The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy
Abstract
:1. Introduction
2. The Nervous System Interconnects with the Immune System
Component | Immune Role | Neurological Role | Dysfunction | FSS and Co-Morbidities |
---|---|---|---|---|
Cytokines | ||||
Interleukin | Modulate growth, differentiation, and activation of immune cells [66] | Regulate neurodevelopment, neuroinflammation, and synaptic transmission [67] | Imbalance between pro-inflammatory and anti-inflammatory cytokines [68,69] | FM, RA [68], CFS [70], IBS [71], IC [72], TMD [73], MDD, anxiety, and sleep disorders [74] |
Interferon | Promote an antiviral state. Help regulate and activate immune response [75] | |||
Chemokines | Induce immune cell migration [69] | |||
Neurotransmitters | ||||
Serotonin | Potent chemoattractant, modulates cytokine secretion, and cell activation/proliferation [48] | Regulates mood, appetite, sleep, nociception, motor activity, temperature, and cognitive function [76] | Alterations in the structure or expression of SERT [77]. | MDD, Anxiety [17], IBS [76], FM, CFS/ME, IC, TMD [78] PHD, sleep disorders [77] |
Dopamine | Regulates cytokine secretion, cell adhesion, cytotoxicity, and chemotaxis [79] | Regulates motor control, reward, and cognitive function [79] | Alterations in the levels of released DA, DA receptors, and signal transduction molecules [80] | MDD, anxiety, RA [79], FM [80], CFS/ME [81], IBS [76], TMD [82], PHD, RLS, sleep disorders [83] |
GABA | Modulator of cell migration, cytokine secretion, immune cell activation, and cytotoxic responses [84] | Principal inhibitory neurotransmitter in CNS [85] | Alterations in GABA-glutamate balance [86] | FM, PHD, TMD, IBS, anxiety [86], MDD [87], CFS [88] |
Glutamate | Modulator of leukocyte function, cellular adhesion and homing, dendritic cell maturation, and myeloid cell function [85] | Principal excitatory neurotransmitter in the CNS [85] | ||
Hormones | ||||
CRF | Exerts pro-inflammatory effects; mediating mast cell activation and cytokine production [89] | Regulates stress response [90,91] | CRF hypersecretion and HPA axis hyperactivity [92] | Depression and anxiety disorders [92], IBS, endometriosis, bladder disorders [90], FM, CFS, thyroid disorders [91] |
3. Neuro-Immune Modulation in FSS
3.1. Fibromyalgia
3.2. Irritable Bowel Syndrome
3.3. Chronic Fatigue Syndrome/Myalgic Encephalomyelitis
3.4. Co-Morbidities of Patients with FSS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, C.; Lucassen, P.; van der Linden, B.; Ballering, A.; olde Hartman, T. Stigma perceived by patients with functional somatic syndromes and its effect on health outcomes–A systematic review. J. Psychosom. Res. 2022, 154, 110715. [Google Scholar] [CrossRef]
- Graver, C.J. Functional somatic syndrome: Assessment and management. J. Osteopath. Med. 2017, 117, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Kozlowska, K.; Scher, S.; Helgeland, H. The Immune-Inflammatory System and Functional Somatic Symptoms. In Functional Somatic Symptoms in Children and Adolescents; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–201. [Google Scholar]
- Goldenberg, D.L. Pain/depression dyad: A key to a better understanding and treatment of functional somatic syndromes. Am. J. Med. 2010, 123, 675–682. [Google Scholar] [CrossRef]
- Rask, C.U.; Bonvanie, I.J.; Garralda, E.M. Risk and protective factors and course of functional somatic symptoms in young people. In Understanding Uniqueness and Diversity in Child and Adolescent Mental Health; Elsevier: Amsterdam, The Netherlands, 2018; pp. 77–113. [Google Scholar]
- Donnachie, E.; Schneider, A.; Enck, P. Comorbidities of patients with functional somatic syndromes before, during and after first diagnosis: A population-based study using Bavarian routine data. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Jonker, I.; Schoevers, R.; Klein, H.; Rosmalen, J. The association between herpes virus infections and functional somatic symptoms in a general population of adolescents. The TRAILS study. PLoS ONE 2017, 12, e0185608. [Google Scholar] [CrossRef]
- Allen, L.A.; Gara, M.A.; Escobar, J.I.; Waitzkin, H.; Silver, R.C. Somatization: A debilitating syndrome in primary care. Psychosomatics 2001, 42, 63–67. [Google Scholar] [CrossRef]
- Wessely, S.; White, P.D. There is only one functional somatic syndrome. Br. J. Psychiatry 2004, 185, 95–96. [Google Scholar] [CrossRef]
- Sicras-Mainar, A.; Rejas, J.; Navarro, R.; Blanca, M.; Morcillo, A.; Larios, R.; Velasco, S.; Villarroya, C. Treating patients with fibromyalgia in primary care settings under routine medical practice: A claim database cost and burden of illness study. Arthritis Res. Ther. 2009, 11, R54. [Google Scholar] [CrossRef] [Green Version]
- Cathébras, P. Patient-Centered Medicine: A Necessary Condition for the Management of Functional Somatic Syndromes and Bodily Distress. Front. Med. 2021, 8, 585495. [Google Scholar] [CrossRef] [PubMed]
- Kanbara, K.; Fukunaga, M. Links among emotional awareness, somatic awareness and autonomic homeostatic processing. BioPsychoSocial Med. 2016, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lumley, M.A.; Radcliffe, A.M.; Macklem, D.J.; Mosley-Williams, A.; Leisen, J.C.C.; Huffman, J.L.; D’Souza, P.J.; Gillis, M.E.; Meyer, T.M.; Kraft, C.A. Alexithymia and pain in three chronic pain samples: Comparing Caucasians and African Americans. Pain Med. 2005, 6, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Schiller, M.; Ben-Shaanan, T.L.; Rolls, A. Neuronal regulation of immunity: Why, how and where? Nat. Rev. Immunol. 2021, 21, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Ablin, J.; Fitzcharles, M.-A.; Littlejohn, G.; Luciano, J.V.; Usui, C.; Walitt, B. Fibromyalgia. Nat. Rev. Dis. Primers 2015, 1, 15022. [Google Scholar] [CrossRef] [PubMed]
- Hackshaw, K. Assessing our approach to diagnosing Fibromyalgia. Expert Rev. Mol. Diagn. 2020, 20, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Meade, E.; Hehir, S.; Rowan, N.; Garvey, M. Mycotherapy: Potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. J. Fungi 2022, 8, 290. [Google Scholar] [CrossRef]
- Bidari, A.; Ghavidel Parsa, B.; Ghalehbaghi, B. Challenges in fibromyalgia diagnosis: From meaning of symptoms to fibromyalgia labeling. Korean J. Pain 2018, 31, 147–154. [Google Scholar] [CrossRef]
- Barbara, G.; Cremon, C.; Carini, G.; Bellacosa, L.; Zecchi, L.; De Giorgio, R.; Corinaldesi, R.; Stanghellini, V. The immune system in irritable bowel syndrome. J. Neurogastroenterol. Motil. 2011, 17, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacy, B.E.; Patel, N.K. Rome criteria and a diagnostic approach to irritable bowel syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef]
- Von Wulffen, M.; Talley, N.J.; Hammer, J.; McMaster, J.; Rich, G.; Shah, A.; Koloski, N.; Kendall, B.J.; Jones, M.; Holtmann, G. Overlap of Irritable Bowel Syndrome and Functional Dyspepsia in the Clinical Setting: Prevalence and Risk Factors. Dig. Dis. Sci. 2019, 64, 480–486. [Google Scholar] [CrossRef]
- Jonsjö, M.A.; Wicksell, R.K.; Holmström, L.; Andreasson, A.; Bileviciute-Ljungar, I.; Olsson, G.L. Identifying symptom subgroups in patients with ME/CFS–relationships to functioning and quality of life. Fatigue Biomed. Health Behav. 2017, 5, 33–42. [Google Scholar] [CrossRef]
- Lim, E.-J.; Son, C.-G. Review of case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2020, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- Toogood, P.L.; Clauw, D.J.; Phadke, S.; Hoffman, D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol. Res. 2021, 165, 105465. [Google Scholar] [CrossRef] [PubMed]
- Nacul, L.; O’Boyle, S.; Palla, L.; Nacul, F.E.; Mudie, K.; Kingdon, C.C.; Cliff, J.M.; Clark, T.G.; Dockrell, H.M.; Lacerda, E.M. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front. Neurol. 2020, 11, 826. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Lacerda, E.M.; Geraghty, K.; Kingdon, C.C.; Palla, L.; Nacul, L. A logistic regression analysis of risk factors in ME/CFS pathogenesis. BMC Neurol. 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D. Tension type headache. Ann. Indian Acad. Neurol. 2012, 15 (Suppl. 1), S83–S88. [Google Scholar] [CrossRef]
- García-Azorín, D.; Farid-Zahran, M.; Gutiérrez-Sánchez, M.; González-García, M.N.; Guerrero, A.L.; Porta-Etessam, J. Tension-type headache in the Emergency Department Diagnosis and misdiagnosis: The TEDDi study. Sci. Rep. 2020, 10, 2446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Cheng, S.; Yang, H.; Lan, L.; Chen, Y.; Xu, G.; Yin, Z.; Li, Z.; Liu, M. The brain structure and function alterations in tension-type headache: A protocol for systematic review and meta analysis. Medicine 2020, 99, e20411. [Google Scholar] [CrossRef] [PubMed]
- Wieckiewicz, M.; Boening, K.; Wiland, P.; Shiau, Y.-Y.; Paradowska-Stolarz, A. Reported concepts for the treatment modalities and pain management of temporomandibular disorders. J. Headache Pain 2015, 16, 106. [Google Scholar] [CrossRef] [Green Version]
- Gauer, R.L.; Semidey, M.J. Diagnosis and treatment of temporomandibular disorders. Am. Fam. Physician 2015, 91, 378–386. [Google Scholar]
- Conti, P.C.; Costa, Y.M.; Gonçalves, D.A.; Svensson, P. Headaches and myofascial temporomandibular disorders: Overlapping entities, separate managements? J. Oral Rehabil. 2016, 43, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.T.; Pukall, C.F.; Brown, C.; Bergeron, S.; Stein, A.; Kellogg-Spadt, S. Vulvodynia: Assessment and Treatment. J. Sex. Med. 2016, 13, 572–590. [Google Scholar] [CrossRef]
- Stenson, A.L. Vulvodynia: Diagnosis and Management. Obstet. Gynecol. Clin. North Am. 2017, 44, 493–508. [Google Scholar] [CrossRef]
- Bergeron, S.; Reed, B.D.; Wesselmann, U.; Bohm-Starke, N. Vulvodynia. Nat. Rev. Dis. Primers 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Daniels, A.M.; Schulte, A.R.; Herndon, C.M. Interstitial Cystitis: An Update on the Disease Process and Treatment. J. Pain Palliat. Care Pharmacother. 2018, 32, 49–58. [Google Scholar] [CrossRef]
- Davis, N.F.; Gnanappiragasam, S.; Thornhill, J.A. Interstitial cystitis/painful bladder syndrome: The influence of modern diagnostic criteria on epidemiology and on Internet search activity by the public. Transl. Androl. Urol. 2015, 4, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Chavan, S.S.; Tracey, K.J. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 2018, 36, 783–812. [Google Scholar] [CrossRef] [PubMed]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 2017, 46, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Obata, Y.; Pachnis, V. Linking neurons to immunity: Lessons from Hydra. Proc. Natl. Acad. Sci. USA 2020, 117, 19624–19626. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Fujii, T.; Moriwaki, Y.; Misawa, H.; Horiguchi, K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int. Immunopharmacol. 2015, 29, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banfi, G.; Diani, M.; Pigatto, P.D.; Reali, E. T cell subpopulations in the physiopathology of fibromyalgia: Evidence and perspectives. Int. J. Mol. Sci. 2020, 21, 1186. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.B.; Mazmanian, S.K. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity 2017, 46, 910–926. [Google Scholar] [CrossRef] [Green Version]
- Crowell, M.D. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br. J. Pharmacol. 2004, 141, 1285–1293. [Google Scholar] [CrossRef]
- Roumier, A.; Béchade, C.; Maroteaux, L. Serotonin and the Immune System. Serotonin. In The Mediator That Spans Evolution; Academi Press: Cambridge, MA, USA, 2019; pp. 181–196. [Google Scholar]
- Holland, A.M.; Bon-Frauches, A.C.; Keszthelyi, D.; Melotte, V.; Boesmans, W. The enteric nervous system in gastrointestinal disease etiology. Cell. Mol. Life Sci. 2021, 78, 4713–4733. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 2017, 8, 1452. [Google Scholar] [CrossRef] [PubMed]
- Kox, M.; Pickkers, P. Modulation of the innate immune response through the vagus nerve. Nephron 2015, 131, 79–84. [Google Scholar] [CrossRef] [PubMed]
- VanElzakker, M.B. Chronic fatigue syndrome from vagus nerve infection: A psychoneuroimmunological hypothesis. Med. Hypotheses 2013, 81, 414–423. [Google Scholar] [CrossRef]
- Tanaka, S.; Hammond, B.; Rosin, D.L.; Okusa, M.D. Neuroimmunomodulation of tissue injury and disease: An expanding view of the inflammatory reflex pathway. Bioelectron. Med. 2019, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, V.A.; Wang, H.; Czura, C.J.; Friedman, S.G.; Tracey, K.J. The cholinergic anti-inflammatory pathway: A missing link in neuroimmunomodulation. Mol. Med. 2003, 9, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bested, A.C.; Marshall, L.M. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An evidence-based approach to diagnosis and management by clinicians. Rev. Environ. Health 2015, 30, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Levine, Y.A.; Koopman, F.A.; Faltys, M.; Caravaca, A.; Bendele, A.; Zitnik, R.; Vervoordeldonk, M.J.; Tak, P.P. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS ONE 2014, 9, e104530. [Google Scholar] [CrossRef] [Green Version]
- Komaroff, A.L. Inflammation correlates with symptoms in chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, 8914–8916. [Google Scholar] [CrossRef] [Green Version]
- Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P. Chronic vagus nerve stimulation in Crohn’s disease: A 6-month follow-up pilot study. Neurogastroenterol. Motil. 2016, 28, 948–953. [Google Scholar] [CrossRef]
- Frank, M.G.; Weber, M.D.; Watkins, L.R.; Maier, S.F. Stress-induced neuroinflammatory priming: A liability factor in the etiology of psychiatric disorders. Neurobiol. Stress 2016, 4, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Maren, S. Synapse-specific encoding of fear memory in the amygdala. Neuron 2017, 95, 988–990. [Google Scholar] [CrossRef]
- Chao, G.; Wang, Z.; Chen, X.; Zhang, S. Cytokines in the colon, central nervous system and serum of irritable bowel syndrome rats. Eur. J. Med. Res. 2021, 26, 1–7. [Google Scholar] [CrossRef]
- Littlejohn, G.; Guymer, E. Neurogenic Inflammation in Fibromyalgia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 291–300. [Google Scholar]
- Fülling, C.; Dinan, T.G.; Cryan, J.F. Gut microbe to brain signaling: What happens in vagus. Neuron 2019, 101, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhou, J.; Wang, L. Role and mechanism of gut microbiota in human disease. Front. Cell. Infect. Microbiol. 2021, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, A.A.J.; Qurie, A. Interleukin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Konsman, J.P. Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals 2022, 15, 140. [Google Scholar] [CrossRef]
- Peck, M.M.; Maram, R.; Mohamed, A.; Ochoa Crespo, D.; Kaur, G.; Ashraf, I.; Malik, B.H. The Influence of Pro-inflammatory Cytokines and Genetic Variants in the Development of Fibromyalgia: A Traditional Review. Cureus 2020, 12, e10276. [Google Scholar] [CrossRef]
- Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat. Inflamm. 2013, 2013, 480739. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Yang, Y.; Wang, D.; Li, C.; Qu, Y.; Guo, J.; Shi, T.; Bo, W.; Sun, Z.; Asakawa, T. The clinical value of cytokines in chronic fatigue syndrome. J. Transl. Med. 2019, 17, 1–12. [Google Scholar] [CrossRef]
- Mitselou, A.; Grammeniatis, V.; Varouktsi, A.; Papadatos, S.S.; Katsanos, K.; Galani, V. Proinflammatory cytokines in irritable bowel syndrome: A comparison with inflammatory bowel disease. Intest. Res. 2020, 18, 115. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine cytokines as biomarkers for diagnosing interstitial cystitis/bladder pain syndrome and mapping its clinical characteristics. Am. J. Physiol. Renal. Physiol. 2020, 318, F1391–F1399. [Google Scholar] [CrossRef]
- Zwiri, A.; Al-Hatamleh, M.A.I.; Ahmad, W.M.A.; Ahmed Asif, J.; Khoo, S.P.; Husein, A.; Ab-Ghani, Z.; Kassim, N.K. Biomarkers for temporomandibular disorders: Current status and future directions. Diagnostics 2020, 10, 303. [Google Scholar] [CrossRef]
- Roohi, E.; Jaafari, N.; Hashemian, F. On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflamm. 2021, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.-H.; Ji, J.; Yeh, C.-C.; Ji, R.-R. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front. Immunol. 2021, 12, 783725. [Google Scholar] [CrossRef]
- Gros, M.; Gros, B.; Mesonero, J.E.; Latorre, E. Neurotransmitter Dysfunction in Irritable Bowel Syndrome: Emerging Approaches for Management. J. Clin. Med. 2021, 10, 3429. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Fan, X.; Guo, W. Dysfunction in Serotonergic and Noradrenergic Systems and Somatic Symptoms in Psychiatric Disorders. Front. Psychiatry 2019, 10, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojima, K.; Watanabe, N.; Narita, N.; Narita, M. Temporomandibular disorder is associated with a serotonin transporter gene polymorphism in the Japanese population. BioPsychoSocial Med. 2007, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Matt, S.M.; Gaskill, P.J. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J. Neuroimmune Pharmacol. 2020, 15, 114–164. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, K.; Martin-Sölch, C. Chronic Pain, Dopamine and Depression: Insights from Research on Fibromyalgia. In Chronic Pain-Physiopathology and Treatment; IntechOpen: London, UK, 2018. [Google Scholar]
- Dobryakova, E.; Genova, H.M.; DeLuca, J.; Wylie, G.R. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front. Neurol. 2015, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, A.; Stensson, N.; Ghafouri, B.; Gerdle, B.; List, T.; Svensson, P.; Ernberg, M. Dopamine in plasma—A biomarker for myofascial TMD pain? J. Headache Pain 2016, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Caponnetto, V.; Deodato, M.; Robotti, M.; Koutsokera, M.; Pozzilli, V.; Galati, C.; Nocera, G.; De Matteis, E.; De Vanna, G.; Fellini, E.; et al. Comorbidities of primary headache disorders: A literature review with meta-analysis. J. Headache Pain 2021, 22, 71. [Google Scholar] [CrossRef]
- Bhandage, A.K.; Barragan, A. GABAergic signaling by cells of the immune system: More the rule than the exception. Cell. Mol. Life Sci. 2021, 78, 5667–5679. [Google Scholar] [CrossRef]
- Hodo, T.W.; de Aquino, M.T.P.; Shimamoto, A.; Shanker, A. Critical Neurotransmitters in the Neuroimmune Network. Front. Immunol. 2020, 11, 1869. [Google Scholar] [CrossRef]
- Peek, A.L.; Rebbeck, T.; Puts, N.A.J.; Watson, J.; Aguila, M.-E.R.; Leaver, A.M. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. NeuroImage 2020, 210, 116532. [Google Scholar] [CrossRef] [PubMed]
- Sarawagi, A.; Soni, N.D.; Patel, A.B. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Front. Psychiatry 2021, 12, 637863. [Google Scholar] [CrossRef]
- Lupo, G.F.D.; Rocchetti, G.; Lucini, L.; Lorusso, L.; Manara, E.; Bertelli, M.; Puglisi, E.; Capelli, E. Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Sci. Rep. 2021, 11, 7043. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, P.; Wang, Y.-W.; Sha, H.-H.; Dong, H.-Q.; Qian, Y.-N. Neuroimmune connections between corticotropin-releasing hormone and mast cells: Novel strategies for the treatment of neurodegenerative diseases. Neural Regen. Res. 2021, 16, 2184–2197. [Google Scholar] [PubMed]
- Pagán-Busigó, J.E.; López-Carrasquillo, J.; Appleyard, C.B.; Torres-Reverón, A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS ONE 2022, 17, e0264909. [Google Scholar] [CrossRef]
- Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: The stress-related continuum of chronic disease development. Mol. Psychiatry 2022, 27, 502–513. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, T.; Gaur, U.; Silva, M.; Little, P.; Chen, Z.; Qiu, W.; Zhang, Y.; Zheng, W. Role of Corticotropin Releasing Factor in the Neuroimmune Mechanisms of Depression: Examination of Current Pharmaceutical and Herbal Therapies. Front. Cell. Neurosci. 2019, 13, 290. [Google Scholar] [CrossRef]
- O’Mahony, L.F.; Srivastava, A.; Mehta, P.; Ciurtin, C. Is fibromyalgia associated with a unique cytokine profile? A systematic review and meta-analysis. Rheumatology 2021, 60, 2602–2614. [Google Scholar] [CrossRef]
- Shinotsuka, N.; Denk, F. Fibroblasts: The neglected cell type in peripheral sensitisation and chronic pain? A review based on a systematic search of the literature. BMJ Open Sci. 2022, 6, e100235. [Google Scholar] [CrossRef]
- Wei, Z.; Fei, Y.; Su, W.; Chen, G. Emerging Role of Schwann Cells in Neuropathic Pain: Receptors, Glial Mediators and Myelination. Front. Cell. Neurosci. 2019, 13, 116. [Google Scholar] [CrossRef] [Green Version]
- Björkander, S.; Ernberg, M.; Bileviciute-Ljungar, I. Reduced immune system responsiveness in fibromyalgia—A pilot study. Clin. Immunol. Commun. 2022, 2, 46–53. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I.; Bawazeer, M. Mast cells, neuroinflammation and pain in fibromyalgia syndrome. Front. Cell. Neurosci. 2019, 13, 353. [Google Scholar] [CrossRef] [PubMed]
- Lawson, V.H.; Grewal, J.; Hackshaw, K.V.; Mongiovi, P.C.; Stino, A.M. Fibromyalgia syndrome and small fiber, early or mild sensory polyneuropathy. Muscle Nerve 2018, 58, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.J.; Gavin, I.M.; Karpenko, O.; Barkhordar, F.; Gillis, B.S. Cytokine and chemokine profiles in fibromyalgia, rheumatoid arthritis and systemic lupus erythematosus: A potentially useful tool in differential diagnosis. Rheumatol. Int. 2015, 35, 991–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siracusa, R.; Paola, R.D.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, mechanisms, diagnosis and treatment options update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef]
- Thonhoff, J.R.; Simpson, E.P.; Appel, S.H. Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr. Opin. Neurol. 2018, 31, 635–639. [Google Scholar] [CrossRef]
- Lazaridis, N.; Germanidis, G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann. Gastroenterol. 2018, 31, 171. [Google Scholar] [CrossRef]
- Evdokimov, D.; Frank, J.; Klitsch, A.; Unterecker, S.; Warrings, B.; Serra, J.; Papagianni, A.; Saffer, N.; Meyer zu Altenschildesche, C.; Kampik, D. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann. Neurol. 2019, 86, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Üçeyler, N.; Zeller, D.; Kahn, A.-K.; Kewenig, S.; Kittel-Schneider, S.; Schmid, A.; Casanova-Molla, J.; Reiners, K.; Sommer, C. Small fibre pathology in patients with fibromyalgia syndrome. Brain 2013, 136, 1857–1867. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; de la Coba, P. Reduced activity, reactivity and functionality of the sympathetic nervous system in fibromyalgia: An electrodermal study. PLoS ONE 2020, 15, e0241154. [Google Scholar] [CrossRef]
- Coss-Adame, E.; Rao, S.S.C. Brain and gut interactions in irritable bowel syndrome: New paradigms and new understandings. Curr. Gastroenterol. Rep. 2014, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.N.; Lee, O.Y. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol. Res. Pract. 2016, 2016, 2031480. [Google Scholar] [CrossRef] [PubMed]
- Salvo-Romero, E.; Martinez, C.; Lobo, B.; Rodino-Janeiro, B.K.; Pigrau, M.; Sanchez-Chardi, A.D.; Gonzalez-Castro, A.M.; Fortea, M.; Pardo-Camacho, C.; Nieto, A. Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in Diarrhea-Predominant Irritable Bowel Syndrome. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.M.; Vicario, M.; Santos, J. The role of mast cells in functional GI disorders. Gut 2016, 65, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Jahng, J.; Kim, Y.S. Irritable bowel syndrome: Is it really a functional disorder? A new perspective on alteration of enteric nervous system. J. Neurogastroenterol. Motil. 2016, 22, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostertag, D.; Buhner, S.; Michel, K.; Pehl, C.; Kurjak, M.; Götzberger, M.; Schulte-Frohlinde, E.; Frieling, T.; Enck, P.; Phillip, J.; et al. Reduced Responses of Submucous Neurons from Irritable Bowel Syndrome Patients to a Cocktail Containing Histamine, Serotonin, TNFα, and Tryptase (IBS-Cocktail). Front. Neurosci. 2015, 9, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Alammar, N.; Singh, R.; Nanavati, J.; Song, Y.; Chaudhary, R.; Mullin, G.E. Gut microbial dysbiosis in the irritable bowel syndrome: A systematic review and meta-analysis of case-control studies. J. Acad. Nutr. Diet. 2020, 120, 565–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Neuroimmunology: What role for autoimmunity, neuroinflammation, and small fiber neuropathy in fibromyalgia, chronic fatigue syndrome, and adverse events after human papillomavirus vaccination? Int. J. Mol. Sci. 2019, 20, 5164. [Google Scholar] [CrossRef] [Green Version]
- Capelli, E.; Zola, R.; Lorusso, L.; Venturini, L.; Sardi, F.; Ricevuti, G. Chronic fatigue syndrome/myalgic encephalomyelitis: An update. Int. J. Immunopathol. Pharmacol. 2010, 23, 981–989. [Google Scholar] [CrossRef]
- Bateman, L.; Bested, A.C.; Bonilla, H.F.; Chheda, B.V.; Chu, L.; Curtin, J.M.; Dempsey, T.T.; Dimmock, M.E.; Dowell, T.G.; Felsenstein, D. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of Diagnosis and Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 2861–2878. [Google Scholar]
- Xu, J.; Potter, M.; Tomas, C.; Elson, J.L.; Morten, K.J.; Poulton, J.; Wang, N.; Jin, H.; Hou, Z.; Huang, W.E. A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman micro-spectroscopy. Analyst 2019, 144, 913–920. [Google Scholar] [CrossRef]
- Słomko, J.; Estévez-López, F.; Kujawski, S.; Zawadka-Kunikowska, M.; Tafil-Klawe, M.; Klawe, J.J.; Morten, K.J.; Szrajda, J.; Murovska, M.; Newton, J.L.; et al. Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) Are Associated with Illness Severity: A Cluster Analysis. J. Clin. Med. 2020, 9, 2531. [Google Scholar] [CrossRef]
- Orjatsalo, M.; Alakuijala, A.; Partinen, M. Autonomic Nervous System Functioning Related to Nocturnal Sleep in Patients With Chronic Fatigue Syndrome Compared to Tired Controls. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2018, 14, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.S.; Priyadharsini, S.S.Y.; Venkatesan, T. Migraine, Cyclic Vomiting Syndrome, and Other Gastrointestinal Disorders. Curr. Treat. Options Gastroenterol. 2018, 16, 511–527. [Google Scholar] [CrossRef]
- Shearer, J.; Luthra, P.; Ford, A.C. Cyclic vomiting syndrome: A case series and review of the literature. Frontline Gastroenterol. 2018, 9, 2–9. [Google Scholar] [CrossRef]
- Venkatesan, T.; Tarbell, S.; Adams, K.; McKanry, J.; Barribeau, T.; Beckmann, K.; Hogan, W.J.; Kumar, N.; Li, B.U. A survey of emergency department use in patients with cyclic vomiting syndrome. BMC Emerg. Med. 2010, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, P.L.R. Nausea, Vomiting, and the Autonomic Nervous System Autonomic FailureA Textbook of Clinical Disorders of the Autonomic Nervous System; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
Functional Somatic Syndrome | Symptoms | Diagnosis | Medical Subspecialty | Clinical Overlap |
---|---|---|---|---|
Fibromyalgia | Chronic widespread muscular pain, hyperalgesia, allodynia, sleep disturbances, physical exhaustion, GI problems, and cognitive difficulties [15] | 18 tender points, chronic pain, widespread symptoms [16] | Rheumatology | MDD [17], anxiety, IBS [4], rheumatism [15], IC [16], TMD [18] |
IBS | Changes in bowel habit, somatization [19] | Pain relief after defecation, bloating and distention, cramping, nausea [20] | Gastroenterology | Functional dyspepsia [21] |
CFS/ME | Severe and disabling fatigue, sleep disruption, unrefreshing sleep, PEM, tender lymph nodes, palpitations, multifocal pain, hyperalgesia, GI problems, and cognitive dysfunction [22] | Longstanding unexplained fatigue, PEM, chronic myalgia and cognitive impairment [23] | Infectious disease [9] | FM, POTS [24], IBS [25], TMD, IC, Raynaud’s disease, thyroiditis [26], depression, mood and anxiety disorders [27] |
Tension headaches | Chronic dull, aching, pressure-like head pain [28] | Bilateral, tightening and oppressive headache, mild to moderate pain [29] | Neurology | TMD, FM, sleep disturbances, anxiety, and depression [30] |
TMJ dysfunction | Chronic pain in masticatory muscles and TMJs, headache, ear pain, disturbances in jaw movements, facial pain, neck and shoulder tenderness [31] | Jaw movement limitation, irregular TMJ noises (clicking, popping, grating, crepitus), diagnostic imaging (radiography, CT scan, MRI) [32] | Musculoskeletal | TTH, cluster headache, migraine [33] |
Vulvodynia | Burning, stinging, or throbbing vulvar pain, dyspareunia [34] | Chronic idiopathic vulvar pain, cotton swab test (check for trigger points) [35] | Gynaecology | FM, IBS, CFS/ME, IC, endometriosis [36] |
Interstitial cystitis | Bladder and pelvic pain, frequent, urgent, and painful urination, dyspareunia [37] | Reoccurring idiopathic pain in bladder, pelvis, and perineal area. Pressure/discomfort such as bladder fills, relief after urination. Cystoscopy [38] | Gynaecology, urogynaecology | IBS, FM, CFS/ME, endometriosis, vulvodynia, Sjogren’s syndrome, anxiety disorders [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Garvey, M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int. J. Mol. Sci. 2022, 23, 8574. https://doi.org/10.3390/ijms23158574
Meade E, Garvey M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. International Journal of Molecular Sciences. 2022; 23(15):8574. https://doi.org/10.3390/ijms23158574
Chicago/Turabian StyleMeade, Elaine, and Mary Garvey. 2022. "The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy" International Journal of Molecular Sciences 23, no. 15: 8574. https://doi.org/10.3390/ijms23158574
APA StyleMeade, E., & Garvey, M. (2022). The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. International Journal of Molecular Sciences, 23(15), 8574. https://doi.org/10.3390/ijms23158574