Nitrobenzoate-Derived Compound X8 Impairs Vascular Development in Zebrafish
Abstract
:1. Introduction
2. Results
2.1. X8 Treatment Impairs Vascular Development during Zebrafish Embryogenesis
2.2. X8 Treatment of Embryos Results in Pericardial Edema and Circulatory Defects
2.3. X8 Treatment Inhibits the Growth of ISV Cells
2.4. X8 Treatment Reduces the Expression Levels of Vascular-Specific Markers
2.5. Interaction between X8 and VEGF Signaling
3. Discussion
4. Materials and Methods
4.1. Zebrafish and Husbandry
4.2. Zebrafish Embryo and Chemical Treatments
4.3. RNA Extraction and cDNA Preparation
4.4. Real-Time Quantitative PCR (RT–qPCR)
4.5. Whole-Mount In Situ Hybridization
4.6. Imaging and Data Processing
4.7. AO Staining
4.8. TUNEL Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogan, B.M.; Schulte-Merker, S. How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Dev. Cell 2017, 42, 567–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, M.R.; Weinstein, B.M. Arterial-venous specification during development. Circ. Res. 2009, 104, 576–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, T.P. Zebrafish genetics and formation of embryonic vasculature. Curr. Top. Dev. Biol. 2005, 71, 53–81. [Google Scholar] [PubMed]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef]
- Zhong, T.; Childs, S.; Liu, J.; Fishman, M. Gridlock signaling pathway fashions the first embryonic artery. Nature 2001, 414, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Childs, S.; Chen, J.-N.; Garrity, D.; Fishman, M. Patterning of angiogenesis in the zebrafish embryo. Development 2002, 129, 973–982. [Google Scholar] [CrossRef]
- Siekmann, A.F.; Lawson, N.D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 2007, 445, 781–784. [Google Scholar] [CrossRef]
- Ellertsdottir, E.; Lenard, A.; Blum, Y.; Krudewig, A.; Herwig, L.; Affolter, M.; Belting, H.G. Vascular morphogenesis in the zebrafish embryo. Dev. Biol. 2010, 341, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Kume, T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol. Histopathol. 2010, 25, 637–646. [Google Scholar]
- Wu, B.J.; Chiu, C.C.; Chen, C.L.; Wang, W.D.; Wang, J.H.; Wen, Z.H.; Liu, W.; Chang, H.W.; Wu, C.Y. Nuclear receptor subfamily 2 group F member 1a (nr2f1a) is required for vascular development in zebrafish. PLoS ONE 2014, 9, e105939. [Google Scholar] [CrossRef] [Green Version]
- Lamont, R.E.; Wu, C.Y.; Ryu, J.R.; Vu, W.; Davari, P.; Sobering, R.E.; Kennedy, R.M.; Munsie, N.M.; Childs, S.J. The LIM-homeodomain transcription factor Islet2a promotes angioblast migration. Dev. Biol. 2016, 414, 181–192. [Google Scholar] [CrossRef]
- Ma, Y.L.; Lin, S.W.; Fang, H.C.; Chou, K.J.; Bee, Y.S.; Chu, T.H.; Chang, M.C.; Weng, W.T.; Wu, C.Y.; Cho, C.L.; et al. A novel poly-naphthol compound ST104P suppresses angiogenesis by attenuating matrix metalloproteinase-2 expression in endothelial cells. Int. J. Mol. Sci. 2014, 15, 16611–16627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.W.; Huang, S.C.; Kuo, H.M.; Chen, C.H.; Ma, Y.L.; Chu, T.H.; Bee, Y.S.; Wang, E.M.; Wu, C.Y.; Sung, P.J.; et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar. Drugs 2015, 13, 861–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.C.; Wu, B.J.; Chiu, C.C.; Chen, C.L.; Zhou, J.Q.; Liang, S.R.; Duh, C.Y.; Sung, P.J.; Wen, Z.H.; Wu, C.Y. Coral-Derived Natural Marine Compound GB9 Impairs Vascular Development in Zebrafish. Int. J. Mol. Sci. 2017, 18, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.L.; Su, Y.C.; Chen, H.C.; Su, J.H.; Wu, C.Y.; Wang, S.W.; Lin, I.P.; Chen, C.Y.; Lee, C.H. Heteronemin Suppresses Lymphangiogenesis through ARF-1 and MMP-9/VE-Cadherin/Vimentin. Biomedicines 2021, 9, 1109. [Google Scholar] [CrossRef]
- Weng, W.T.; Wu, C.S.; Wang, F.S.; Wu, C.Y.; Ma, Y.L.; Chan, H.H.; Wu, D.C.; Wu, J.C.; Chu, T.H.; Huang, S.C.; et al. alpha-Melanocyte-Stimulating Hormone Attenuates Neovascularization by Inducing Nitric Oxide Deficiency via MC-Rs/PKA/NF-kappaB Signaling. Int. J. Mol. Sci. 2018, 19, 3823. [Google Scholar] [CrossRef] [Green Version]
- Wiley, D.; Kim, J.; Hao, J.; Hong, C.; Bautch, V.; Jin, S. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 2011, 13, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Kashiwada, T.; Fukuhara, S.; Terai, K.; Tanaka, T.; Wakayama, Y.; Ando, K.; Nakajima, H.; Fukui, H.; Yuge, S.; Saito, Y.; et al. beta-Catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development 2015, 142, 497–509. [Google Scholar]
- Hadi, S.; Noviany, N.; Rilyanti, M. In vitro antimalarial activity of some organotin (IV) 2-nitrobenzoate compounds against Plasmodium falciparum. Maced. J. Chem. Chem. Eng. 2018, 37, 185–191. [Google Scholar] [CrossRef]
- Hadi, S.; Noviany, N. Comparative Antibacterial Activity Study of Organotin (IV) 2-Nitrobenzoate. Int. J. Sci. Eng. Investig. 2020, 9, 48–51. [Google Scholar]
- Lv, L.-L.; Xia, W.-M.; Cheng, Y.-Z.; Zhang, L.-P.; Wang, X.-D. Synthesis, structure, DNA binding and anticancer activity of a new tetranuclear Pb (II) complex constructed by 8-hydroxyquinolinate and 4-nitrobenzoate ligands. Main Group Met. Chem. 2019, 42, 60–66. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Hsieh, P.-W.; Chong, K.-Y.; Tseng, C.-P. A 5-nitrobenzoate-derived compound elicits anti-cancer metastatic activity by inhibition of poloplanin-stimulated tumor cell-induced platelet aggregation. Cancer Res. 2015, 75, 4477. [Google Scholar] [CrossRef]
- Zheng, Y.-B.; Gong, J.-H.; Liu, X.-J.; Wu, S.-Y.; Li, Y.; Xu, X.-D.; Shang, B.-Y.; Zhou, J.-M.; Zhu, Z.-L.; Si, S.-Y. A novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity. Sci. Rep. 2016, 6, 31472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, T.A.; Shawver, L.K.; Sun, L.; Tang, C.; App, H.; Powell, T.J.; Kim, Y.H.; Schreck, R.; Wang, X.; Risau, W.; et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99–106. [Google Scholar] [PubMed]
- Zheng, Y.B.; Dong, Y.Q.; Si, S.Y.; Zhen, Y.S.; Gong, J.H. IMB5476, a novel microtubule inhibitor, induces mitotic catastrophe and overcomes multidrug resistance in tumors. Eur. J. Pharmacol. 2022, 919, 174802. [Google Scholar] [CrossRef]
- Choi, J.; Dong, L.; Ahn, J.; Dao, D.; Hammerschmidt, M.; Chen, J.N. FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev. Biol. 2007, 304, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Proulx, K.; Lu, A.; Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev. Biol. 2010, 348, 34–46. [Google Scholar] [CrossRef]
- Roman, B.L.; Pham, V.N.; Lawson, N.D.; Kulik, M.; Childs, S.; Lekven, A.C.; Garrity, D.M.; Moon, R.T.; Fishman, M.C.; Lechleider, R.J.; et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 2002, 129, 3009–3019. [Google Scholar] [CrossRef]
- Li, R.F.; Wu, T.Y.; Mou, Y.Z.; Wang, Y.S.; Chen, C.L.; Wu, C.Y. Nr2f1b control venous specification and angiogenic patterning during zebrafish vascular development. J. Biomed. Sci. 2015, 22, 104. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.C.; Chiu, C.C.; Chang, H.W.; Wang, Y.S.; Syue, H.H.; Song, Y.C.; Weng, Z.H.; Tai, M.H.; Wu, C.Y. Prdx1-encoded peroxiredoxin is important for vascular development in zebrafish. FEBS Lett. 2017, 591, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Wang, Y.S.; Song, Y.C.; Chen, Z.Y.; Chen, Y.T.; Chiu, C.C.; Wu, C.Y. Fine-tune regulation of carboxypeptidase N1 controls vascular patterning during zebrafish development. Sci. Rep. 2017, 7, 1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thisse, C.; Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 2008, 3, 59–69. [Google Scholar] [CrossRef]
- Lawson, N.D.; Scheer, N.; Pham, V.N.; Kim, C.H.; Chitnis, A.B.; Campos-Ortega, J.A.; Weinstein, B.M. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 2001, 128, 3675–3683. [Google Scholar] [CrossRef]
- Sumanas, S.; Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol. 2006, 4, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
qPCR Primer Name | Sequence |
---|---|
β-actin_qf | 5′-CTCTTCCAGCCTTCCTTCCT-3′ |
β-actin_qr | 5′-CTTCTGCATACGGTCAGCAA-3′ |
mrc1_qf | 5′-CTAGCAAGCCTGAAGGTGCC-3′ |
mrc1_qr | 5′-TGAGAGGCTGGGTAGTTGGG-3′ |
ephrinb2_qf | 5′-CTGGAACACCACGAACACC-3′ |
ephrinb2_qr | 5′-CACACGTGGGCAAACTATGT-3′ |
stabilin_qf | 5′- GGGCTTCCAATACCAACTGG -3′ |
stabilin_qr | 5′- CCTGGTTGCACAGACAGACC -3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, C.-C.; Chin, H.-K.; Chung, S.-Y.; Hsieh, K.-H.; Huang, Y.-S.; Huang, M.-F.; Lo, Y.-H.; Wen, Z.-H.; Wu, C.-Y. Nitrobenzoate-Derived Compound X8 Impairs Vascular Development in Zebrafish. Int. J. Mol. Sci. 2022, 23, 7788. https://doi.org/10.3390/ijms23147788
Chiu C-C, Chin H-K, Chung S-Y, Hsieh K-H, Huang Y-S, Huang M-F, Lo Y-H, Wen Z-H, Wu C-Y. Nitrobenzoate-Derived Compound X8 Impairs Vascular Development in Zebrafish. International Journal of Molecular Sciences. 2022; 23(14):7788. https://doi.org/10.3390/ijms23147788
Chicago/Turabian StyleChiu, Chien-Chih, Hsieng-Kuo Chin, Sen-Yuan Chung, Kuan-Hsuan Hsieh, Yi-Shan Huang, Mei-Feng Huang, Yi-Hao Lo, Zhi-Hong Wen, and Chang-Yi Wu. 2022. "Nitrobenzoate-Derived Compound X8 Impairs Vascular Development in Zebrafish" International Journal of Molecular Sciences 23, no. 14: 7788. https://doi.org/10.3390/ijms23147788
APA StyleChiu, C. -C., Chin, H. -K., Chung, S. -Y., Hsieh, K. -H., Huang, Y. -S., Huang, M. -F., Lo, Y. -H., Wen, Z. -H., & Wu, C. -Y. (2022). Nitrobenzoate-Derived Compound X8 Impairs Vascular Development in Zebrafish. International Journal of Molecular Sciences, 23(14), 7788. https://doi.org/10.3390/ijms23147788