Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Highly Organized EDC-Crosslinked Porous Gelatin-Based Hydrogel Scaffold with Uniform Open Cells
2.2. Swelling Property and Degradation Behavior of EDC-Crosslinked Gelatin-Based Hydrogel Scaffolds
2.3. Immunofluorescence Staining of Rabbit Knee Cartilage Cells
2.4. Cell viability and Cell Growth on EDC-Crosslinked Gelatin-Based Hydrogel Scaffolds
2.5. Scanning Electron Microscope Analysis of Static Culturing Chondrocytes on EDC-Crosslinked Gelatin-Based Hydrogel Scaffolds
2.6. Characteristics of Dynamic Culturing Chondrocytes on EDC-Crosslinked Gel-Atin-Based Hydrogel Scaffolds
3. Materials and Methods
3.1. Materials
3.2. Fabrication of 3D Uniform Porous Hydrogel Scaffold of N2/Gelatin with Opened Cells
3.3. Physical Properties of EDC-Crosslinked Gelatin-Based Hydrogel Scaffolds
3.4. Isolation and Culture of Chondrocyte
3.5. The Feasibility of Constructing Cartilage Tissue with EDC-Crosslinked Gelatin-Based Hydrogel Scaffolds
3.6. Hematoxylin & Eosin Staining (H&E)
3.7. Alcian Blue Staining
3.8. Immunofluorescence Stain
3.9. Statistical Analysis
3.10. Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bijlsma, J.W.J.; Berenbaum, F.; Lafeber, F.P.J.G. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Liu, Y.W.; Huang, C.C.; Wang, Y.Y.; Xu, J.; Wang, G.D.; Bai, X.P. Biological evaluations of decellularized extracellular matrix collagen microparticles prepared based on plant enzymes and aqueous two-phase method. Regen. Biomater. 2021, 8, rbab002. [Google Scholar] [CrossRef] [PubMed]
- Liaw, D.J.; Huang, C.C.; Lee, W.F.; Borbély, J.; Kang, E.T. Synthesis and characteristics of the poly(carboxybetaine)s and the Corresponding Cationic Polymers. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 3527–3536. [Google Scholar] [CrossRef]
- Liaw, D.J.; Huang, C.C.; Sang, H.C.; Kang, E.T. Intramolecular hydrophobic aggregation of amphiphilic polysulfobetaine with Various Hydrophobic Groups in Aqueous Solution. Langmuir 1999, 15, 5204–5211. [Google Scholar] [CrossRef]
- Huang, C.C. Design and Characterization of a bioinspired polyvinyl alcohol matrix with structural foam-wall microarchitectures for Potential Tissue Engineering Applications. Polymers 2022, 14, 1585. [Google Scholar] [CrossRef]
- Su, W.T.; Huang, C.C.; Liu, H.W. Evaluation and preparation of a Designed kartogenin drug delivery system (DDS) of hydrazone linkage-based pH responsive mPEG-Hz-b-PCL nanomicelles for treatment of osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 816664. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C. Characteristics and preparation of designed alginate-based composite scaffold membranes with decellularized fibrous micro-scaffold structures from porcine Skin. Polymers 2021, 13, 3464. [Google Scholar] [CrossRef] [PubMed]
- Marijnissen, A.C.; Lafeber, F.P.; Hunziker, E.B.R. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 2002, 10, 432–463. [Google Scholar]
- Ruiz-Cantu, L.; Gleadall, A.; Faris, C.; Segal, J.; Shakesheff, K.; Yang, J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110578. [Google Scholar] [CrossRef] [PubMed]
- Katsakouli, C.; Jiang, X.; Lau, W.K.; Rohn, J.L.; Edirisinghe, M. Generating antibacterial, microporous structures using microfluidic Processing. ACS Omega 2019, 4, 2225–2233. [Google Scholar] [CrossRef]
- Lin, J.; Lin, W.; Hong, W.; Hung, W.; Nowotarski, S.H.; Gouveia, S.M.; Cristo, I.; Lin, K. Morphology and organization of tissue cells in 3D microenvironment of monodisperse foam scaffolds. Soft Matter 2011, 7, 10010. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, K.C.; Lin, K.H.; Liu, H.C.; Lin, F.H. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 2011, 32, 7118–7126. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Ma, P.X. Phase separation, pore structure and properties of nanofibrous gelatin scaffolds. Biomaterials 2009, 30, 4094–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Fu, X.B. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release 2010, 142, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25. [Google Scholar] [CrossRef]
- Bode, F.; da Silva, M.A.; Drake, A.F.; Ross-Murphy, S.B.; Dreiss, C.A. Enzymatically cross-linked tilapia Gelatin Hydrogels: Physical, Chemical and Hybrid Networks. Biomacromolecules 2011, 12, 3741–3752. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Bohidar, H.B. Systematic of alcohol-induced simple coacervation in aqueous gelatin solutions. Biomacromolecules 2003, 4, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Dash, R.; Foston, M.; Ragauskas, A.J. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr. Polym. 2013, 91, 638–645. [Google Scholar] [CrossRef]
- Kuijpers, A.J. Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules 1999, 32, 3325–3333. [Google Scholar] [CrossRef]
- Huang, C.C.; Chen, Y.J.; Liu, H.W. Characterization of Composite Nano-Bioscaffolds Based on Collagen and Supercritical Fluids-Assisted Decellularized Fibrous Extracellular Matrix. Polymers 2021, 13, 4326. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.J.; Tsou, T.L.; Wang, H.J.; Hsu, S.H. Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. J. Tissue Eng. Regen. Med. 2013, 7, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Chiono, V.; Anghileri, A.; Vozzi, G.; Freddi, G.; Ciardelli, G. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol. Biosci. 2013, 13, 1492–1510. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.S.; Feijen, J.; Van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. Enzymecatalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012, 33, 1281–1290. [Google Scholar] [CrossRef]
- Ratanavaraporn, J.; Rangkupan, R.; Jeeratawatchai, H.; Kanokpanont, S.; Damrongsakkul, S. Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int. J. Biol. Macromol. 2010, 47, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kushibiki, T.; Mayumi, Y.; Nakayama, E.; Azuma, R.; Ojima, K.; Horiguchi, A.; Ishihara, M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci. Rep. 2021, 11, 23094. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Santoso, J.W.; McCain, M.L. Characterization of Gelatin Hydrogels Cross-Linked with Microbial Transglutaminase as Engineered Skeletal Muscle Substrates. Bioengineering 2021, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Dai, W. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 2010, 31, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 1, 103–114. [Google Scholar] [CrossRef]
- Burkersroda, F.; Schedl, L.; Göpferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 3, 4221–4231. [Google Scholar] [CrossRef]
- Aurand, E.R.; Lampe, K.J.; Bjugstad, K.B. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci. Res. 2012, 72, 199–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P. Effect of non-uniform initial drug concentration distribution on the kinetics of drug release from glassy hydrogel matrices. Polymer 1984, 25, 973–978. [Google Scholar] [CrossRef]
- Peppas, N.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulation. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. [Google Scholar] [CrossRef] [Green Version]
- Wisotzki, E.I.; Hennes, M.; Schuldt, C.; Engert, F.; Knolle, W.; Decker, U.; Kas, J.A.; Zink, M.; Mayr, S.G. Tailoring the material properties of gela-tin hydrogels by high energy electron irradiation. J. Mater. Chem. B 2014, 2, 4297–4309. [Google Scholar] [CrossRef] [PubMed]
- Benya, P.D.; Padilla, S.R.; Nimni, M.E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978, 15, 1313–1321. [Google Scholar] [CrossRef]
- Mayne, R. Changes in Type of Collagen Synthesized as Clones of Chick Chondrocytes Grow and Eventually Lose Division Capacity. Proc. Natl. Acad. Sci. USA 1976, 73, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Stokes, D.G. Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum. 2002, 46, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr. Cartil. 2004, 12, 963–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wight, T.N.; Kinsella, M.G.; Qwarnstrom, E.E. The role of proteoglycans in cell adhesion, migration and proliferation. Curr. Opin. Cell Biol. 1992, 4, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Sajdera, S.W.; Hascall, V.C. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J. Biol. Chem. 1969, 244, 77–87. [Google Scholar] [CrossRef]
- Yu, S.M.; Kim, S.J. Salinomycin causes dedifferentiation via the extracellular signal-regulated kinase (ERK) pathway in rabbit articular chondrocytes. J. Pharmacol. Sci. 2015, 127, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, W.M. Sox9 is required for cartilage formation. Nat. Genet. 1999, 22, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Tew, S.R. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr. Cartil. 2005, 13, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Villar-Suarez, V.; Calles-Venal, I.; Bravo, I.G.; Fernandez-´Alvarez, J.G.; Fernandez-Caso, M.; Villar-Lacilla, J.M. Differential Behavior Between Isolated and Aggregated Rabbit Auricular Chondrocytes on Plastic Surfaces. J. Biomed. Biotechnol. 2004, 2, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Chung, Y.; Chan, Z.R.; Hu, Y.C. A Novel Oscillating Bioreactor BelloCell: Implications for Insect Cell Culture and Recombinant Protein Production. Biotechnol. Lett. 2005, 27, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-W.; Su, W.-T.; Liu, C.-Y.; Huang, C.-C. Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. Int. J. Mol. Sci. 2022, 23, 8449. https://doi.org/10.3390/ijms23158449
Liu H-W, Su W-T, Liu C-Y, Huang C-C. Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. International Journal of Molecular Sciences. 2022; 23(15):8449. https://doi.org/10.3390/ijms23158449
Chicago/Turabian StyleLiu, Hsia-Wei, Wen-Ta Su, Ching-Yi Liu, and Ching-Cheng Huang. 2022. "Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering" International Journal of Molecular Sciences 23, no. 15: 8449. https://doi.org/10.3390/ijms23158449
APA StyleLiu, H. -W., Su, W. -T., Liu, C. -Y., & Huang, C. -C. (2022). Highly Organized Porous Gelatin-Based Scaffold by Microfluidic 3D-Foaming Technology and Dynamic Culture for Cartilage Tissue Engineering. International Journal of Molecular Sciences, 23(15), 8449. https://doi.org/10.3390/ijms23158449