Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Air Permeability of FPUFs
2.2. Thermal Stabilities
2.2.1. Thermal Stabilities in N2
2.2.2. Thermal-Oxidation Stabilities in Air
2.3. Fire Safety
2.3.1. Flame Retardancy
2.3.2. Burning Behavior
2.3.3. Smoke Density
2.4. Mechanical Properties
3. Materials and Methods
3.1. Materials
3.2. Preparation of Flame-Retardant FPUFs
3.3. Characterization
3.3.1. The Micromorphology and Element Distribution
3.3.2. Thermal Stability
3.3.3. Flame Retardancy and Combustion Behaviors
3.3.4. Mechanical Properties and Air Permeability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, J.H.; Vasagar, V.; Shanmuganathan, K.; Jones, A.R.; Nazarenko, S.; Ellison, C.J. Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams. Chem. Mater. 2015, 27, 6784–6790. [Google Scholar] [CrossRef]
- Guo, K.Y.; Wu, Q.; Mao, M.; Chen, H.; Zhang, G.D.; Zhao, L.; Gao, J.-F.; Song, P.; Tang, L.-C. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. Part B Eng. 2020, 193, 108017. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Song, P.; Maluk, C.; Wang, H. Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review. Compos. Part B Eng. 2019, 176, 107185. [Google Scholar] [CrossRef]
- Rao, W.H.; Zhu, Z.M.; Wang, S.X.; Wang, T.; Tan, Y.; Liao, W.; Zhao, H.B.; Wang, Y.Z. A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polym. Degrad. Stab. 2018, 153, 192–200. [Google Scholar] [CrossRef]
- Suhailuddin, S.H.; Aprajith, K.; Sanjay, B.; Shabeeruddin, S.H.; Begum, S.S. Development and characterization of flame retardant property in flexible polyurethane foam. Mater. Today Proc. 2022, 59, 819–826. [Google Scholar] [CrossRef]
- Zhang, S.H.; Chu, F.K.; Xu, Z.M.; Zhou, Y.F.; Qiu, Y.; Qian, L.J.; Hu, Y.; Wang, B.B.; Hu, W.Z. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. J. Colloid Interf. Sci. 2022, 606, 768–783. [Google Scholar] [CrossRef]
- Ming, G.; Chen, S.; Sun, Y.J.; Wang, Y.X. Flame Retardancy and Thermal Properties of Flexible Polyurethane Foam Containing Expanded Graphite. Combust. Sci. Technol. 2017, 189, 793–805. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, J.; Yu, X.; Jia, P.; Tang, G.; Zhou, X.; Lu, T.; Guo, L.; Wang, B.; Song, L.; et al. Construction of a core-shell structure compound: Ammonium polyphosphate wrapped by rare earth compound to achieve superior smoke and toxic gases suppression for flame retardant flexible polyurethane foam composites. Compos. Commun. 2021, 28, 100939. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensas, A. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polym. Test. 2020, 87, 106511. [Google Scholar] [CrossRef]
- Cain, A.A.; Nolen, C.R.; Li, Y.-C.; Davis, R.; Grunlan, J.C. Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polym. Degrad. Stabil. 2013, 98, 2645–2652. [Google Scholar] [CrossRef]
- Meng, D.; Liu, X.; Wang, S.; Sun, J.; Li, H.; Wang, Z.; Gu, X.; Zhang, S. Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property. Compos. Part B Eng. 2021, 219, 108886. [Google Scholar] [CrossRef]
- Rao, W.H.; Liao, W.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, B.; Han, X.; Ma, B.; Li, J. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polym. Degrad. Stabil. 2017, 144, 62–69. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, K.; Zhou, F.; Zheng, Y.; Zeng, W.; Wang, B.; Xing, W.; Hu, W.; Hu, Y. Fabrication of flexible polyurethane/phosphorus interpenetrating polymer network (IPN) foam for enhanced thermal stability, flame retardancy and mechanical properties. Polym. Degrad. Stabil. 2021, 189, 109602. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, C. Fire-retardant multilayer assembled on polyester fabric from water-soluble chitosan, sodium alginate and divalent metal ion. Int. J. Biol. Macromol. 2018, 119, 1083–1089. [Google Scholar] [CrossRef]
- Sai, T.; Ran, S.; Guo, Z.; Fang, Z. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos. Part B Eng. 2019, 176, 107198. [Google Scholar] [CrossRef]
- Cheng, X.W.; Guan, J.P.; Yang, X.H.; Tang, R.C.; Yao, F. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J. Clean. Prod. 2019, 223, 342–349. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J.H. A durable flame retardant for cellulosic fabrics. Polym. Degrad. Stabil. 2012, 97, 2467–2472. [Google Scholar] [CrossRef]
- Wu, N.; Li, X. Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym. Degrad. Stabil. 2014, 105, 265–276. [Google Scholar] [CrossRef]
- Liang, W.-J.; Zhao, B.; Zhao, P.-H.; Zhang, C.-Y.; Liu, Y.-Q. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polym. Degrad. Stabil. 2017, 135, 140–151. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, L.; Zhao, B.; Luo, Y.; Wang, D.-Y.; Wang, Y.-Z. A novel efficient halogen-free flame retardant system for polycarbonate. Polym. Degrad. Stabil. 2011, 96, 320–327. [Google Scholar] [CrossRef]
- Katima, Z.J.; Olukunle, O.I.; Kalantzi, O.L.; Daso, A.P.; Okonkwo, J.O. The occurrence of brominated flame retardants in the atmosphere of Gauteng Province, South Africa using polyurethane foam passive air samplers and assessment of human exposure. Environ. Pollut. 2018, 242, 1894–1903. [Google Scholar] [CrossRef]
- Liu, C.; Li, P.; Xu, Y.-J.; Liu, Y.; Zhu, P.; Wang, Y.-Z. Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties. J. Mater. Sci. 2022, 57, 2567–2583. [Google Scholar] [CrossRef]
- Zhan, Y.; Wu, X.; Wang, S.; Yuan, B.; Fang, Q.; Shang, S.; Cao, C.; Chen, G. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym. Degrad. Stabil. 2021, 191, 109684. [Google Scholar] [CrossRef]
- Akdogan, E.; Erdem, M. Environmentally-benign rigid polyurethane foam produced from a reactive and phosphorus-functionalized biopolyol: Assessment of physicomechanical and flame-retardant properties. React. Funct. Polym. 2022, 177, 105320. [Google Scholar] [CrossRef]
- Patra, A.; Kjellin, S.; Larsson, A.-C. Phytic acid-based flame retardants for cotton. Green Mater. 2020, 8, 123–130. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, W.; Li, J.; Liu, H.; Liu, X. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int. J. Biol. Macromol. 2021, 175, 140–146. [Google Scholar] [CrossRef]
- Weldemhret, T.G.; Menge, H.G.; Lee, D.-W.; Park, H.; Lee, J.; Song, J.I.; Park, Y.T. Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam. Prog. Org. Coat. 2021, 161, 106480. [Google Scholar] [CrossRef]
- Cheng, X.W.; Guan, J.P.; Tang, R.C.; Liu, K.Q. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J. Clean. Prod. 2016, 124, 114–119. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 2107905. [Google Scholar] [CrossRef]
- Zilke, O.; Plohl, D.; Opwis, K.; Mayer-Gall, T.; Gutmann, J.S. A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine. Polymer 2020, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xu, Z.; Chu, F.; Gui, Z.; Song, L.; Hu, Y.; Hu, W. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Compos. Part B Eng. 2021, 221, 109014. [Google Scholar] [CrossRef]
- Chen, M.J.; Shao, Z.B.; Wang, X.L.; Chen, L.; Wang, Y.Z. Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen-Phosphorus Flame Retardant. Ind. Eng. Chem. Res. 2012, 51, 9769–9776. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, T.; Luo, Y.; Wang, Y.; Li, J.; Ye, T.; Guo, R.; Song, P.; Zhou, J.; Wang, H. Multifunctional polyurethane sponge coatings with excellent flame retardant, antibacterial, compressible, and recyclable properties. Compos. Part B Eng. 2021, 215, 108785. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Laponite-based inorganic-organic hybrid coating to reduce fire risk of flexible polyurethane foams. Appl. Clay Sci. 2020, 189, 105525. [Google Scholar] [CrossRef]
- Patra, D.; Vangal, P.; Cain, A.A.; Cho, C.; Regev, O.; Grunlan, J.C. Inorganic Nanoparticle Thin Film that Suppresses Flammability of Polyurethane with only a Single Electrostatically-Assembled Bilayer. ACS Appl. Mater. Int. 2014, 6, 16903–16908. [Google Scholar] [CrossRef]
- Liu, X.; Qin, S.; Li, H.; Sun, J.; Gu, X.; Zhang, S.; Grunlan, J.C. Combination Intumescent and Kaolin-Filled Multilayer Nanocoatings that Reduce Polyurethane Flammability. Macromol. Mater. Eng. 2018, 304, 1800531. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, W.C.; Yang, P.; Hu, J.F.; Duan, G.G.; Liu, X.H.; Gu, Z.P.; Li, Y.W. Metal-phenolic network green flame retardants. Polymer 2021, 221, 123627. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Ma, C.; Zhou, F.; Hu, Y.; Schartel, B. Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite. Polym. Degrad. Stabil. 2021, 191, 109656. [Google Scholar] [CrossRef]
- Rao, W.H.; Xu, H.X.; Xu, Y.J.; Qi, M.; Liao, W.; Xu, S.M.; Wang, Y.Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018, 343, 198–206. [Google Scholar] [CrossRef]
- Xu, W.; Chen, R.; Du, Y.; Wang, G. Design water-soluble phenolic/zeolitic imidazolate framework-67 flame retardant coating via layer-by-layer assembly technology: Enhanced flame retardancy and smoke suppression of flexible polyurethane foam. Polym. Degrad. Stabil. 2020, 176, 109152. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Jiang, Q.; Tao, Y.; Xu, Y.J.; Liu, Y.; Zhu, P. Halogen-Free Coatings Combined with the Synergistic Effect of Phytic Acid and Montmorillonite for Fire Safety Flexible Polyurethane Foam. Macromol. Mater. Eng. 2022, 307, 2100930. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Yan, H.; Peng, M.; Fang, Z. Modification of ramie fabric with a metal-ion-doped flame-retardant coating. J. Appl. Polym. Sci. 2013, 129, 2986–2997. [Google Scholar] [CrossRef]
- Suparanon, T.; Phetwarotai, W. Fire-extinguishing characteristics and flame retardant mechanism of polylactide foams: Influence of tricresyl phosphate combined with natural flame retardant. Int. J. Biol. Macromol. 2020, 158, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, P.; Liu, Y.; Zhu, P. Green flame-retardant flexible polyurethane foam based on polyphenol-iron-phytic acid network to improve the fire safety. Compos. Part B Eng. 2022, 239, 109958. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, L.; Fan, Z.; Yua, n.; Liu, R. Bio-based coating of phytic acid, chitosan, and biochar for flame-retardant cotton fabrics. Polym. Degrad. Stabil. 2022, 199, 109898. [Google Scholar] [CrossRef]
- Wang, K.; Meng, D.; Wang, S.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crop Prod. 2022, 176, 114364. [Google Scholar] [CrossRef]
- Tao, K.; Li, J.; Xu, L.; Zhao, X.; Xue, L.; Fan, X.; Yan, Q. A novel phosphazene cyclomatrix network polymer: Design, synthesis and application in flame retardant polylactide. Polym. Degrad. Stabil. 2011, 96, 1248–1254. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, H.B.; Cheng, J.-B.; Li, W.; Zhang, J.; Wang, Y.Z. A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chem. Eng. J. 2022, 440, 135807. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, H.; Hu, X.; Liu, Y.; Zhang, S.; Xie, C. Self-assembled bio-derived microporous nanosheet from phytic acid as efficient intumescent flame retardant for polylactide. Polym. Degrad. Stabil. 2021, 191, 109664. [Google Scholar] [CrossRef]
- Kang, A.H.; Shang, K.; Ye, D.D.; Wang, Y.T.; Wang, H.; Zhu, Z.M.; Liao, W.; Xu, S.M.; Wang, Y.Z.; Schiraldi, D.A. Rejuvenated fly ash in poly(vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression. Chem. Eng. J. 2017, 327, 992–999. [Google Scholar] [CrossRef]
- Wu, X.; Gou, T.; Zhao, Q.; Chen, L.; Wang, P. High-efficiency durable flame retardant with ammonium phosphate ester and phosphine oxide groups for cotton cellulose biomacromolecule. Int. J. Biol. Macromol. 2022, 194, 945–953. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Hydrophobic and flame-retardant finishing of cotton fabrics for water–oil separation. Cellulose 2020, 27, 4145–4159. [Google Scholar] [CrossRef]
- He, T.; Chen, F.; Zhu, W.; Yan, N. Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers. Int. J. Biol. Macromol. 2022, 209, 1339–1351. [Google Scholar] [CrossRef] [PubMed]
Sample | T5% (°C) | Tmax1 (°C) | Rmax1 (%/min) | Tmax2 (°C) | Rmax2 (%/min) | Residues at 800 °C (%) |
---|---|---|---|---|---|---|
Neat FPUF | 258 | 291 | 6.4 | 374 | 14.3 | 9.7 |
FPUF/PA | 169 | 264 | 2.6 | 325 | 9.1 | 29.9 |
FPUF/LAP | 260 | 289 | 4.1 | 371 | 8.3 | 33.3 |
FPUF/PA-Fe/LAP | 226 | 286 | 4.4 | 380 | 10.2 | 19.3 |
Sample | T5% (°C) | Tmax1 (°C) | Rmax1 (%/min) | Tmax2 (°C) | Rmax2 (%/min) | Residues at 800 °C (%) |
---|---|---|---|---|---|---|
Neat FPUF | 251 | 276 | 11.4 | 330 | 11.2 | 11.1 |
FPUF/PA | 196 | 256 | 3 | 320 | 11.8 | 27.1 |
FPUF/LAP | 256 | 297 | 13.5 | - | - | 33.1 |
FPUF/PA-Fe/LAP | 231 | 300 | 13.7 | - | - | 22.4 |
Weight Gain (wt.%) | t1 (s) | t2 (s) | Burning to the Fixture | Dripping | UL-94 | LOI (%) | |
---|---|---|---|---|---|---|---|
Neat FPUF | 0.0 ± 0.0 | >30 | - | Yes | Yes | N.R. | 17.0 |
FPUF/PA | 43.8 ± 1.6 | 1 ± 1 | 3 ± 1 | Yes | No | N.R. | 29.9 |
FPUF/LAP | 37.3 ± 0.2 | >30 | - | Yes | No | N.R. | 19.6 |
FPUF/PA-Fe | 40.2 ± 0.9 | >30 | - | Yes | No | N.R. | 20.7 |
FPUF/PA-Fe/LAP | 41.9 ± 0.7 | 0 ± 0 | 1 ± 1 | No | No | V-0 | 24.5 |
Sample | TTI (s) | PHRR (kW/m2) | TPHRR (s) | THR (MJ/m2) | FIGRA kW/(m2·s) | PSPR (m2/s) | TSP (m2) | PSEA (m2/kg) | CO/CO2 | Residues (wt.%) |
---|---|---|---|---|---|---|---|---|---|---|
Neat FPUF | 3 | 419 | 40 | 19 | 10.5 | 0.05 | 4.5 | 4385 | 0.0134 | 17.2 |
FPUF/PA | 5 | 126 | 25 | 13 | 5.0 | 0.03 | 2.7 | 4012 | 0.0581 | 32.7 |
FPUF/LAP | 6 | 190 | 20 | 14 | 9.5 | 0.02 | 1.5 | 3321 | 0.0923 | 42.1 |
FPUF/PA-Fe/LAP | 5 | 257 | 50 | 17 | 5.1 | 0.03 | 3.0 | 3371 | 0.0171 | 23.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Li, P.; Liu, Y.; Zhu, P. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. Int. J. Mol. Sci. 2022, 23, 9145. https://doi.org/10.3390/ijms23169145
Jiang Q, Li P, Liu Y, Zhu P. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. International Journal of Molecular Sciences. 2022; 23(16):9145. https://doi.org/10.3390/ijms23169145
Chicago/Turabian StyleJiang, Qi, Ping Li, Yun Liu, and Ping Zhu. 2022. "Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam" International Journal of Molecular Sciences 23, no. 16: 9145. https://doi.org/10.3390/ijms23169145
APA StyleJiang, Q., Li, P., Liu, Y., & Zhu, P. (2022). Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. International Journal of Molecular Sciences, 23(16), 9145. https://doi.org/10.3390/ijms23169145