Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review
Abstract
:1. Introduction
2. Non-Coding RNA Transcriptome
2.1. Long Non-Coding RNA
2.2. Small Non-Coding RNA
2.3. Challenges Related to the Clinical Application of ncRNAs
3. ncRNAs and Oral Inflammatory Diseases
3.1. Long Non-Coding RNA and Oral Inflammatory Diseases, Premalignant States, and Oral Squamous Cell Carcinoma
3.2. Small Non-Coding and Oral Inflammatory Diseases, Premalignant States, and Oral Squamous Cell Carcinomas
4. Clinical Perspectives of ncRNAs in Oral Inflammatory Diseases
4.1. ncRNAs as Salivary Diagnostic Markers of Oral Inflammatory Diseases
4.2. ncRNAs in Regenerative Medicine in the Field of Oral Inflammatory Diseases
4.3. ncRNAs as Biomarkers and Perspective Therapeutics for Neuropathic and Inflammatory Pain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shankpiece, F.A.; Cantos, A. Oral Inflammation and Infection, and Chronic Medical Diseases: Implications for the Elderly. Periodontology 2000 2016, 72, 153–175. [Google Scholar] [CrossRef]
- ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Angrand, P.-O.; Vennin, C.; Le Bourhis, X.; Adriaenssens, E. The Role of Long Non-Coding RNAs in Genome Formatting and Expression. Front. Genet. 2015, 6, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamantopoulos, M.A.; Tsiakanikas, P.; Scorilas, A. Non-Coding RNAs: The Riddle of the Transcriptome and Their Perspectives in Cancer. Ann. Transl. Med. 2018, 6, 241. [Google Scholar] [CrossRef]
- Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and Abundance Analysis of Human LncRNAs at Single-Cell and Single-Molecule Resolution. Genome Biol. 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Shan, G.; Teng, Z.-Q.; Wingo, T.S. Editorial: Non-Coding RNAs and Human Diseases. Front. Genet. 2020, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Sadik, N.; Cruz, L.; Gurtner, A.; Rodosthenous, R.S.; Dusoswa, S.A.; Ziegler, O.; Van Solinge, T.S.; Wei, Z.; Salvador-Garicano, A.M.; Gyorgy, B.; et al. Extracellular RNAs: A New Awareness of Old Perspectives. Methods Mol. Biol. 2018, 1740, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Latgé, G.; Poulet, C.; Bours, V.; Josse, C.; Jerusalem, G. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers. Int. J. Mol. Sci. 2018, 19, 123. [Google Scholar] [CrossRef] [Green Version]
- Diederichs, S. The Four Dimensions of Noncoding RNA Conservation. Trends Genet. 2014, 30, 121–123. [Google Scholar] [CrossRef]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of Long Noncoding RNA Classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qiu, W.; Wu, B.; Fang, F. Long Non-coding RNAs Are Novel Players in Oral Inflammatory Disorders, Potentially Premalignant Oral Epithelial Lesions and Oral Squamous Cell Carcinoma (Review). Int. J. Mol. Med. 2020, 46, 535–545. [Google Scholar] [CrossRef]
- Hackermüller, J.; Reiche, K.; Otto, C.; Hösler, N.; Blumert, C.; Brocke-Heidrich, K.; Böhlig, L.; Nitsche, A.; Kasack, K.; Ahnert, P.; et al. Cell Cycle, Oncogenic and Tumor Suppressor Pathways Regulate Numerous Long and Macro Non-Protein-Coding RNAs. Genome Biol. 2014, 15, R48. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.N.; Belli, A.; Di Pietro, V. Small Non-Coding RNAs: New Class of Biomarkers and Potential Therapeutic Targets in Neurodegenerative Disease. Front. Genet. 2019, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Leighton, L.J.; Bredy, T.W. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Non-Coding RNA 2018, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglas, K.; Kołodziejczak, I.; Kolenda, T.; Kopczyńska, M.; Teresiak, A.; Sobocińska, J.; Bliźniak, R.; Lamperska, K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int. J. Mol. Sci. 2020, 21, 5682. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Brandenstein, M.; Bernhart, S.H.; Pansky, A.; Richter, C.; Kohl, T.; Deckert, M.; Heidenreich, A.; Stadler, P.F.; Montesinos-Rongen, M.; Fries, J.W.U. Beyond the 3′UTR Binding-MicroRNA-Induced Protein Truncation via DNA Binding. Oncotarget 2018, 9, 32855–32867. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lei, C.; He, Q.; Pan, Z.; Xiao, D.; Tao, Y. Nuclear Functions of Mammalian MicroRNAs in Gene Regulation, Immunity and Cancer. Mol. Cancer 2018, 17, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, G.; Choudury, S.G.; Slotkin, R.K. TRNA-Derived Small RNAs Target Transposable Element Transcripts. Nucleic Acids Res. 2017, 45, 5142–5152. [Google Scholar] [CrossRef]
- Pederson, T. Regulatory RNAs Derived from Transfer RNA? RNA 2010, 16, 1865–1869. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-Evaluation of the Roles of DROSHA, Exportin 5, and DICER in MicroRNA Biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [Green Version]
- Ala, U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020, 9, 1574. [Google Scholar] [CrossRef]
- Micheel, J.; Safrastyan, A.; Wollny, D. Advances in Non-Coding RNA Sequencing. Non-Coding RNA 2021, 7, 70. [Google Scholar] [CrossRef]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA Therapeutics—Challenges and Potential Solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef] [PubMed]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Pesce, P.; Baldi, D.; Coronel Vargas, G.; Pera, P.; Izzotti, A. Prediction of Titanium Implant Success by Analysis of microRNA Expression in Peri-Implant Tissue. A 5-Year Follow-Up Study. J. Clin. Med. 2019, 8, 888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of Deep Caries and the Exposed Pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef]
- Santonocito, S.; Polizzi, A.; Palazzo, G.; Isola, G. The Emerging Role of MicroRNA in Periodontitis: Pathophysiology, Clinical Potential and Future Molecular Perspectives. Int. J. Mol. Sci. 2021, 22, 5456. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Han, S.; Li, Z.; Li, Z. Emerging Role of Exosomes in Craniofacial and Dental Applications. Theranostics 2020, 10, 8648–8664. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Pesce, P.; Pera, F.; Baldi, D.; Pulliero, A.; Izzotti, A. MicroRNAs in Peri-Implant Crevicular Fluid Can Predict Peri-Implant Bone Resorption: Clinical Trial with a 5-Year Follow-Up. Int. J. Oral Maxillofac. Implants 2021, 36, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Romão, V.C.; Talarico, R.; Scirè, C.A.; Vieira, A.; Alexander, T.; Baldini, C.; Gottenberg, J.-E.; Gruner, H.; Hachulla, E.; Mouthon, L.; et al. Sjögren’s Syndrome: State of the Art on Clinical Practice Guidelines. RMD Open 2018, 4, e000789. [Google Scholar] [CrossRef] [Green Version]
- Awadallah, M.; Idle, M.; Patel, K.; Kademani, D. Management Update of Potentially Premalignant Oral Epithelial Lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Fang, X.; Chen, J.; Zhang, H.; Tang, Z. Long Non-Coding RNA (LncRNA) in Oral Squamous Cell Carcinoma: Biological Function and Clinical Application. Cancers 2021, 13, 5944. [Google Scholar] [CrossRef] [PubMed]
- Sayad, A.; Mirzajani, S.; Gholami, L.; Razzaghi, P.; Ghafouri-Fard, S.; Taheri, M. Emerging Role of Long Non-Coding RNAs in the Pathogenesis of Periodontitis. Biomed. Pharmacother. 2020, 129, 110362. [Google Scholar] [CrossRef]
- Zhou, X.; Han, X.; Wittfeldt, A.; Sun, J.; Liu, C.; Wang, X.; Gan, L.-M.; Cao, H.; Liang, Z. Long Non-Coding RNA ANRIL Regulates Inflammatory Responses as a Novel Component of NF-ΚB Pathway. RNA Biol. 2016, 13, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long Noncoding RNA MEG3 Expressed in Human Dental Pulp Regulates LPS-Induced Inflammation and Odontogenic Differentiation in Pulpitis. Exp. Cell Res. 2021, 400, 112495. [Google Scholar] [CrossRef]
- Chen, H.; Lan, Z.; Li, Q.; Li, Y. Abnormal Expression of Long Noncoding RNA FGD5-AS1 Affects the Development of Periodontitis through Regulating MiR-142-3p/SOCS6/NF-ΚB Pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2098–2106. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, M.; Song, L.; Wang, X.; Lai, W.; Jiang, S. LncRNA MALAT1 Regulates Inflammatory Cytokine Production in Lipopolysaccharide-Stimulated Human Gingival Fibroblasts through Sponging MiR-20a and Activating TLR4 Pathway. J. Periodontal Res. 2020, 55, 182–190. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, X.; Guo, J.; Li, Y.; Yang, Y.; Wang, L.; Yang, L.; Liu, F. Long Non-Coding RNA DQ786243 Modulates the Induction and Function of CD4+ Treg Cells through Foxp3-MiR-146a-NF-ΚB Axis: Implications for Alleviating Oral Lichen Planus. Int. Immunopharmacol. 2019, 75, 105761. [Google Scholar] [CrossRef]
- Wang, J.; Peng, H.; Tian, J.; Ma, J.; Tang, X.; Rui, K.; Tian, X.; Wang, Y.; Chen, J.; Lu, L.; et al. Upregulation of Long Noncoding RNA TMEVPG1 Enhances T Helper Type 1 Cell Response in Patients with Sjögren Syndrome. Immunol. Res. 2016, 64, 489–496. [Google Scholar] [CrossRef]
- De Benedittis, G.; Ciccacci, C.; Latini, A.; Novelli, L.; Novelli, G.; Borgiani, P. Emerging Role of MicroRNAs and Long Non-Coding RNAs in Sjögren’s Syndrome. Genes 2021, 12, 903. [Google Scholar] [CrossRef]
- Jia, H.; Wang, X.; Sun, Z. Screening and Validation of Plasma Long Non-coding RNAs as Biomarkers for the Early Diagnosis and Staging of Oral Squamous Cell Carcinoma. Oncol. Lett. 2021, 21, 172. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, D.; Liu, H.; Yang, K. Increased Expression of LncRNA CASC9 Promotes Tumor Progression by Suppressing Autophagy-Mediated Cell Apoptosis via the AKT/MTOR Pathway in Oral Squamous Cell Carcinoma. Cell Death Dis. 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Zhang, Z.; Liu, X.; Zhang, Z.; Fu, Y.; Zhang, P.; Yuan, H.; Liu, L.; Cheng, J.; Jiang, H. LncRNA HOTAIR Promotes the Invasion and Metastasis of Oral Squamous Cell Carcinoma through Metastasis-Associated Gene 2. Mol. Carcinog. 2020, 59, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Carrillo, J.L.; Vázquez-Alcaraz, S.J.; Vargas-Barbosa, J.M.; Ramos-Gracia, L.G.; Alvarez-Barreto, I.; Medina-Quiroz, A.; Díaz-Huerta, K.K. The Role of MicroRNAs in Pulp Inflammation. Cells 2021, 10, 2142. [Google Scholar] [CrossRef] [PubMed]
- Nara, K.; Kawashima, N.; Noda, S.; Fujii, M.; Hashimoto, K.; Tazawa, K.; Okiji, T. Anti-inflammatory Roles of MicroRNA 21 in Lipopolysaccharide-stimulated Human Dental Pulp Cells. J. Cell. Physiol. 2019, 234, 21331–21341. [Google Scholar] [CrossRef]
- Ouhara, K.; Savitri, I.J.; Fujita, T.; Kittaka, M.; Kajiya, M.; Iwata, T.; Miyagawa, T.; Yamakawa, M.; Shiba, H.; Kurihara, H. MiR-584 Expressed in Human Gingival Epithelial Cells Is Induced by Porphyromonas Gingivalis Stimulation and Regulates Interleukin-8 Production via Lactoferrin Receptor. J. Periodontol. 2014, 85, e198–e204. [Google Scholar] [CrossRef]
- Olsen, I.; Singhrao, S.K.; Osmundsen, H. Periodontitis, Pathogenesis and Progression: MiRNA-Mediated Cellular Responses to Porphyromonas Gingivalis. J. Oral Microbiol. 2017, 9, 1333396. [Google Scholar] [CrossRef] [Green Version]
- Nik Mohamed Kamal, N.N.S.; Awang, R.A.R.; Mohamad, S.; Shahidan, W.N.S. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front. Physiol. 2020, 11, 587381. [Google Scholar] [CrossRef]
- Sipert, C.R.; Morandini, A.C.; Dionísio, T.J.; Trachtenberg, A.J.; Kuo, W.P.; Santos, C.F. MicroRNA-146a and MicroRNA-155 Show Tissue-Dependent Expression in Dental Pulp, Gingival and Periodontal Ligament Fibroblasts in Vitro. J. Oral Sci. 2014, 56, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Radović, N.; Nikolić Jakoba, N.; Petrović, N.; Milosavljević, A.; Brković, B.; Roganović, J. MicroRNA-146a and MicroRNA-155 as Novel Crevicular Fluid Biomarkers for Periodontitis in Non-Diabetic and Type 2 Diabetic Patients. J. Clin. Periodontol. 2018, 45, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Hu, R.; Runtsch, M.C.; Kagele, D.A.; Mosbruger, T.L.; Tolmachova, T.; Seabra, M.C.; Round, J.L.; Ward, D.M.; O’Connell, R.M. Exosome-Delivered MicroRNAs Modulate the Inflammatory Response to Endotoxin. Nat. Commun. 2015, 6, 7321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Li, R.; Ye, S.; Lin, S.; Yin, G.; Xie, Q. Recent Advances in the Use of Exosomes in Sjögren’s Syndrome. Front. Immunol. 2020, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Kong, Y.; Hu, X.; Li, Z.; Li, Y.; Zhong, Y.; Wei, X.; Ling, J. MicroRNA-Enriched Small Extracellular Vesicles Possess Odonto-Immunomodulatory Properties for Modulating the Immune Response of Macrophages and Promoting Odontogenesis. Stem Cell Res. Ther. 2020, 11, 517. [Google Scholar] [CrossRef]
- Cortes-Troncoso, J.; Jang, S.-I.; Perez, P.; Hidalgo, J.; Ikeuchi, T.; Greenwell-Wild, T.; Warner, B.M.; Moutsopoulos, N.M.; Alevizos, I. T Cell Exosome-Derived MiR-142-3p Impairs Glandular Cell Function in Sjögren’s Syndrome. JCI Insight 2020, 5, e133497. [Google Scholar] [CrossRef] [PubMed]
- Gassling, V.; Hampe, J.; Açil, Y.; Braesen, J.H.; Wiltfang, J.; Häsler, R. Disease-Associated MiRNA-MRNA Networks in Oral Lichen Planus. PLoS ONE 2013, 8, e63015. [Google Scholar] [CrossRef] [Green Version]
- Scapoli, L.; Palmieri, A.; Muzio, L.L.; Pezzetti, F.; Rubini, C.; Girardi, A.; Farinella, F.; Mazzotta, M.; Carinci, F. MicroRNA Expression Profiling of Oral Carcinoma Identifies New Markers of Tumor Progression. Int. J. Immunopathol. Pharmacol. 2010, 23, 1229–1234. [Google Scholar] [CrossRef]
- Martinez, B.V.; Dhahbi, J.M.; Nunez Lopez, Y.O.; Lamperska, K.; Golusinski, P.; Luczewski, L.; Kolenda, T.; Atamna, H.; Spindler, S.R.; Golusinski, W.; et al. Circulating Small Non Coding RNA Signature in Head and Neck Squamous Cell Carcinoma. Oncotarget 2015, 6, 19246. [Google Scholar] [CrossRef] [Green Version]
- Uma Maheswari, T.N.; Nivedhitha, M.S.; Ramani, P. Expression Profile of Salivary Micro RNA-21 and 31 in Oral Potentially Malignant Disorders. Braz. Oral Res. 2020, 34, e002. [Google Scholar] [CrossRef] [Green Version]
- Scholtz, B.; Horváth, J.; Tar, I.; Kiss, C.; Márton, I.J. Salivary MiR-31-5p, MiR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma. Pathogens 2022, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ping, F.; Fan, Z.; Zhang, C.; Deng, M.; Cheng, B.; Xia, J. Salivary Exosomal MiR-24-3p Serves as a Potential Detective Biomarker for Oral Squamous Cell Carcinoma Screening. Biomed. Pharmacother. 2020, 121, 109553. [Google Scholar] [CrossRef] [PubMed]
- Gai, C.; Camussi, F.; Broccoletti, R.; Gambino, A.; Cabras, M.; Molinaro, L.; Carossa, S.; Camussi, G.; Arduino, P.G. Salivary Extracellular Vesicle-Associated MiRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma. BMC Cancer 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Feng, J.; Wang, W. Expression of MiR-155 and MiR-146a in the Saliva of Patients with Periodontitis and Its Clinical Value. Am. J. Transl. Res. 2021, 13, 6670–6677. [Google Scholar]
- Sembler-Møller, M.L.; Belstrøm, D.; Locht, H.; Pedersen, A.M.L. Distinct MicroRNA Expression Profiles in Saliva and Salivary Gland Tissue Differentiate Patients with Primary Sjögren’s Syndrome from Non-Sjögren’s Sicca Patients. J. Oral Pathol. Med. 2020, 49, 1044–1052. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. MiRNet 2.0: Network-Based Visual Analytics for MiRNA Functional Analysis and Systems Biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Daszkiewicz, L.; Vázquez-Mateo, C.; Rackov, G.; Ballesteros-Tato, A.; Weber, K.; Madrigal-Avilés, A.; Di Pilato, M.; Fotedar, A.; Fotedar, R.; Flores, J.M.; et al. Distinct P21 Requirements for Regulating Normal and Self-Reactive T Cells through IFN-γ Production. Sci. Rep. 2015, 5, 7691. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Huang, L.; Li, S.L.; Gu, J.; Cui, X.; Zhou, Y. PTEN Loss Correlates with T Cell Exclusion across Human Cancers. BMC Cancer 2021, 21, 429. [Google Scholar] [CrossRef]
- Lee, N.; Kim, D.; Kim, W.-U. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front. Immunol. 2019, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Oostvogels, R.; Minnema, M.C.; van Elk, M.; Spaapen, R.M.; te Raa, G.D.; Giovannone, B.; Buijs, A.; van Baarle, D.; Kater, A.P.; Griffioen, M.; et al. Towards Effective and Safe Immunotherapy after Allogeneic Stem Cell Transplantation: Identification of Hematopoietic-Specific Minor Histocompatibility Antigen UTA2-1. Leukemia 2013, 27, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Roganović, J.R. MicroRNA-146a and -155, Upregulated by Periodontitis and Type 2 Diabetes in Oral Fluids, Are Predicted to Regulate SARS-CoV-2 Oral Receptor Genes. J. Periodontol. 2021, 92, e35–e43. [Google Scholar] [CrossRef] [PubMed]
- Angadi, P.V.; Krishnapillai, R. Evaluation of PTEN Immunoexpression in Oral Submucous Fibrosis: Role in Pathogenesis and Malignant Transformation. Head Neck Pathol. 2012, 6, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, S.; Morita, H.; Matsuda, M.; Katakura, Y.; Hirata, M.; Hashimoto, S. NFAT5 Promotes Oral Squamous Cell Carcinoma Progression in a Hyperosmotic Environment. Lab. Investig. 2021, 101, 38–50. [Google Scholar] [CrossRef]
- Hao, Y.; Ge, Y.; Li, J.; Hu, Y.; Wu, B.; Fang, F. Identification of MicroRNAs by Microarray Analysis and Prediction of Target Genes Involved in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J. Periodontol. 2017, 88, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, X.; Yin, M.; Xu, T.; Guo, F. Long Non-Coding RNA in Osteogenesis: A New World to Be Explored. Bone Jt. Res. 2019, 8, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, W.; Hu, C.; Xue, Z.; Wang, G.; Ding, B.; Luo, H.; Tang, L.; Kong, X.; Chen, X.; et al. MiR-17 Modulates Osteogenic Differentiation Through a Coherent Feed-Forward Loop in Mesenchymal Stem Cells Isolated from Periodontal Ligaments of Patients with Periodontitis. Stem Cells 2011, 29, 1804–1816. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Guo, T.; Hu, C.; Luo, H.; Zhang, L.; Shi, S.; Cai, T.; Ding, Y.; Jin, Y. TCF3, a Novel Positive Regulator of Osteogenesis, Plays a Crucial Role in MiR-17 Modulating the Diverse Effect of Canonical Wnt Signaling in Different Microenvironments. Cell Death Dis. 2013, 4, e539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Zhou, H.; Zou, D.; Xie, Q.; Bi, X.; Gu, P.; Fan, X. The Role of MiR-31-Modified Adipose Tissue-Derived Stem Cells in Repairing Rat Critical-Sized Calvarial Defects. Biomaterials 2013, 34, 6717–6728. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, H.; Hou, Y.; Wang, Y.; Zhou, Z.; Wang, M.; Huang, Z.; Yu, B. Lentivirus-mediated MicroRNA-26a Overexpression in Bone Mesenchymal Stem Cells Facilitates Bone Regeneration in Bone Defects of Calvaria in Mice. Mol. Med. Rep. 2018, 18, 5317–5326. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, X.; Zhao, K.; Zhu, Y.; Hu, B.; Zhou, Y.; Wang, M.; Wu, Y.; Zhang, C.; Xu, J.; et al. MiRNA-21 Promotes Osteogenesis via the PTEN/PI3K/Akt/HIF-1α Pathway and Enhances Bone Regeneration in Critical Size Defects. Stem Cell Res. Ther. 2019, 10, 65. [Google Scholar] [CrossRef]
- Baćević, M.; Brković, B.; Lambert, F.; Djukić, L.; Petrović, N.; Roganović, J. Leukocyte- and Platelet-Rich Fibrin as Graft Material Improves MicroRNA-21 Expression and Decreases Oxidative Stress in the Calvarial Defects of Diabetic Rabbits. Arch. Oral Biol. 2019, 102, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, T.; Mori, Y.; Abe, M.; Suenaga, H.; Kawase-Koga, Y.; Saijo, H.; Takato, T. Role of Cyclin-Dependent Kinase (Cdk)6 in Osteoblast, Osteoclast, and Chondrocyte Differentiation and Its Potential as a Target of Bone Regenerative Medicine. Oral Sci. Int. 2011, 8, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Su, P.; Yin, C.; Lin, X.; Wang, X.; Gao, Y.; Patil, S.; War, A.R.; Qadir, A.; Tian, Y.; et al. The Roles of FoxO Transcription Factors in Regulation of Bone Cells Function. Int. J. Mol. Sci. 2020, 21, 692. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, S.; Zhang, Y.; Pan, J. The E2F Transcription Factor 2: What Do We Know? Biosci. Trends 2021, 15, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Tamura, T.; Hatori, K.; Himi, K.; Nakamura, T.; Toyama, Y.; Miyata, T.; Takeichi, O. Elevated Foxo3a and Fas-ligand Expression in Human Periapical Granulomas as a Potential Treatment Target. Oral Dis. 2021, odi.14052. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Yang, R.; Wu, G.; Tan, Q.; Goltzman, D.; Miao, D. SIRT1/FOXO3a Axis Plays an Important Role in the Prevention of Mandibular Bone Loss Induced by 1,25 (OH) 2D Deficiency. Int. J. Biol. Sci. 2020, 16, 2712–2726. [Google Scholar] [CrossRef]
- Xu, K.; Xiao, J.; Zheng, K.; Feng, X.; Zhang, J.; Song, D.; Wang, C.; Shen, X.; Zhao, X.; Wei, C.; et al. MiR-21/STAT3 Signal Is Involved in Odontoblast Differentiation of Human Dental Pulp Stem Cells Mediated by TNF-α. Cell. Reprogramming 2018, 20, 107–116. [Google Scholar] [CrossRef]
- Huang, X.; Liu, F.; Hou, J.; Chen, K. Inflammation-induced Overexpression of MicroRNA-223-3p Regulates Odontoblastic Differentiation of Human Dental Pulp Stem Cells by Targeting SMAD3. Int Endod. J. 2019, 52, 491–503. [Google Scholar] [CrossRef]
- Sun, D.; Xin, B.; Wu, D.; Zhou, L.; Wu, H.; Gong, W.; Lv, J. MiR-140-5p-Mediated Regulation of the Proliferation and Differentiation of Human Dental Pulp Stem Cells Occurs through the Lipopolysaccharide/Toll-like Receptor 4 Signaling Pathway. Eur. J. Oral Sci. 2017, 125, 419–425. [Google Scholar] [CrossRef]
- Ke, Z.; Qiu, Z.; Xiao, T.; Zeng, J.; Zou, L.; Lin, X.; Hu, X.; Lin, S.; Lv, H. Downregulation of MiR-224-5p Promotes Migration and Proliferation in Human Dental Pulp Stem Cells. BioMed Res. Int. 2019, 2019, 4759060. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Wan, M.; Xu, X.; Gao, B.; Zhou, Y.; Sun, J.; Cheng, L.; Klein, O.D.; Zhou, X.; Zheng, L. Crosstalk between MiR-34a and Notch Signaling Promotes Differentiation in Apical Papilla Stem Cells (SCAPs). J. Dent. Res. 2014, 93, 589–595. [Google Scholar] [CrossRef]
- Li, Z.; Yan, M.; Yu, Y.; Wang, Y.; Lei, G.; Pan, Y.; Li, N.; Gobin, R.; Yu, J. LncRNA H19 Promotes the Committed Differentiation of Stem Cells from Apical Papilla via MiR-141/SPAG9 Pathway. Cell Death Dis. 2019, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.M.; Blais, A. Transcriptional Control of Stem Cell Fate by E2Fs and Pocket Proteins. Front. Genet. 2015, 6, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-C.; Kuo, Y.-C.; Chuong, C.-M.; Huang, Y.-H. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front. Cell Dev. Biol. 2021, 8, 625943. [Google Scholar] [CrossRef] [PubMed]
- Dissanayaka, W.L.; Han, Y.; Zhang, L.; Zou, T.; Zhang, C. Bcl-2 Overexpression and Hypoxia Synergistically Enhance Angiogenic Properties of Dental Pulp Stem Cells. Int. J. Mol. Sci. 2020, 21, 6159. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xu, W.; Li, J.; Chen, Y.; Pan, Y.; Wu, B. Effects of Vascular Endothelial Growth Factor and Insulin Growth Factor-1 on Proliferation, Migration, Osteogenesis and Vascularization of Human Carious Dental Pulp Stem Cells. Mol. Med. Rep. 2019, 20, 3924–3932. [Google Scholar] [CrossRef]
- Artese, L.; Rubini, C.; Ferrero, G.; Fioroni, M.; Santinelli, A.; Piattelli, A. Vascular Endothelial Growth Factor (VEGF) Expression in Healthy and Inflamed Human Dental Pulps. J. Endod. 2002, 28, 20–23. [Google Scholar] [CrossRef]
- Xia, K.; Chen, Z.; Chen, J.; Xu, H.; Xu, Y.; Yang, T.; Zhang, Q. RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration. Int. J. Nanomed. 2020, 15, 6631–6647. [Google Scholar] [CrossRef]
- Lovschall, H.; Fejerskov, O.; Flyvbjerg, A. Pulp-Capping with Recombinant Human Insulin- like Growth Factor I (RhIGF-I) in Rat Molars. Adv. Dent. Res. 2001, 15, 108–112. [Google Scholar] [CrossRef]
- Tavares-Ferreira, D.; Lawless, N.; Bird, E.V.; Atkins, S.; Collier, D.; Sher, E.; Malki, K.; Lambert, D.W.; Boissonade, F.M. Correlation of MiRNA Expression with Intensity of Neuropathic Pain in Man. Mol. Pain 2019, 15, 174480691986032. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B.M.; Bekker, A.; Tao, Y.-X. Noncoding RNAs. Anesthesiology 2014, 121, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, N.; Haqqi, T.M. MicroRNA-199a* Regulates the Expression of Cyclooxygenase-2 in Human Chondrocytes. Ann. Rheum. Dis. 2012, 71, 1073–1080. [Google Scholar] [CrossRef]
- Li, X.; Gibson, G.; Kim, J.-S.; Kroin, J.; Xu, S.; van Wijnen, A.J.; Im, H.-J. MicroRNA-146a Is Linked to Pain-Related Pathophysiology of Osteoarthritis. Gene 2011, 480, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Cheon, E.J.; Kim, H.A. MicroRNA-558 Regulates the Expression of Cyclooxygenase-2 and IL-1β-Induced Catabolic Effects in Human Articular Chondrocytes. Osteoarthr. Cartil. 2013, 21, 981–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlova, I.A.; Alexander, G.M.; Qureshi, R.A.; Sacan, A.; Graziano, A.; Barrett, J.E.; Schwartzman, R.J.; Ajit, S.K. MicroRNA Modulation in Complex Regional Pain Syndrome. J. Transl. Med. 2011, 9, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinders, M.; Üçeyler, N.; Pritchard, R.A.; Sommer, C.; Sorkin, L.S. Increased MiR-132-3p Expression Is Associated with Chronic Neuropathic Pain. Exp. Neurol. 2016, 283, 276–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinders, M.; Üçeyler, N.; Thomann, A.; Sommer, C. Aberrant MicroRNA Expression in Patients with Painful Peripheral Neuropathies. J. Neurol. Sci. 2017, 380, 242–249. [Google Scholar] [CrossRef]
- Heyn, J.; Luchting, B.; Hinske, L.C.; Hübner, M.; Azad, S.C.; Kreth, S. MiR-124a and MiR-155 Enhance Differentiation of Regulatory T Cells in Patients with Neuropathic Pain. J. Neuroinflamm. 2016, 13, 248. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xue, D.; Wang, X.; Ai, D.; Qin, P. MiR-101 Relates to Chronic Peripheral Neuropathic Pain through Targeting KPNB1 and Regulating NF-κB Signaling. Kaohsiung J. Med. Sci. 2019, 35, 139–145. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Zhou, J.; Yan, Y.; Chen, L. Evaluation of circulating microRNA expression in patients with trigeminal neuralgia: An observational study. Medicine 2020, 99, e22972. [Google Scholar] [CrossRef]
- Xiong, W.; Tan, M.; Tong, Z.; Yin, C.; He, L.; Liu, L.; Shen, Y.; Guan, S.; Ge, H.; Li, G.; et al. Effects of Long Non-Coding RNA Uc.48+ on Pain Transmission in Trigeminal Neuralgia. Brain Res. Bull. 2019, 147, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jiang, H.; Zheng, C.; Zhu, G.; Xu, Y.; Sheng, X.; Wu, B.; Guo, J.; Zhu, S.; Zhan, Y.; et al. Long Noncoding RNA MRAK009713 Is a Novel Regulator of Neuropathic Pain in Rats. Pain 2017, 158, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yan, Y.; Zhu, M.; Wang, Z.; Zhang, X.; Zhang, D. Effects of Long Non-Coding RNA Gm14461 on Pain Transmission in Trigeminal Neuralgia. J. Inflamm. 2020, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Byun, J.; Jung, J.; Choi, J. Profiling of Salivary Exosomal Micro RNAs in Burning Mouth Syndrome Patients. J. Oral Med. Pain 2019, 44, 25–30. [Google Scholar]
- Xu, J.; Liu, Y.; Deng, M.; Li, J.; Cai, H.; Meng, Q.; Fang, W.; Long, X.; Ke, J. MicroRNA221-3p Modulates Ets-1 Expression in Synovial Fibroblasts from Patients with Osteoarthritis of Temporomandibular Joint. Osteoarthr. Cartil. 2016, 24, 2003–2011. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhao, S.; Yang, H.; Zhang, C.; Kang, Q.; Deng, J.; Xu, Y.; Ding, Y.; Li, S. Potential Novel Prediction of TMJ-OA: MiR-140-5p Regulates Inflammation Through Smad/TGF-β Signaling. Front. Pharmacol. 2019, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wu, M.; Wei, J.; Zhou, X.; Yang, L.; Chen, F. MicroRNA-101a-3p Could Be Involved in the Pathogenesis of Temporomandibular Joint Osteoarthritis by Mediating UBE2D1 and FZD4. J. Oral Pathol. Med. 2021, 50, 236–243. [Google Scholar] [CrossRef]
- Zhang, A.; Ma, S.; Yuan, L.; Wu, S.; Liu, S.; Wei, X.; Chen, L.; Ma, C.; Zhao, H. Knockout of MiR-21-5p Alleviates Cartilage Matrix Degradation by Targeting Gdf5 in Temporomandibular Joint Osteoarthritis. Bone Jt. Res. 2020, 9, 689–700. [Google Scholar] [CrossRef] [PubMed]
lncRNA or sncRNA | Association with Oral Inflammatory Disease | References |
---|---|---|
lncRNA MEG3 |
Upregulated in inflamed pulp. MEG3 downregulation inhibited the secretion of TNF-α, IL-1β, and IL-6 in LPS-treated hDPCs | [37] |
lncRNA FGD5-AS1 |
Downregulated in gingival samples of periodontitis patients. Overexpression protects PDLCs via regulation of the miR-142-3p/SOCS6/NF-κB inflammatory signals | [38] |
lncRNA TMEVPG1 | Increase in CD4+ T cells in Sjogren syndrome patients | [39] |
ENST00000412740,
NR_131012, ENST00000588803, NR_038323 | Downregulated in the plasma of patients with oral premalignant lesion and gradually increased with the malignant transformation process. | [43] |
lncRNA CASC9 |
Upregulated in OSCC tissues; CASC9 is strongly associated with tumor size, clinical stage, regional lymph node metastasis, and overall survival time in OSCC patients Enhances cell proliferation and suppresses autophagy-mediated cell apoptosis via the AKT/mTOR pathway | [44] |
lncRNA HOTAIR |
Upregulated in OSCC tissue Overexpression was positively correlated with TNM (tumor-node-metastases) stage, histological grade, and regional lymph node metastasis | [45] |
miR-let-7d/miR-103a-3p/126-3p/150-5p/199a-3p/4485-5p/6088/6821-5p | Downregulated in both plasma- and salivary-exosomal samples of periodontitis patients | [50] |
miR-517/525/624/3128/3658/3692/3912/3920/4683/4690 | Predictors of peri-implantitis | [27] |
miR-21/31/132/143/155/15a/342-3p | Upregulated in the oral mucosa of OLP patients | [57] |
miR-21/23/25/146b/489/129/338/212 | Overexpressed in OSCC tumors | [58] |
miR-520h, miR-197, miR-378, miR-135b, miR-224, miR-34a | Underexpressed in OSCC tumors | [58] |
Salivary miR | Oral Inflammatory Disease | Area under the Receiver Operating Characteristic Curve (AUC) | References |
---|---|---|---|
miR-21 | Potentially malignant disorders | 0.82 | [60] |
miR-424/31/345 | OSCC | 0.87 | [61] |
miR-24 | OSCC | 0.74 | [62] |
miR-512 | OSCC | 0.85 | [63] |
miR-412 | OSCC | 0.87 | [63] |
miR-155 | Periodontitis | 0.88 | [64] |
miR-146a | Periodontitis | 0.75 | [64] |
miR-17/let7i | Sjögren syndrome | 0.97 | [65] |
miR-17/106a/106b/20b | Sjögren syndrome | 0.95 | [65] |
Target Gene | Degree | miR Involved in the Regulation of Target Genes |
---|---|---|
PTEN | 12 | miR-106b-3p/21-3p/486-5p/10b-5p/20b-5p/106b-5p/106a-5p/155-5p/17-5p/106a-3p/21-5p/155-3p |
CDKN1A | 10 | miR-17-5p/106a-5p/106b-5p/20b-5p/10b-5p/345-5p/146a-5p/328-5p/512-5p/486-3p |
NFAT5 | 10 | miR-17-5p/155-5p/106a-5p/106b-5p/20b-5p/345-5p/146a-5p/31-5p/21-5p/24-3p |
K1AA1551 | 10 | miR-10b-5p/20b-5p/106b-5p/106a-5p/17-5p/106a-3p/21-5p/155-3p/27b-3p/512-3p |
Target Gene | Degree | miRs Involved in the Regulation of Target Genes |
---|---|---|
CDK 6 | 4 | miR-34c-5p/21-5p/26a-5p/218-5p |
E2F2 | 4 | miR-21-5p/26a-5p/218-5p/31-5p |
FOXO3 | 4 | miR-31-5p/26a-5p/21-5p/218-5p |
NUFIP2 | 4 | miR-218-5p/26a-5p/21-5p/874-3p |
Target Gene | Degree | miR Involved in the Regulation of Target Genes |
---|---|---|
IGF1R | 6 | miR-223-3p/21-5p/140-5p/34a-5p/141-3p/224-5p |
CAPRIN1 | 4 | miR-141-5p/223-3p/21-5p/34a-5p |
E2F3 | 4 | miR-140-5p/21-5p/34a-5p/141-3p |
VEGFA | 4 | miR-141-5p/140-5p/21-5p/34a-5p |
Neuropathic Orofacial Pain | Biofluid or Tissue | Clinical Significance | References |
---|---|---|---|
Temporomandibular Disorders (TMDs) | Synovial fibroblasts and articular cartilage | Altered expression of miR221–3p/140-5p/101a-3p/21-5p was observed in degenerative TM joint disease and pain | [115] |
[116] | |||
[117] | |||
[118] | |||
Burning Mouth Syndrome (BMS) | Saliva | There were upregulated exosomal miRNAs (miR1273h-5p/1273a/1304-3p/4449/1285-3p/6802-5p/1268a/1273d/1273f/423-5p) and downregulated miRNAs (miR-27b-3p/16-5p/186-5p/142-3p/141-3p/150-5p/374a-5p/93-5p/29c-3p/29a-3p/148a-3p/22-3p/27a-3p/424-5p/19b-3p/99a-5p/548d-3p/19a-3p) in BMS patients compared to healthy | [114] |
Trigeminal neuralgia | Serum | In humans with TN, upregulation of circulatory miR-132-3p/146b-5p/155-5p/384 was observed compared to healthy controls | [110] |
Trigeminal ganglion | LncRNA Gm14461 promoted pain transmission in a mouse TN model | [113] | |
LncRNA uc.48+ overexpression promoted pain transmission in a rat TN model | [111] | ||
Dorsal root ganglia | Downregulation of Lnc MRAK009713 reduced hyperalgesia in rats | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roganović, J.; Petrović, N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 8278. https://doi.org/10.3390/ijms23158278
Roganović J, Petrović N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. International Journal of Molecular Sciences. 2022; 23(15):8278. https://doi.org/10.3390/ijms23158278
Chicago/Turabian StyleRoganović, Jelena, and Nina Petrović. 2022. "Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review" International Journal of Molecular Sciences 23, no. 15: 8278. https://doi.org/10.3390/ijms23158278
APA StyleRoganović, J., & Petrović, N. (2022). Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. International Journal of Molecular Sciences, 23(15), 8278. https://doi.org/10.3390/ijms23158278