCDH9 | RCG37051 | PROTOCADHERIN-9 (PTHR24028:SF248) |
HUMAN|HGNC = 29866|UniProtKB = O94856 | NFASC | Neurofascin | NEUROFASCIN (PTHR44170:SF12) |
HUMAN|HGNC = 4601|UniProtKB = P28799 | GRN | Progranulin | PROGRANULIN (PTHR12274:SF3) |
HUMAN|HGNC = 10353|UniProtKB = P36578 | RL4 | 60S ribosomal protein L4 | 60S RIBOSOMAL PROTEIN L4 (PTHR19431:SF0) |
HUMAN|HGNC = 5253|UniProtKB = P07900 | HS90A | Heat shock protein HSP 90-alpha | HEAT SHOCK PROTEIN HSP 90-ALPHA-RELATED (PTHR11528:SF87) |
HUMAN|HGNC = 132|UniProtKB = P60709 | ACTB | Actin, cytoplasmic 1 | ACTIN, CYTOPLASMIC 1 (PTHR11937:SF192) |
HUMAN|HGNC = 12513|UniProtKB = P09936 | UCHL1 | Ubiquitin carboxyl-terminal hydrolase isozyme L1 | UBIQUITIN CARBOXYL-TERMINAL HYDROLASE ISOZYME L1 (PTHR10589:SF19) |
HUMAN|HGNC = 20772|UniProtKB = Q13509 | TBB3 | Tubulin beta-3 chain | TUBULIN BETA-3 CHAIN (PTHR11588:SF43) |
HUMAN|HGNC = 9630|UniProtKB = P21246 | PTN | Pleiotrophin | PLEIOTROPHIN (PTHR13850:SF1) |
HUMAN|HGNC = 20637|UniProtKB = Q9BPU6 | DPYL5 | Dihydropyrimidinase-related protein 5 | DIHYDROPYRIMIDINASE-RELATED PROTEIN 5 (PTHR11647:SF58) |
HUMAN|HGNC = 2701|UniProtKB = P43146 | DCC | Netrin receptor DCC | NETRIN RECEPTOR DCC (PTHR44170:SF8) |
HUMAN|HGNC = 12851|UniProtKB = P62258 | 1433E | 14-3-3 protein epsilon | 14-3-3 PROTEIN EPSILON (PTHR18860:SF17) |
HUMAN|HGNC = 9760|UniProtKB = P62491 | RB11A | Ras-related protein Rab-11A | RAS-RELATED PROTEIN RAB-11A (PTHR47979:SF49) |
HUMAN|HGNC = 7849|UniProtKB = P15531 | NDKA | Nucleoside diphosphate kinase A | NUCLEOSIDE DIPHOSPHATE KINASE A (PTHR11349:SF69) |
HUMAN|HGNC = 9087|UniProtKB = Q04941 | A4 | Amyloid-beta A4 protein | AMYLOID-BETA PRECURSOR PROTEIN (PTHR23103:SF7) |
HUMAN|HGNC = 3214|UniProtKB = P13639 | EF2 | Elongation factor 2 | ELONGATION FACTOR 2 (PTHR42908:SF27) |
HUMAN|HGNC = 652|UniProtKB = P84077 | ARF1 | ADP-ribosylation factor 1 | ADP-RIBOSYLATION FACTOR 1 (PTHR11711:SF357) |
HUMAN|HGNC = 10820|UniProtKB = O60880 | SAP | Prosaposin | PROSAPOSIN (PTHR11480:SF36) |
HUMAN|HGNC = 11820|UniProtKB = P01033 | TIMP1 | Metalloproteinase inhibitor 1 | METALLOPROTEINASE INHIBITOR1(PTHR11844:SF24) |
HUMAN|HGNC = 2095|UniProtKB = P10909 | CLUS | Clusterin | CLUSTERIN (PTHR10970:SF1) |
HUMAN|HGNC = 7756|UniProtKB = P48681 | NEST | Nestin | NESTIN (PTHR47051:SF1) |
HUMAN|HGNC = 10440|UniProtKB = P62081 | RS7 | 40S ribosomal protein S7 | 40S RIBOSOMAL PROTEIN S7 (PTHR11278:SF5) |
HUMAN|HGNC = 20|UniProtKB = P49588 | SYAC | Alanine–tRNA ligase, cytoplasmic | ALANINE--TRNA LIGASE, CYTOPLASMIC (PTHR11777:SF34) |
HUMAN|HGNC = 7637|UniProtKB = P55209 | NP1L1 | Nucleosome assembly protein 1-like 1 | NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 1 (PTHR11875:SF70) |
HUMAN|HGNC = 3014|UniProtKB = Q16555 | DPYL2 | Dihydropyrimidinase-related protein 2 | DIHYDROPYRIMIDINASE-RELATED PROTEIN 2 (PTHR11647:SF56) |
HUMAN|HGNC = 8768|UniProtKB = O95831 | AIFM1 | Apoptosis-inducing factor 1, mitochondrial | APOPTOSIS-INDUCING FACTOR 1, MITOCHONDRIAL (PTHR43557:SF4) |
HUMAN|HGNC = 2730|UniProtKB = Q08345 | DDR1 | Epithelial discoidin domain-containing receptor 1 | EPITHELIAL DISCOIDIN DOMAIN-CONTAINING RECEPTOR 1 (PTHR24416:SF333) |
HUMAN|HGNC = 7994|UniProtKB = Q92823 | NRCAM | Neuronal cell adhesion molecule | NEURONAL CELL ADHESION MOLECULE (PTHR10075:SF44) |
HUMAN|HGNC = 9670|UniProtKB = P10586 | PTPRF | Receptor-type tyrosine-protein phosphatase F | RECEPTOR-TYPE TYROSINE-PROTEIN PHOSPHATASE F (PTHR19134:SF203) |
HUMAN|HGNC = 6743|UniProtKB = Q14444 | CAPR1 | Caprin-1 | CAPRIN-1 (PTHR22922:SF3) |
HUMAN|HGNC = 1874|UniProtKB = P23528 | COF1 | Cofilin-1 | COFILIN-1 (PTHR11913:SF17) |
HUMAN|HGNC = 3778|UniProtKB = P02751 | FINC | Fibronectin | FIBRONECTIN (PTHR19143:SF267) |
HUMAN|HGNC = 1759|UniProtKB = P19022 | CADH2 | Cadherin-2 | CADHERIN-2 (PTHR24027:SF79) |
HUMAN|HGNC = 914|UniProtKB = P61769 | B2MG | Beta-2-microglobulin | BETA-2-MICROGLOBULIN (PTHR19944:SF62) |
HUMAN|HGNC = 10549|UniProtKB = Q9UBB4 | ATX10 | Ataxin-10 | ATAXIN-10 (PTHR13255:SF0) |
HUMAN|HGNC = 1763|UniProtKB = P55283 | CADH4 | Cadherin-4 (fragment) | CADHERIN-4 (PTHR24027:SF81) |
HUMAN|HGNC = 18601|UniProtKB = Q9BZR6 | RTN4R | Reticulon-4 receptor | RETICULON-4 RECEPTOR (PTHR45836:SF6) |
HUMAN|HGNC = 381|UniProtKB = P15121 | ALDR | ATP-binding cassette subfamily D member 2 | ATP-BINDING CASSETTE SUB-FAMILY D MEMBER 2 (PTHR11384:SF24) |
HUMAN|HGNC = 4458|UniProtKB = P06744 | G6PI | Glucose-6-phosphate isomerase | GLUCOSE-6-PHOSPHATE ISOMERASE (PTHR11469:SF1) |
HUMAN|HGNC = 10420|UniProtKB = P23396 | RS3 | 40S ribosomal protein S3 | 40S RIBOSOMAL PROTEIN S3 (PTHR11760:SF32) |
HUMAN|HGNC = 1096|UniProtKB = O95861 | PIP | Prolactin-inducible protein homolog | PROLACTIN-INDUCIBLE PROTEIN (PTHR15096:SF5) |
HUMAN|HGNC = 11655|UniProtKB = P17987 | TCPA | T-complex protein 1 subunit alpha | T-COMPLEX PROTEIN 1 SUBUNIT ALPHA (PTHR11353:SF84) |
HUMAN|HGNC = 9281|UniProtKB = P62136 | PP1A | Serine/threonine-protein phosphatase PP1-alpha catalytic subunit | SERINE/THREONINE-PROTEIN PHOSPHATASE PP1-ALPHA CATALYTIC SUBUNIT (PTHR11668:SF377) |
HUMAN|HGNC = 12729|UniProtKB = P23381 | SYWC | Tryptophan--tRNA ligase, cytoplasmic | TRYPTOPHAN--TRNA LIGASE, CYTOPLASMIC (PTHR10055:SF1) |
HUMAN|HGNC = 6666|UniProtKB = Q9Y4K0 | LOXL2 | Lysyl oxidase homolog 2 | LYSYL OXIDASE HOMOLOG 2 (PTHR45817:SF1) |
HUMAN|HGNC = 8765|UniProtKB = O75340 | PDCD6 | Programmed cell death protein 6 | PROGRAMMED CELL DEATH PROTEIN 6 (PTHR23064:SF41) |
HUMAN|HGNC = 537|UniProtKB = P07355 | ANXA2 | Annexin A2 | ANNEXIN A2-RELATED (PTHR10502:SF18) |
HUMAN|HGNC = 7036|UniProtKB = Q08431 | MFGM | Lactadherin | LACTADHERIN (PTHR24543:SF291) |
HUMAN|HGNC = 13518|UniProtKB = Q9Y696 | CLIC4 | Chloride intracellular channel protein 4 | CHLORIDE INTRACELLULAR CHANNEL PROTEIN 4 (PTHR43920:SF7) |
Biological Process | Gene Ontology ID | Adjusted p-Value | Gene Symbol |
---|---|---|---|
Regulation of inflammatory response | GO:0050727 | 1.46 × 10−28 | CTSC,ANXA1,SERPINF1,SERPINE1,FCER1G,ADAMTS12,LBP,T NFRSF1B,ACP5,IL20RB,TREM2,IGF1,ALOX5AP,FCGR3,FABP4,P YCARD,NLRP3,FCGR1A,CEBPA,PIK3AP1,SIGLEC10,GPX1,LYN, FCGR2,STAP1,TLR2,IL1RL1,LACC1,TMEM173,CNR2,FUT7,TNFR SF1A,TLR3,ZFP36,TLR6,HGF,VAMP8,GRN,AOAH,TRADD,BTK,I L1R1,IL17RA,ENPP3,CASP1,PLA2G2D,METRNL,CDH5,C1QTNF 3,TLR9,ETS1,GPR31,IFI35,TLR4,USP18,NT5E,TGM2,PTGES,NFKB IA,NFKBIZ,PTGER4,TNFSF4,SLAMF8,ADA,SBNO2,ATM,CD276 ,SOCS3,DAGLB,NFKB1,CALCRL,BST1,RIPK1 |
Positive regulation of defense response | GO:0031349 | 1.70 × 10−16 | CTSC,SERPINE1,FCER1G,SPI1,LBP,VAV1,TREM2,TLR8,ALOX5A P,FCGR3,TYROBP,FABP4,PYCARD,FCGR1ACEBPA,STAP1,TLR2, IL1RL1,TMEM173,TNFRSF1A,TLR3,HAVCR2,TLR6,RGD1565785, VAMP8,TRADD,BTKFCNB,IL17RA,IL18RAP,TLR9,ETS1,IFI35,TL R4,MNDA,ZBP1,TGM2,NFKBIA,IRGM,NFKBIZ,PTGER4,GBP5,P ARP9,NOD1,PLSCR2,NLRC5,ARG1,RIPK1,CYBA |
Negative regulation of cytokine production | GO:0001818 | 4.97 × 10−16 | LILRB4,ANXA1,SERPINB1A,LBP,PTPN6,ACP5,IL20RB,TREM2,T LR8,CD84,IGF1,FURIN,PYCARD,TGFB1,NLRP3,LRRC32,FCGR2, NCKAP1L,TLR2,IL1RL1,CMKLR1,C5AR2,LAPTM5,HAVCR2,ZFP 36,TLR6, FN1,HGF,BTK,GPNMB,C1QTNF3,TLR9,TLR4,DHX58,APOD,BCL 3,RELB,PTGER4,TNFSF4,ZC3H12A,CSK,CD276,MERTK,ARRB2,I NPP5D,AXL,ABCD1,NFKB1,ARG1,CD33,ANGPT1 |
Extracellular matrix organization | GO:0030198 | 8.72 × 10−16 | COL1A1,ELN,LOX,TNFRSF1B,LUM,LOXL1,COL4A5,COL4A6,CY P1B1,ADAMTS7,COL18A1,ANXA2,NID1,ENG,LCP1,B4GALT1,T GFB1,FAP,FOXC1,COL15A1,FKBP10,AEBP1,ADAMTS15,TNFRSF 1A,FBLN1,COLGALT1,CCDC80,OLFML2B,FMOD,COL5A2,COL3 A1,SERPINH1,SLC39A8,TIE1,LAMC1,ADAMTS14,CTSS,ITGB1,L OC102555086,MYO1E,KAZALD1,COL6A1,DDR2,TGFBI,CREB3L1 ,FBLN5,POSTN,OLFML2A,PDGFRA,LAMB2,PRDX4,EMILIN1,C OL11A1,ADAMTS2 |
Macrophage activation | GO:0042116 | 1.45 × 10−12 | CTSC,C5AR1,AIF1,LBP,C1QA,TREM2,CD84,SYK,CEBPA,STAP1,T LR2,IL1RL1,IL4R,TLR3,TMEM106A,HAVCR2,TLR6,ITGAM,IFNG R1,PLA2G4A,TLR9,IFI35,TLR4,IFNGR2,TLR1,SBNO2,ATM |
T cell differentiation | GO:0030217 | 1.70 × 10−9 | LILRB4,ANXA1,FCER1G,SPI1,VAV1,HLX,MAFB,SASH3,SYK,IKZ F1,TGFB1,NLRP3,MPZL2,CD8A,NCKAP1L,CYP26B1,IL4R,FUT7, TCIRG1,CORO1A,WNT4,PLA2G2D,IL6R,ZFP36L1,CTSL,FGL2,IL 2RG,CBFB,RHOH,TGFBR2,RELB,NFKBIZ,PTGER4,LFNG,TNFSF4 ,CD4,ZC3H12A,ADA,IRF1,PRDM1,FZD7,B2M,CDK6 |
Collagen fibril organization | GO:0030199 | 2.32 × 10−9 | COL1A1,LOX,LUM,LOXL1,CYP1B1,ANXA2,FOXC1,FKBP10,AEB P1,COLGALT1,FMOD,COL5A2,COL3A1,SERPINH1,ADAMTS14, LOC102555086,DDR2,EMILIN1,COL11A1,ADAMTS2 |
Aging | GO:007568 | 0.002424 | CTSC,CD68,SERPINF1,SERPINE1,SPI1,C1QA,ITGB2,CD86,CDK1, CCL2,CFH,GJB2,CTSL,BAK1,APOD,PRKCD,CDKN1C,RBL1,CDK N1A,AURKB,ADM,ADA,NFE2L2,FBXO5,ATM,IFI27L2B,INPP5D, BCL2A1,B2M,ARG1,CCL11,CDK6 |
Negative regulation of blood vessel morphogens | GO:2000181 | 0.0022754 | THBS2,SERPINF1,SERPINE1,DCN,FOXC1,CCL2,WNT4,CXCL10, HHEX,STAB1,TIE1,ANGPT4,CREB3L1,FBLN5,EMILIN1,PDE3B |
Gene | Primer Sequence |
---|---|
IL-4 | Forward: 5′-TGCACCGAGATGTTTGTACC-3′ |
Reverse: 5′-GGATGCTTTTTAGGCTTTCC-3′ | |
IL-10 | Forward: 5′-GCAGGACTTTAAGGGTTACTTGG-3′ |
Reverse: 5′-GGGGAGAAATCGATGACAGC-3′ | |
BDNF | Forward: 5′-TGGGGTTAGGAGAAGTCAAGC-3′ |
Reverse: 5′-TGTTTCACCCTTTCCACTCCT-3′ | |
ROBO3 | Forward: 5′-ACCCTGATGCTGCACTTCTGG-3′ |
Reverse: 5′-TCCGGCTTCGGCTGCGT-3′ | |
LINGO1 | Forward: 5′-AGAGACATGCGATTGGTGA-3′ |
Reverse: 5′-AGAGATGTAGACGAGGTCATT-3′ | |
NEUROD2 | Forward: 5′-CAAGAAGCGCGGGCCGAAGA -3′ |
Reverse: 5′-TTGGCCTTCTGTCGCCGCAG -3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hur, H.-J.; Lee, J.Y.; Kim, D.-H.; Cho, M.S.; Lee, S.; Kim, H.-S.; Kim, D.-W. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int. J. Mol. Sci. 2022, 23, 7787. https://doi.org/10.3390/ijms23147787
Hur H-J, Lee JY, Kim D-H, Cho MS, Lee S, Kim H-S, Kim D-W. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. International Journal of Molecular Sciences. 2022; 23(14):7787. https://doi.org/10.3390/ijms23147787
Chicago/Turabian StyleHur, Hye-Jin, Ji Yong Lee, Do-Hun Kim, Myung Soo Cho, Sangsik Lee, Han-Soo Kim, and Dong-Wook Kim. 2022. "Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model" International Journal of Molecular Sciences 23, no. 14: 7787. https://doi.org/10.3390/ijms23147787
APA StyleHur, H. -J., Lee, J. Y., Kim, D. -H., Cho, M. S., Lee, S., Kim, H. -S., & Kim, D. -W. (2022). Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. International Journal of Molecular Sciences, 23(14), 7787. https://doi.org/10.3390/ijms23147787