
����������
�������

Citation: Ghimire, A.; Tayara, H.;

Xuan, A.; Chong K.T. CSatDTA:

Prediction of Drug–Target Binding

Affinity Using Convolution Model

with Self-Attention. Int. J. Mol. Sci.

2022, 23, 8453. https://doi.org/

10.3390/ijms23158453

Academic Editor: George Mihai

Nitulescu

Received: 14 July 2022

Accepted: 27 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

CSatDTA: Prediction of Drug–Target Binding Affinity Using
Convolution Model with Self-Attention

Ashutosh Ghimire 1,† , Hilal Tayara 2,† , Zhenyu Xuan 3,* and Kil To Chong 1,4,*

1 Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea;
ashutosh@jbnu.ac.kr

2 School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
hilaltayara@jbnu.ac.kr

3 Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
4 Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea
* Correspondence: zhenyu.xuan@utdallas.edu (Z.X.); kitchong@jbnu.ac.kr (K.T.C.)
† These authors contributed equally to this work.

Abstract: Drug discovery, which aids to identify potential novel treatments, entails a broad range
of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug
development, predicting drug–target affinity is crucial. The proposed model, the prediction of
drug–target affinity using a convolution model with self-attention (CSatDTA), applies convolution-
based self-attention mechanisms to the molecular drug and target sequences to predict drug–target
affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations
related to this aspect. The convolutional neural network (CNN) only works on a particular region
of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively
recent technique for capturing long-range interactions that has been used primarily in sequence
modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous
sequence-based or other approaches and has outstanding retention abilities.

Keywords: drug–target interaction; binding affinity; attention; convolution neural network; deep
learning; artificial intelligence; pharmacometrics; drug discovery and development; proteins; ligands

1. Introduction

Biochemically dysfunctional allosteric changes in proteins are frequently the cause of
many diseases. A drug can change the way native proteins operate in the body, resulting
in a desirable therapeutic effect [1]. However, the response of individual patients to a
drug varies depending on genetic factors, and prescribers must recognize the need to
monitor the outcomes of their prescription [2]. In addition, developing a new drug is
expensive [3], and obtaining FDA clearance might require several years [4]. Because of
the high cost of drug development, several pharmaceutical companies employ consumer
research techniques similar to those used in other industries, in which the genuine value
of a product is determined by its consumers [5]. The reduction in drug development
costs will not only result in lower drug prices and healthcare expenses for patients, but
also allow corporations to produce tailored drugs based on the genetics of individuals.
Analyzing the vast extent of available drug and target data in existing databases, emerging
and revolutionary computer technologies and deep learning concepts can lower drug
development expenses. Currently, neural networks are considered to be relatively beneficial
in bioinformatics applications [6–10].

The drug–target interaction identification is an essential aspect of the development
of genetic drugs [11], as only the drugs and targets with similar molecular configurations
are compatible [12]. The strength of the drug–target interaction pair was measured using
DTA. DTA prediction is the essential phase in the computer-aided design (CAD) of a drug,
which can accelerate drug development and limit the usage of resources. Drugs can affect
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medical conditions by attaching to proteins and can be beneficial or badly affect their
functionality. The high binding affinity of a small molecule to a target protein is one factor
in selecting a candidate component for drug development. Since the invention of deep
learning, its application to DTA prediction to enhance accuracy has received considerable
research attention [13]. The equilibrium dissociation constant (Kd) was utilized to evaluate
and rank the strength of the interaction binding affinity. Besides Kd, binding affinity is
expressed using the half maximal inhibitory concentration (ICv) or the inhibition constant
(Ki). The low (Ki) values are associated with the high binding affinity of the ligand to its
target. Similarly, the weak attraction and binding between the target molecule and ligand
result in a high Kd value [14]. In addition, (IC50) values indicate high binding, which is
dependent on the ligand and target concentrations [15].

Several studies have predicted DTA using various models for compounds and tar-
gets [16–18]. Deep learning models, most notably CNNs, which learn from protein–ligand
composites’ three-dimensional (3D) organization, have also been used to score protein–
ligand interactions. Some studies [19] have used the Smith–Waterman algorithm, which
only employs similarity representations of the targets, and the KronRLS method two-
dimensional (2D) compound similarity interpretation of the drugs. Because these tech-
niques require the computation of the similarity matrix, they are constrained to known
drug–target composite structures based on the 25,000 drugs in the lists of the Protein Data
Bank (PDB) [20], thereby limiting the number of molecules used in the training process.
Another study [21] developed a model, referred to as DeepDTA, using a one-dimensional
(1D) representation of proteins and ligands to solve these constraints. Instead of using bind-
ing complexes’ 3D structures or the exterior characteristics, they applied protein sequences
and compound representations using the Simplified Molecular Input Line Entry System
(SMILES). Additionally, CNN blocks were used to detect bases from SMILES strings and
raw protein sequences.

The convolutional neural network [22–25] is a widely used deep learning model that
has already achieved significant progress in the realm of feature extraction. Despite pos-
sessing the potential benefits of a CNN-based technique, DeepDTA has severe limitations.
Long-distance dependencies, for example, are difficult to capture with CNNs. Furthermore,
given a raw molecular sequence, CNNs are unable to represent the possible interactions be-
tween distant atoms. The CNN model, for example, can record connections between atoms
in a series of approximately 35 distances using three convolution layers, each with a filter
size of 12. After extracting features from the convolution layers, we used the self-attention
mechanism to capture the relationships between atoms in a sequence in our suggested
model. Because a multi-head technique with each head corresponding to a feature subspace
was used, the applied self-attention mechanism may attend to characteristic subspaces and
spatial subspaces simultaneously, in contrast to previous approaches. The proposed model
was tested on the popular standard datasets, Davis [26] and KIBA [27].

In contrast to prior deep learning models, our proposed technique results in the
elucidation of a more accurate molecular connection. Furthermore, the attention mechanism
was used to understand a molecule’s high-dimensional structure from a raw sequence. Our
suggested technique surpasses existing approaches in terms of DTA prediction without
depending on the complex’s 3D structure or a 2D representation of the molecule, according
to the results. Our findings imply that the attention mechanism is more accurate in terms
of abstract and meaningful concepts. Furthermore, we discuss the effective utilization of
these discoveries for the further advancement of related research.

2. Result

We consider DeepDTA as the baseline method because it is a typical computational-
nonstructure-based approach devised to predict DTAs using a CNN model. To compare
our model to up-to-the-minute DeepDTA [21], KronRLS [28], SimBoost [29], WideDTA [30],
and GraphDTA [31] models, we adopted the same KiBA [27] and Davis [26] dataset
benchmarks. The Davis dataset’s binding intensities for 442 targets and 72 drugs were
measured using Kd constants varying between 5.00 and 10.80. KiBA is a database that
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holds the binding interactions of 2116 drugs and 229 targets, which are represented by
KiBA scores that vary between 0.00 and 17.20. To make the evaluation as unbiased as
possible, we employed the same number of testing and training cases, as well as the
same evaluation measures: CI, MSE, and RMSE. Small MSE and large CI values are ideal.
The performance measures originally published in DeepDTA for all the baseline approaches
are provided. Table 1 summarizes the hyperparameters used in the experiments. Multiple
times, the hyperparameters were fine-tuned.

Table 1. Hyperparameters for CSatDTA.

Hyperparameters

Learning rate (initially) 0.001
Batch size 64
Optimizer Adadelta

Kernel initializer Glorot Normal
CNN layers 2

Attention layers 2
Number of attention heads for SMILES 4
Number of attention heads for proteins 10
Filters for keys and values for SMILES 2
Filters for keys and values for proteins 5

Our CSatDTA model predicts drug–target binding capacity using just drug and protein
sequence information. The average MSE, RMSE, and CI values for the datasets KiBA and
Davis are shown in Tables 2 and 3, respectively. Previously, the best CI for the Davis dataset
was obtained from the GAT-GCN model [31], which was 0.881. Similarly, the same model
obtained a better MSE and RMSE, which were 0.245 and 0.494. The CI obtained from our
model was 0.892, which is better than the previous performance on the Davis benchmark
dataset. The MSE and RMSE were also better than the prior models, with values of 0.241
and 0.490, respectively. The best CI, MSE, and RMSE among the preceding models for
the KiBA dataset were 0.891, 0.140, and 0.374, respectively, attained by the GAT-GCN
model [31].

Table 2. Performance on the KiBA dataset in terms of prediction.

Method Compound Rep. Protein Rep. MSE RMSE CI

KronRLS Pubchem-Sim Smith–Waterman 0.411 0.641 0.782
SimBoost Pubchem-Sim Smith–Waterman 0.222 0.471 0.836
DeepDTA 1D 1D 0.179 0.423 0.863
WideDTA 1D + LMCS 1D + PDM 0.194 0.440 0.875
GAT_GCN Graph 1D 0.140 0.374 0.891

CsatDTA (Proposed) 1D 1D 0.134 0.366 0.898

Table 3. Performance on the Davis dataset in terms of prediction.

Method Compound Rep. Protein Rep. MSE RMSE CI

KronRLS Pubchem-Sim Smith–Waterman 0.379 0.615 0.871
SimBoost Pubchem-Sim Smith–Waterman 0.282 0.531 0.872
DeepDTA 1D 1D 0.261 0.510 0.878
WideDTA 1D + LMCS 1D + PDM 0.262 0.511 0.886
GAT_GCN Graph 1D 0.245 0.494 0.881

CsatDTA (Proposed) 1D 1D 0.241 0.490 0.892

Our model, however, outperformed the data for the KiBA dataset, with a CI, MSE,
and RMSE of 0.898, 0.134, and 0.366, respectively. Because of its more comprehensive
pharmacological library, the KiBA dataset outperformed the Davis datasets in this analysis.
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Moreover, this comes from making the strides as the dataset grows in size, since the KiBA
dataset is four-times the size of the Davis dataset. The capacity of deep learning models
to capture hidden knowledge improves as the amount of data increases. Figures 1 and 2
depict scatter plots for the Davis and KiBA datasets, respectively.

Figure 1. Predictions of the CSatDTA model vs. measured binding affinity values for the
Davis dataset.

Figure 2. Predictions of the CSatDTA model vs. measured binding affinity values for KiBA.

Our findings show that attention enhancement leads to systematic gains in prediction
and feature identification tasks across a wide range of architectures and computational
methodologies. In addition, our experiments demonstrated the efficacy of the suggested
2D relative attention mechanism. We used self-attention feature maps instead of convo-
lutional feature maps in all trials to allow straightforward comparisons with the baseline
models. All outcomes were consistent with the 2D relative self-attention mechanism unless
otherwise stated.
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Prediction Web Server

A web server was used to implement the CSatDTA model. For the input, the tool
accepts SMILES strings for the drugs and protein sequences for the targets to calculate
the affinity score. Public access to the server is available at http://nsclbio.jbnu.ac.kr/
tools/CSatDTA/ (accessed on 15 July 2022). Figure 3 depicts a snapshot of the server
implementation showing the binding affinity prediction of SGK1 protein and a drug
C23H19Cl2FN6.

Figure 3. Snapshot of webserver showing binding affinity prediction.

3. Discussion

In this study, we used self-attention instead of convolutions for regression models. We
presented a new 2D relative self-attention regression technique that allowed the training of
completely competitive self-attention affinity prediction models using sequence data. We
demonstrated that this self-attention mechanism outperforms alternative attention schemes
and proposed it as an addition to convolutional operators. Furthermore, extensive tests
showed that attention augmentation improves the previous convolution neural network
approach in a systematic manner.

The results revealed that deep-learning-based approaches with an attention mecha-
nism significantly outperformed baseline methods or the previous approaches with sta-
tistical significance. The research makes a significant contribution by presenting a unique
deep-learning-based model that can predict drug–target compatibility that simply employs
protein and drug character representations. For both drugs and targets, we achieved com-
parable or better results than baseline approaches, which depend on a variety of techniques
and strategies to extract properties from raw sequence data. Our experiment predicted
new interactions between known drugs and targets. In future studies, we will focus on
predicting known targets for new drugs. In addition, we intend to extend this methodology
to predict known drugs for novel targets.

4. Materials and Methods
4.1. Materials

To evaluate the proposed model, we used two datasets, KiBA and Davis, as standard
data for comparison with the previous models. The disassociation constant (pkd) values
for approximately 120,000 interactions are included in the KiBA dataset, with 69 percent
of them having affinity values of 10,000 nM (pkd = 5), suggesting weak or no interactions.
The Davis dataset is smaller than KiBA, with only about 30,000 interactions.The KiBA

http://nsclbio.jbnu.ac.kr/tools/CSatDTA/
http://nsclbio.jbnu.ac.kr/tools/CSatDTA/
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values are derived from various data sources, including IC50, Ki, and Kd, whereas Davis is
derived exclusively from Kd. The number of drugs, targets, and interactions, as well as the
statistics of the datasets are provided in Table 4.

Table 4. Datasets.

Proteins Compounds Interactions

KIBA 229 2111 118,254
Davis 442 68 30,056

4.2. Drug and Target Representation

For drugs, the input is fed as SMILES data, a form readable by computers [32].
The SMILES are parsable with a context-free parser. This representation has been used
while predicting biochemical properties, including toxicity and biodegradability, based
on the fundamental principle of cheminformatics, that similar molecules have similar
properties [11]. With the SMILES code, drug properties such as the bulky atom number
or amount of valence electrons can be retrieved and used as attraction prediction features.
A string representation of the SMILES code can be found here. Natural language processing
(NLP) techniques or a deep learning model can be used to highlight the strings. SMILES
data for all compounds were collected from the PubChem database. After obtaining the
SMILES string, it was passed through a unique label representation of the strings. In total,
64 labels were utilized. Each label is represented with corresponding integers. The data
distribution from the Davis and KiBA datasets is shown in Figure 4.

Figure 4. Analysis of KiBA and Davis datasets: (a) distribution of length of SMILES for KiBA datasets,
(b) distribution of length of protein sequences for KiBA datasets, (c) distribution of length of SMILES
for Davis datasets, and (d) distribution of length of protein sequences for Davis datasets.

Proteins are represented using one-hot encoding. For each target in the experimental
datasets, the UniProt database was used to retrieve protein sequences with the help of the
protein gene name. A series of ASCII characteristics representing amino acids constituted
the sequence. Each amino acid type was assigned an integer based on its alphabetical
symbol, and proteins are represented as an integer sequence. Aspartic acid (D) is four;
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alanine (A) is one; cysteine (C) is three. The sequence was shortened or padded to a preset
length of 1000 residues to make training easier. When a sequence was too short, zero values
were inserted to extend it. Similarly, we determined a maximum character length of 100
for SMILES. The maximum length was determined by the distribution lengths of protein
sequences and SMILES, as shown in Figure 4, to encompass at least 90% of the protein
sequence and 80% of the SMILES compounds. Sequences shorter than the maximum limit
were padded with zeros, whereas longer ones were terminated.

4.3. Proposed Prediction Model: CSatDTA

This research proposes CSatDTA, a self-attention augmented CNN-based model.
The proposed model is motivated by the fact that target sequences and the structure
of drugs are very comparable to natural language texts, in which atomic information,
both structural and contextual, is crucial for comprehending the attributes of a molecule.
The molecular structure of substances is encoded by SMILE sequences in which each atom
interacts with both distant and nearby atoms. However, when representing a molecule,
the current DeepDTA approach [21] employing CNNs is unable to link long-distance
atoms. We used the self-attention technique to overcome this issue. Some studies have
shown that combining convolutions with self-attention produces the optimum results [33].
In computer experiments, we found that the self-attention-aided convolution method
outperforms convolutions as a stand-alone computational primitive in the DTA. We describe
the CSatDTA model to enhance convolutional operators using the self-attention mechanism
by concatenating feature maps of convolutions with a collection of feature maps created
by self-attention. First, we discuss the input and output representations for the proposed
CSatDTA model architecture. Following an explanation of the model training procedure,
we go through the basic building blocks of the CSatDTA model.

As a regression problem, we computed the binding strength score from drug and
target interaction forecasting in this work. As for estimation analytics, we chose a well-
known deep neural network: a CNN with a self-attention technique, as shown in Figure 5.
A CNN is a sort of architecture that consists of one or more convolutional layers, as well
as a pooling layer. A max-pooling downsamples the previous layer’s findings, allowing
for the generalization of the characteristics acquired by the filters. The performance of
the model was enhanced by an attention mechanism in addition to the CNN. A weighted
average of the values computed using the concealed units was produced by self-attention.
Our attention-augmented networks use self-attention throughout the design rather than
pre-training, similar to their fully convolutional competitors. The multi-head attention
(MHA) mechanism allows the model to give importance to both the spatial and feature
subspaces at the same time. Furthermore, we extended the relative self-attention to 2D
inputs, enabling us to model equivariance systematically, improving the representational
capacity of self-attention. Instead of adding or reducing convolutional features, our method
generates additional feature maps. This ability enables us to dynamically modify the
proportion of attentional channels and evaluate a range of designs, from fully convolutional
to attentional models.

Fully connected (FC) dense layers were added to the model in addition to the convo-
lutional, attention, and max-pooling layers. The potential of convolutional networks to
extract local dependencies using filters is their most significant feature. As a consequence,
the size and number of filters in a CNN have a direct impact on the type of characteristics
the model extracts from the feed. It is commonly assumed that as the number of filters
in a model grows, so does the model’s capacity to recognize patterns. We suggested a
prediction model based on the attention CNN that consists of two self-attention-augmented
convolutional blocks. In this study, dk, dv, and Nh relate to the depth of keys, the depth of
values, and the number of heads in MHA, respectively. We also assume that dk and dv can
be uniformly divided by Nh and denote dh

k and dh
v, respectively, as the depth of keys and

values per attention head. Each convolutional block with self-attention augmentation seeks
to learn representations from protein sequences/SMILES strings. We used an architecture
of five convolution layers and one attention layer for each block.
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The number of filters in the first two 1D convolutional layers increases with the
number of layers, with the second layer having twice as many as the first. However, for the
remaining convolution layers, the number of filters was manipulated with dk and dv in
such a way that the final layer was reshaped to three-times the filter number in the first
layer. A max-pooling layer then followed the neural network blocks. The max-pooling
layers’ final features were concatenated and then fed into the FC layers. In the first and
second dense layers, we employed 1024 nodes each, which was accompanied by a 0.1
dropout layer. Dropout is a regularization strategy that involves turning off the activation
of particular neurons to minimize overfitting [34]. The output layer was followed by the
third layer, which had 512 nodes. Figure 5 depicts the proposed model, which combines
two CNN blocks.

Figure 5. The proposed model’s architecture.

4.3.1. Attention Mechanism

We used the Transformer architecture [35] to flatten an input tensor of shape (H, W, Fin)
to a matrix x ∈ RHW×Fin and conduct the MHA. For a single head h, the output of the
self-attention mechanism can be described as:

Oh = Softmax

 (XWq)(XWk)
T√

dh
k

(XWv).

where Wv ∈ RF, Wq and Wk ∈ RFin×dh
k are learned linear maps that convert the input X to

queries Q = XWq, values V = XWv, and keys K = XWk. After that, the outputs of all heads
are combined and provided again as follows:

MHA(X) = Concat[O1, . . . , ONh]Wo

where Wo ∈ Rdv×dv is a linear map that has been learned. To equal the pioneer dimensions,
MHA(X) is reshaped into a tensor of shape (H, W, dv).

4.3.2. Combining Attention and Convolutional Feature Mapping

Consider an original convolution operator with an Fout output filter, Fin input filters,
and filter size k in formal terms. This corresponds to attention-enhanced convolution,
which can be written as:

AAConv(X) = Concat[Conv(X), MHA(X)]
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The ratio of key depth to the number of pioneer output filters is denoted by k = dk
Fout

,
while the ratio of attentional channels to the number of pioneer output filters is denoted
by v = dv

Fout
. The suggested attention-enhanced convolution is translation equivariant, like

convolution, and may easily operate on inputs of many spatial dimensions.

4.3.3. Impact on the Number of Parameters

The MHA uses a linear convolution layer (2dk + dv) = Fout(2k + v) output and Fin
input kernels, as well as an added linear convolution layer with dv = Fout input and
output kernels to mix the contributions of different heads for the computation of keys,
values, and queries. After the number of filters in the convolutional section is reduced,
the following changes occur in the parameters:

∆params ∼ FinFout(2k + (1− k2)v +
Fout

Fin
v2)

For simplicity, the arguments introduced by relative position embeddings are ignored,
benefiting from their negligibility. In practice, this results in a minor decrease in parameters
when 3 × 3 convolutions are replaced and a slight increase in parameters for the replace-
ment of 1 × 1 convolutions. Attention-augmented networks surpass fully convolutional
networks by employing fewer test parameters, which is significant.

4.3.4. Attention Augmented Convolutional Architectures

In this analysis, we used boosted convolution with a batch normalization layer [36],
which can adapt to adjust the convolution and attention feature mapping contributions. We
utilized our boosted convolution per each residual block, similar to existing visual attention
approaches [37,38]. In addition, we employed a limited batch size and often downsampled
the inputs given to the self-attention layer. This lowers the memory consumption of
attention-enhanced networks.

4.4. Evaluation Metrics

For evaluating the performance of these models, we applied the following metrics.

4.4.1. Concordance Index

The concordance index (CI) is considered as an analysis statistic to assure DTA predic-
tive performance, as mentioned earlier [4]. The CI [17] is a ranking indicator for continuous
data. The CI was used to measure how well the binding strength values of protein–ligand
interactions are predicted with respect to the real values. The CI extends from 1

2 to 1, with 1
denoting perfect prediction accuracy and 1

2 denoting a random predictor. The following
formula was used to calculate the CI:

CI =
1
Z ∑

δi>δj

h(bi − bj)

si > sj, where bi is the greater affinity’s (δi) predicted value, whereas for the smaller affinity
(δj), bj is the prediction value. Here, (Z) is a normalization constant that equals the number
of data pairings with different label values. The Heaviside step function is represented by
h(x), which is a discontinuous function defined as

h(x) =


1.0, x > 0
1
2 , x = 0
0.0, x < 0

4.4.2. Mean-Squared Error

For continuous prediction errors, the MSE is a commonly used statistic parameter.
The MSE, such as the variance, is expressed in the same units as the estimated quantity’s
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square. The root-mean-squared error (RMSE or RMSD) is obtained by taking the square
root of the MSE, which has the same units as the predicted quantity. The RMSE equals the
square root of the variance, often known as the standard error, for an unbiased estimator.
Because this is a regression task, we picked the MSE as the statistic.

MSE =
1
n ∑

i=1
n(pi − yi)

2

where pi refers to the prediction, n to the number of samples, and yi to the actual output

4.4.3. Root-Mean-Squared Error

The RMSE, which is among the linear regression measurements used in this study, is
the mean distance between the predicted line and actual data. It is calculated as the square
root of the MSE:

RMSE =
√

MSE
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