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Abstract: High-calorie diets lead to hepatic steatosis and to the development of non-alcoholic fatty
liver disease (NAFLD), which can evolve over many years into the inflammatory form of non-
alcoholic steatohepatitis (NASH), posing a risk for the development of hepatocellular carcinoma
(HCC). Due to diet and liver alteration, the axis between liver and gut is disturbed, resulting in
gut microbiome alterations. Consequently, detecting these gut microbiome alterations represents a
promising strategy for early NASH and HCC detection. We analyzed medical parameters and the
fecal metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients, targeting the
discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased inflammation status
and shifts within the composition of the gut microbiome. An increased abundance of kielin/chordin,
E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers, indicating disease-
related changes in the liver. Although a single biomarker failed to separate NASH and HCC, machine
learning-based classification algorithms provided an 86% accuracy in distinguishing between controls,
NASH, and HCC. Fecal metaproteomics enables early detection of NASH and HCC by providing
single biomarkers and machine learning-based metaprotein panels.

Keywords: metaproteomics; fecal microbiota; non-alcoholic steatohepatitis; hepatocellular carcinoma;
machine learning

1. Introduction

During the last few decades, the prevalence of obesity and metabolic syndrome
has increased tremendously [1]. Due to this, non-alcoholic fatty liver disease (NAFLD)
has emerged as one of the leading causes of chronic liver diseases worldwide [2]. The
NAFLD spectrum ranges from visible fatty degeneration of the organ, but can progress
to the inflammatory form of non-alcoholic steatohepatitis (NASH) [3,4]. Due to local and
systemic inflammatory processes, this chronic inflammation carries the risk of further
disease progression and cancer development [5]. Different mechanisms related to fat and
glucose metabolism can promote fibrotic remodeling of the organ, the development of
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cirrhosis, and even hepatocellular carcinoma (HCC), whereas HCC is one of the most
common cancers and causes of cancer-associated deaths worldwide [6,7]. To date, not
all mechanisms affecting the progression of NAFLD have been elucidated. For example,
fibrosis is a main driver of HCC development, whereas NASH can develop into HCC even
without prior cirrhosis [8].

Timely diagnosis and progress prediction of NAFLD, NASH, and HCC is a major
challenge, as it remains clinically inconspicuous for long periods and lacks appropriate
biomarkers applicable for preventive medical checkups. Several factors and mechanisms
that affect NAFLD’s progress are currently discussed, such as the presence of diabetes
and metabolic syndrome, and the composition of intestinal microbiota [9]. We and oth-
ers described the interaction between the gut and liver diseases within the enterohepatic
circulation. Shifts in the composition of the intestinal microbiome affect bile acid compo-
sition and the formation of bioactive metabolites and substrates that can affect fatty acid
and glucose metabolism, and thus, also promote NAFLD and its progress [10–14]. Based
on sequencing methods, gut microbiota compositions have previously been described in
different measures and NAFLD patient cohorts. However, most findings were descriptive,
and the underlying mechanisms have not been fully elucidated. In contrast to monitoring
the taxonomic composition by sequencing methods, metaproteomics detects the actual
gene expression. Furthermore, fecal metaproteomics also reveals host proteins (e.g., from
the immune system), indicating health status [15] or problems with food digestion [16].

Consequently, metaproteomics is a promising method for preventive, non-invasive
medical checkups, but we still lack meaningful biomarkers. To identify the required
biomarkers and to understand the correlation between the pathogenesis and the gut mi-
crobiome in NASH and NASH-derived HCC, we analyzed the human proteins and the
taxonomic and functional gut microbiome composition through fecal metaproteomics.

2. Results
2.1. Characteristics of the Study Cohort

Eighty subjects including healthy controls (n = 19, 23.5 average age, and 23.0 BMI),
NASH patients (n = 32, 53.3 average age, and 30.9 BMI), and HCC patients (n = 29, 67.8
average age, and 30.3 BMI), were included. The increasing age and BMI from healthy
controls to NASH and HCC patients reflected the progression of disease over time due
to elevated BMI. Demographic data of transient elastography (TE) and different serum
parameters of individual patient groups are depicted in Supplementary Table S1.

Patients (NASH and HCC) showed significantly increased liver stiffness and hepatic
fat accumulation compared to controls, as assessed by TE, including measurement of the
controlled attenuation parameter (CAP). Tumor markers such as alpha-fetoprotein-Centaur
(AFP), lectin-3-reactive alpha-fetoprotein (AFP-L3), and des-gamma-carboxyprothrombin
(DCP) also showed a slight increase in NASH; however, this increase was below the
established cutoff values for tumor diagnosis in NASH, but highly increased in HCC.
Furthermore, NASH and HCC patients possessed elevated serum parameters of liver
injury such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline
phosphatase (AP), gamma-glutamyltransferase (γGT), glutamate dehydrogenase (GLDH),
and lactate dehydrogenase (LDH). Serum levels of bilirubin were not changed when
comparing the groups.

Total bile acids and their target, fibroblast growth factor 19 (FGF19), were increased in
the serum of NASH and were even higher in HCC. Regarding the triglyceride (TAG) levels,
a significantly higher concentration could be observed for NASH and HCC. Although not
significantly, in NASH and HCC patients, low-density lipoprotein (LDL) cholesterol was
increased, whereas high-density lipoprotein (HDL) cholesterol levels showed a significant
decrease. As important metabolic mediators, we measured serum levels of adiponectin,
glucagon-like peptide-1 (GLP1), and FGF21. GLP1 and FGF21 levels were significantly
increased in NASH and HCC compared to controls, whereas adiponectin levels were
elevated but without statistical significance. Cell death marker M65, apoptosis marker M30,
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and serum levels of pro-inflammatory cytokines interleukin 6 (IL6) and tumor necrosis
factor alpha (TNFα) were significantly increased in NASH and HCC. This increase was
accompanied by higher levels of the inflammation-associated protein lipoprotein-binding
protein 1 (LBP1) (Supplementary Table S1).

2.2. Characterization of Fecal Metaproteomics

The metaproteomic analysis yielded an average of 19,221 ± 6752 identified spec-
tra for each patient, which were assigned, on average, to 4218 ± 940 metaproteins and
193 ± 20 taxonomic families (Supplementary Tables S2 and S3). The taxonomic assignment
of all identified spectra (Supplementary Figure S1) resulted in an average of
11.41 ± 2.51% bacterial spectra, 0.71 ± 0.20% archaeal spectra, 5.41 ± 1.79% eukaryotic
spectra, and 0.32 ± 0.10% viral spectra. Furthermore, 30% of the identified spectra belonged
to unknown protein entries from the metagenome, and for 36.5%, no specific superkingdom
could be assigned due to overlapping protein identifications.

The set of eukaryotic spectra was divided into a fraction belonging to the host (Ho-
minidae: 1.78 ± 1.01%) and a fraction belonging to photosynthetically active eukaryotes
related to diet (e.g., Poaceae: 0.39 ± 0.27%). However, most eukaryotic spectra lack a
sufficiently precise taxonomic assignment to assign them to one of these two groups
without detailed functional interpretation. The most important microbial families were
Bacillaceae, 2.01 ± 0.55%; Enterobacteriaceae, 1.70 ± 0.42%; Clostridiaceae, 0.84 ± 0.25%;
Mycobacteriaceae, 0.40 ± 0.14%; and Pasteurellaceae, 0.37 ± 0.12%.

The main metabolic functions were summarized based on Biemann et al. 2021 [16],
comprising human and microbial hydrolysis, microbial metabolisms and transporters, and host
proteins derived from the intestinal barrier and the immune system (Supplementary Table S2).

2.3. Identification of Disease-Specific Metaprotein Patterns

To identify possible disease-specific patterns, we compared the human (family
Hominidae) and bacterial metaproteins with the measured medical parameters and taxo-
nomic composition at the family level using multilayer principal component analysis (PCA)
(Figure 1) and an analysis of similarities (ANOSIM) (Supplementary Table S4).

The medical parameters allowed a separation of the healthy and diseased people,
matching weak (0.12 < R < 0.20, p-value < 0.01) but significant differences found by
ANOSIM for all three groups. Based on microbial metaproteins and families, only a
separation between controls and the diseased was possible by the ANOSIM, and a weak
trend in the PCAs was observable (Figure 1). In contrast, the ANOSIM of the human
proteins enabled no significant differences between the three groups (p-values > 0.26).
However, the human metaprotein profiles of the healthy individuals were closer together
than those of the diseased patients.

Interlayer connections between the PCAs showed that the control samples varied less
than the diseased samples across all layers. Analysis of the PCA loadings showed that NASH
and HCC were correlated, among others, with increased blood fat levels, albumin levels,
age, and a lower abundance of the families Clostridiaceae and Enterobacteriaceae (Figure 1).
Furthermore, NASH and HCC patients’ feces contained more antibodies and metaproteins
associated with the gut barrier and immune system (e.g., polymeric immunoglobulin
receptor). Regarding microbial metaproteins, correlations with low-abundant metaproteins
such as MP6 and a probable serine/threonine protein kinase, SPs1, were observable.
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nected across all layers. The associated biplots with the top 10 loadings were shown on the right 
side. For human and microbial metaproteins, the metaproteins with at least 0.01% of the total spec-
tral count were selected. In contrast, for families and clinical parameters, all 419 and 30 were chosen, 
respectively. For better readability, the top ten human and microbial loadings (metaproteins) were 
summarized in a table below the plot. 

2.4. Significantly Altered Metaproteins, Taxonomies, and Functions 
To identify potential diagnostic NASH and HCC biomarkers, we considered all met-
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spectra abundance was above 0.01% (Supplementary Tables S3 and S5). In total, 15 of 40 
functions and 9 of 34 families were significantly altered (p-value < 0.01). For the metapro-
teins, we increased the significance threshold to p < 10−5, revealing 25 of 961 changed met-
aproteins. 

Among others, we observed in NASH and HCC patients more proteins assigned to 
Hominidae (spectral abundance (#SpecAb)_C: 1.08%, #SpecAb_NASH: 1.92%, #SpecAb_HCC: 
2.07%) (Figure 2) and Thermotogaceae (#SpecAb_C: 0.11%, #SpecAb_NASH: 0.15%, #Spe-
cAb_HCC: 0.18%; Figure 3), and less assigned to Enterobacteriaceae (#SpecAb_C: 1.92%, #Spe-
cAb_NASH: 1.55%, #SpecAb_HCC: 1.73%), Clostridiaceae (#SpecAb_C: 1.00%, #SpecAb_NASH: 

Figure 1. Multilayer PCA of clinical parameters, human and metaproteins, and family-level taxonomy
for all samples. The individual PCAs were visualized on the left, and same samples were connected
across all layers. The associated biplots with the top 10 loadings were shown on the right side.
For human and microbial metaproteins, the metaproteins with at least 0.01% of the total spectral
count were selected. In contrast, for families and clinical parameters, all 419 and 30 were chosen,
respectively. For better readability, the top ten human and microbial loadings (metaproteins) were
summarized in a table below the plot.

2.4. Significantly Altered Metaproteins, Taxonomies, and Functions

To identify potential diagnostic NASH and HCC biomarkers, we considered all
metabolic functions from our summary and all metaproteins and families whose iden-
tified spectra abundance was above 0.01% (Supplementary Tables S3 and S5). In total,
15 of 40 functions and 9 of 34 families were significantly altered (p-value < 0.01). For
the metaproteins, we increased the significance threshold to p < 10−5, revealing 25 of 961
changed metaproteins.

Among others, we observed in NASH and HCC patients more proteins assigned to Ho-
minidae (spectral abundance (#SpecAb)_C: 1.08%, #SpecAb_NASH: 1.92%, #SpecAb_HCC: 2.07%)
(Figure 2) and Thermotogaceae (#SpecAb_C: 0.11%, #SpecAb_NASH: 0.15%, #SpecAb_HCC: 0.18%;
Figure 3), and less assigned to Enterobacteriaceae (#SpecAb_C: 1.92%, #SpecAb_NASH: 1.55%,
#SpecAb_HCC: 1.73%), Clostridiaceae (#SpecAb_C: 1.00%, #SpecAb_NASH: 0.76%, #SpecAb_HCC:
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0.83%), and Lactobacillaceae (#SpecAb_C: 0.16%, #SpecAb_NASH: 0.12%, #SpecAb_HCC: 0.14%)
(Figure 3).
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Figure 3. Summary of selected changed features. Significance was evaluated by the Kruskal–Wallis
test using a p-value cutoff smaller than 0.01 for families and metabolic functions and smaller than
10−5 for metaproteins.

Furthermore, in NASH and HCC patients more proteins for the intestinal barrier
(#SpecAb_C: 0.88%, #SpecAb_NASH: 1.66%, #SpecAb_HCC: 1.65%) and neutrophil granu-
locytes were detected (#SpecAb_C: 0.77%, #SpecAb_NASH: 1.36%, #SpecAb_HCC: 1.32%).
Within the microbiome, we observed decreased microbial metabolism (e.g., butyrate fermen-
tation; #SpecAb_C: 3.42%, #SpecAb_NASH: 1.58%, #SpecAb_HCC: 1.92%) and transporters
(e.g., sugar transport; #SpecAb_C: 4.96%, #SpecAb_NASH: 2.67%, #SpecAb_HCC: 2.73%)
in NASH and HCC patients. Exceptions were transporters for vitamin B12 (#SpecAb_C:
0.03%, #SpecAb_NASH: 0.05%, #SpecAb_HCC: 0.06%) and lactate fermentation (#SpecAb_C:
0.04%, #SpecAb_NASH: 0.07%, #SpecAb_HCC: 0.07%), being more abundant in NASH and
HCC patients. Potential marker metaproteins for NASH and HCC were a decreased abun-
dance of the sn-glycerol-3-phosphate import ATP-binding protein (#SpecAb_C: 0.55%%,
#SpecAb_NASH: 0.20%, #SpecAb_HCC: 0.25%; unknown superkingdom) and ketol-acid
reductoisomerase (NADP(+)) (#SpecAb_C: 0.51%, #SpecAb_NASH: 0.20%, #SpecAb_HCC:
0.27%), and increased abundances for the kielin/chordin-like protein (#SpecAb_C: 0.84%,
#SpecAb_NASH: 2.96%, #SpecAb_HCC: 3.28%; class: Mammalia) and protein S100-A9
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(#SpecAb_C: 0.09%, #SpecAb_NASH: 0.34%, #SpecAb_HCC: 0.39%; unknown superking-
dom). Furthermore, we observed in NASH and HCC patients an increased abundance of
the E3 ubiquitin ligase (#SpecAb_C: 0.04%, #SpecAb_NASH: 0.14%, #SpecAb_HCC: 0.20%)
(Figure 3). Although this metaprotein was assigned to the fungal species Arthroderma otae,
we would speculate that it belongs actually to the host, since it was much more abundant
than other low-abundant metaproteins assigned to fungi.

Unfortunately, identified markers only enabled to separate between controls and diseased
people, but not between NASH and HCC. The only exceptions were an increased abundance
of Pasteurellaceae (#SpecAb_C: 0.33%, #SpecAb_NASH: 0.34%, #SpecAb_HCC: 0.42%%) and
Pseudomonadaceae (#SpecAb_C: 0.26%%, #SpecAb_NASH: 0.26%%, #SpecAb_HCC: 0.32%%) in
the feces of HCC patients and a decreased ratio between Firmicutes and Bacteriodetes in NASH
samples (Figure 2).

2.5. Potential Biomarkers to Distinguish NASH and HCC from Controls

In the next step, we evaluated the performance of the significantly changed top ten
metaproteins for separating between healthy and diseased patients (Supplementary Table S5).
Therefore, we performed an ROC curve analysis and compared the area under the curve
(Table 1). For the analyzed metaproteins, the area varied between 0.913 and 0.815, indicating
a good classification. Exemplary, for the kielin/chordin-like protein, about 80% of the
diseased people could be diagnosed with only 10% false positives. However, the number
of false positives was still too high for routine diagnosis or preventive medical checkups.

Table 1. Potential biomarker metaproteins between controls and diseased patients. We analyzed the
ROC plot analysis for the most abundant ten metaproteins and summarized the area under the curve
to evaluate metaprotein biomarkers.

Metaproteins #SpecAb Area under Curve

Kielin/chordin-like protein 2.568% 0.893
Sn-glycerol-3-phosphate import ATP-binding protein 0.303% 0.868
Ketol-acid reductoisomerase (NADP(+)) 0.297% 0.862
Protein S100-A9 0.296% 0.815
Probable E3 ubiquitin ligase complex SCF 0.135% 0.839
30S ribosomal protein S3 0.120% 0.879
Formate-tetrahydrofolate ligase 2 0.073% 0.913
30S ribosomal protein S2 0.066% 0.842
Acyl-CoA dehydrogenase, short-chain specific 0.066% 0.883
Glyceraldehyde-3-phosphate dehydrogenate 0.063% 0.905

2.6. Machine Learning-Based Biomarker Panels to Separate NASH from HCC and Controls

To improve the diagnosis of NASH and HCC, we developed machine learning-based
classification algorithms (Figure 4A). Therefore, we ranked the normalized features accord-
ing to their p-values derived from a t-test. Subsequently, we applied the wrapper technique
on the top-ranked features to further reduce the set to the most relevant molecules for
the classification task. Under several models, the diagonal linear discriminant analysis
and logistic regression performed best and enabled a separation of controls from NASH
or HCC at 99.98% and 100% using seven and five features, respectively. In contrast, the
correct distinction between NASH and HCC was only possible in 86.4% of samples using
ten features. Consequently, the correct classification of all three groups was only possible in
86.0% of all cases using eleven features (Table 2). Thereby, the NASH samples were either
wrongly classified as healthy or HCC, and HCC patients were wrongly classified as NASH
patients (Figure 4C). Misclassification of HCC as controls or other was not observed. Eval-
uating all selected features manually (Supplementary Table S6) revealed nucleophosmin
as a promising biomarker. We observed a considerable overlap of identified molecules
between both the machine learning and ROC curve analysis approaches, as described in
Section 2.5. Ergo, both approaches complement each other in evidence. It was enriched in
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NASH and HCC compared to controls by a factor of 103, or rather, 129 (#SpecAb_C: 0.00%,
#SpecAb_NASH: 0.026%, #SpecAb_HCC: 0.033%).
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Table 2. Classification accuracy for NASH, HCC, and controls. Results were obtained by the given
number of features and the algorithms by averaging a 5-fold cross-validation on 10,000 repeats.

Comparison Accuracy Number of Features

NASH vs. Control 0.9998 7 features

HCC vs. Control: 1 5 features

HCC vs. NASH 0.8640 10 features

HCC vs. NASH vs. Control 0.86 11 features

3. Discussion

NASH and HCC are severe liver diseases that progressively reduce liver function as the
disease progresses, as observed through worsened liver function parameters, liver fibrosis,
and liver damage [17]. The progressive carcinogenesis in HCC patients coincided with the
increased tumor markers such as AFP-Centaur, AFP-L3, and DCP [18]. A primary cause
of NASH and HCC is an unhealthy diet, which is reflected in a higher BMI, worse blood
lipids, and sugar parameters. The unhealthy lifestyle leads over time, as observable with
the higher age of the NASH and HCC patients, to fibrosis and tumor formation [19]. NASH-
and HCC-induced liver alterations indeed result in changed bile acid production and liver
protein expression, leading to changes in the gut microbiome via bile acid secretion from
the gallbladder. Therefore, gut microbiome alterations may indicate NASH or HCC, or
could even promote it via bile acid conjugation or ethanol production [20].

Although there was no clear separation of the metaproteome of NASH and HCC
patients from the controls, differences in the metaprotein and family fingerprint were
already observable in the PCA plots. Thereby, differences between healthy and diseased
patients were bigger than between NASH and HCC, reflecting that HCC often develops
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from NASH [21,22]. The bigger variations in the PCA plots between the NASH and HCC
patients than within the controls show how diseases possess different forms and severities.

Subsequent identification of potential marker functions, families, and metaproteins
revealed multiple potential biomarkers enabling the separation between healthy and dis-
eased patients. However, as the ROC plots and comparison of the area under the curve
showed, the biomarker accuracy was insufficient for separating NASH from HCC. A better
performance provided machine learning-based classification using five to seven metapro-
teins. Therefore, developing comprehensive clinical panels for the fecal metaproteome
similar to a blood picture may represent a promising approach for NASH and HCC di-
agnosis. The particular advantage of fecal metaproteomics is that samples can be taken
non-invasively at home and sent to clinical laboratories, making it a perfect approach for
preventive clinical checkups.

The overlap between the presented top PCA loadings, significantly altered metapro-
teins, taxonomies, functions, and machine learning-based features appeared small. How-
ever, the latter groups were very similar since they were based on significantly changed
metaproteins, but we focused within this manuscript on different aspects. We applied a
smaller p-value cutoff for the manual selection and concentrated on high-abundant marker
proteins with a potential clinical significance. For machine learning, the algorithms selected
the smallest number of features, enabling the best separation of the groups. Furthermore,
evaluation of the PCA loadings revealed that most loadings also differed significantly
between controls, NASH, and HCC, but not all. This observation reflects that the PCA
visualizes the variance of the samples, and the top loadings indicate the main differences.
However, as observable in the PCA plots, NASH, HCC, and control samples were only
weakly separated, also suggesting other differences within the microbiome.

Although we identified several promising marker metaproteins in our cohort, they
required a clinical evaluation since they could also be linked with other diseases or with
lifestyle. Elevated levels of kielin/chordin, an E3 ubiquitin ligase, and nucleophosmin
1 could be directly involved in the pathogenesis. NASH results in the accumulation of
adipose cells in the liver, secreting tumor growth factor (TGFβ). TGFβ indeed is induced
via endoplasmic reticulum (ER) stress and the unfolded protein response, apoptosis, and
thus, fibrosis [23–25]. The E3 ubiquitin ligase is involved in protein degradation and
nucleophosmin 1 in nucleic transport and ribosome biosynthesis. Upregulation of both
would fit to enhance the unfolded protein response. Furthermore, both are described
as enhanced in liver cancers [25,26]. Kielin/chordin indeed represses TGFß signaling,
representing a protection mechanism against NASH. Soofi et al. showed that kielin/chordin
knockout mice were more susceptible to developing hepatic steatosis and liver fibrosis [27].
Conversely, overexpression of kielin/chordin protected the mice’s liver from the effects of
an excessively high-fat diet.

In contrast to these three disease-specific biomarkers, increased abundance of the
family Hominidae combined with more metaproteins derived from the immune system
(e.g., calprotectin from neutrophilic granulocytes) and the gut barrier reflected a worsened
health status of NASH and HCC patients in contrast to the healthy control. However,
this is not specific to NASH or HCC. For example, Lehmann et al. [15] observed higher
abundances of calprotectin (protein S100-A9) in the feces of patients with inflammatory
bowel disease, and Biemann et al. (2021) [16] showed that obese patients possess a systemic
inflammation, higher abundances of protein S100-A9, and increased abundance of the
family Thermotogaceae.

Similarly, obesity and diet also explain gut microbiome alterations, including de-
creased microbial transporters or less butyrate fermentation. Increased food uptake el-
evates the production and secretion of bile acids into the gut. Bile acids indeed possess
antimicrobial properties, leading to an altered gut microbiome [28]. Although obesity is
linked with an increased abundance of nutrients, the observed increase in vitamin B12
transporters suggests a higher competition for vitamins and a potential lack. In line with
this, Voland et al. (2021) [29] reviewed the lack of vitamins in obese people and its impact on
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the gut microbiome, which could also explain the altered ratio of Firmicutes to Bacteriodetes
in NASH patients [30]. On the contrary, there are also some research articles suggesting that
the gut microbiome contributes to NASH and HCC by the production of toxic components
such as alcohol, toxic bile acids, or inflammatory microbial metabolites and the activation
of cancerogenesis-associated signaling pathways [10,31–33]. We observed some hints, such
as an increase in NASH and HCC patients of probable serine/threonine protein kinase
SPs1, which is associated with signaling [34], and of pyruvate decarboxylase isozyme 3
for ethanol production [35]. However, the evidence was insufficient, or the alteration was
not significant.

The main shortcoming of the study was that no patient’s specific metagenomes were
available. Therefore, and to keep this study comparable with previous studies [15,16], we
selected the same metagenome database. However, specific metagenomes would increase
the number of identified metaproteins, the taxonomic and functional protein annotation,
and the protein grouping. Since our study focused on identifying fecal marker proteins,
we included no liver or epithelial biopsies. Therefore, spatial protein assignment was
impossible, but would be valuable for mechanistic studies. For example, the identified
polymeric immunoglobulin receptor is upregulated in the liver of patients with liver
fibrosis and liver cancer [36,37]. However, the observed increase is more likely caused by
the degradation of the intestinal epithelia expressing the receptor in high amounts.

Analogous to all other NASH and HCC studies, our study suffers from the dependency
of NASH and HCC on the cofounding factors of lifestyle, age, and co-morbidity with
other diseases. For example, NASH is caused by a calorie-rich diet and is a metabolic
syndrome. Thus, it often occurs together with diabetes and hypertension. In future studies,
documentation of dietary habits of the patients would be useful since diet may influence
the composition of the gut microbiota and may have an impact on the development of
diseases, especially cancer [38].

4. Conclusions

In conclusion, we proposed, by fecal metaproteomics, several potential biomarkers
enabling the separation of NASH and HCC patients from healthy people, presenting a
valuable tool for preventive medical checkups. An even better diagnosis than single marker
proteins, our findings provide machine learning-based biomarker panels.

5. Materials and Methods
5.1. Patient Recruitment and Sample Collection

This study was conducted based on a previous study by Sydor et al. (2020), analyzing
potential links between the liver and the gut in NASH-related hepatocarcinogenesis. There-
fore, they compared alterations of gut microbiota and mediators of bile acid signaling in
the absence or presence of cirrhosis through analysis of feces and serum from patients with
NASH and NASH-HCC and healthy volunteers [14].

The Ethics Committee (Institutional Review Board) of the University Hospital Essen
(reference number: 14-6044-BO) approved the study, and all subjects provided informed
written consent. The study protocol conformed to the ethical guidelines of the Declaration
of Helsinki.

For the analysis, serum and fecal samples of subjects with NASH (n = 32), HCC
(n = 29), and healthy controls (n = 19) without evidence of NAFLD were analyzed. The
inclusion criteria for the study were the presence of NAFLD, specifically with appropriately
confirmed NASH, and HCC based on NASH. Known chronic viral, toxic, hereditary, and im-
munologic liver diseases were considered exclusion criteria (e.g., HBV, HCV, autoimmune
hepatitis, primary and secondary biliary cholangitis (PBC/PSC), Wilson’s disease, etc.).

Confounding factors of our study were age and BMI, which could not be mitigated
since we wanted to focus on the development of NASH and HCC over time due to increased
calorie uptake.
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Diagnosis of NASH and HCC was performed as described before [14]. Patients with
significant alcohol intake, as defined as consuming more than two standard drinks daily or
more than six daily drinks on weekends for at least five years [39], were not considered for
the study. The presence of HBV and HCV was excluded by seronegativity for HBV or HCV
following standard laboratory tests. Healthy volunteers with a BMI below 30 and without
NAFLD were selected as healthy controls.

All serum samples were collected in a fasted state in the morning and stored at −80 ◦C
until measurement. The central laboratory of the University Hospital Essen evaluated by
routine diagnostics the general clinical parameters, enzymes (ALT, AST, AP, γGT), total
bile acids, and tumor markers (AFP, AFP-L3, and DCP). Fecal samples were collected from
every patient in sterile tubes and stored at −80 ◦C.

5.2. Transient Elastography and Controlled Attenuation Parameter

Liver stiffness and the controlled attenuation parameter (CAP) to assess hepatic fat
accumulation were measured using the Fibroscan® (Echosens, Paris, France), with samples
taken from the subjects in a fasted state.

5.3. ELISA

Commercially available kits were used to measure serum levels of the overall cell death
marker M65 and apoptosis marker M30 (TecoMedical, Sissach, Switzerland). Quantification
of serum concentrations of FGF19, FGF21, GLP1, IL6, and TNFα was performed using
the specific Quantikine ELISA Kit from R&D Systems (Minneapolis, MN, USA). Serum
amounts of LBP1 were quantified using the LBP ELISA Kit (Hycult Biotech Uden, Uden, The
Netherlands). All procedures were performed following the manufacturer’s instructions.

5.4. Fecal Sample Preparation for Metaproteomics

Proteins from approx. 100–200 mg stool samples were extracted by cell lysis and
phenol extraction as described in Lehmann et al. [15]. After FASP digestion [40], LC-MS/MS
analysis was performed using an UltiMate 3000 RSLCnano splitless liquid chromatography
system coupled online to an Orbitrap Elite ™ hybrid ion trap, the Orbitrap-MS (both from
Thermo Fisher Scientific, Bremen, Germany) using a 120 min gradient. All chemicals used
were at least analysis quality and the solvents used were LC-MS/MS quality.

5.5. Data Handling

The MetaProteomeAnalyzer (version 3.1) [40] was used for protein identification,
which included the search engines X! Tandem, OMSSA, and Mascot and the following
parameters: enzyme trypsin, one missed cleavage, monoisotopic mass, carbamidomethyla-
tion (cysteine) as a fixed modification, oxidation (methionine) as a variable modification,
±10 ppm precursor and ±0.5 Da MS/MS fragment tolerance, 1 13 C, +2/+3 charged peptide
ions, and a false detection rate of 1%. The used protein database was the UniProtKB/Swiss-
Prot database (as of 16 January 2019) combined with a human gut microbiome database [41].
A BLAST search (NCBI-Blast version 2.2.31) against UniProtKB/Swiss-Prot was carried out
for proteins that could not be annotated taxonomically or functionally. All BLAST hits with
the best E-value that were at least below 10−4 were combined and used to annotate the pro-
tein identifications. Redundant homologous protein identifications were combined into a
protein group (also referred to as metaprotein) if they had at least one peptide identification
in common. Finally, all results were uploaded to PRIDE (Accession: PXD034175).

5.6. Statistical Analysis

Statistical analysis, including the multilayer PCA, ANOSIM, Kruskal–Wallis test, and
violin plots [42], was carried out using R Statistics (version 1.2.5001) and Rstudio. For
Krona plots, the provided Excel template by Ondov et al. [43], and for the ROC plots, the
web service from Eng et al. (2014) [44] were used. Power analysis for metaproteomics using
standard deviations of three spectra from a previous study [15] showed that for 20 samples
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per group and for proteins with an abundance of at least five spectra, a doubling of the
spectra could be observed with a power of 0.993 and with a significance value below 0.01.

5.7. Development of a Biomarker Panel

A comprehensive software package using R and Java was used to develop machine
learning-based classification algorithms. The software ranked the normalized features
according to their t-test-based predictive power. We considered only features when 2/3 of
the samples in at least one group had measurements (values above zero). Subsequently,
different feature sets were identified by the wrapper method. The following machine learn-
ing models were used: linear discriminant analysis (LDA) [45], diagonal LDA [46], logistic
regression [47], support-vector machine [48], random forest [49], extremely randomized
trees [50], and k-nearest neighbors [51]. The evaluation was performed by averaging a
5-fold cross-validation on 100 repeats for the tree-like models and 10,000 repeats for the
rest. Results were summarized in a confusion matrix and a clustergram using Ward linkage
and Canberra distances.
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ALT alanine aminotransferase
ANOSIM analysis of similarities
AP alkaline phosphatase
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CAP controlled attenuation parameter
DCP des-gamma-carboxyprothrombin
ER endoplasmic reticulum
FGF19/21 fibroblast growth factor 19/21
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HCC hepatocellular carcinoma
HDL high-density lipoprotein
IL6 interleukin 6
LBP1 lipoprotein-binding protein 1
LDH lactate dehydrogenase
LDL low-density lipoprotein
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
PCA principal component analysis
ROC receiver operating characteristic
#SpecAb spectral abundance
TAG triglyceride
TE transient elastography
TGFβ tumor growth factor beta
TNFα tumor necrosis factor alpha
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