Antioxidant Therapeutic Strategies in Neurodegenerative Diseases
Abstract
:1. Introduction
2. Mitochondria and Oxidative Stress
3. Enzymatic and Non-Enzymatic Antioxidant Molecules
4. Neurodegeneration and Mitochondrial Involvement
5. Mitochondrial Antioxidant Interventions in Chronic Neurodegeneration
5.1. Mitochondrial Antioxidant Molecular Targets in Alzheimer’s Disease
Drug Class (Compound) | Mechanism of Action | Therapeutic Outcomes | References |
---|---|---|---|
a-Lipoic acid | Scavenges the toxic by-products of lipid peroxidation | Antioxidant properties in AD | [18,19] |
Bacopa monnieri extract | Reduces oxidative stress | Ameliorates learning and memory impairments through synaptic protein, neurogranin, pro-and mature BDNF signaling, and HPA axis in PNS in the rat brain | [20] |
Carotenoid (Lycopene) | Suppress oxidative damage | Antioxidant, anti-inflammatory, memory enhancing and neuroprotective activities in HD | [18,21] |
Cholest-4-en-3-one | Scavenges the toxic by-products of lipid peroxidation | Effective in treating painful diabetic and chemotherapy-induced neuropathies | [18] |
Cryptotanshinone (quinoid) | Reduces oxidative stress and inflammation | Anti-apoptotic properties in PD-hiNPCs, significantly reduced cellular apoptosis through mitochondrial restoration (reactive oxygen species and mitochondrial membrane potential). These effects are mediated via the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in PD-hiNPCs. | [22] |
Curcumin (volatile oil) (Curcuma longa) | Suppress tumor necrotic factor (TNF) activity, formation of Aβ plaques and protects brain cells from noxious agents | Antioxidant, anti-inflammatory and amyloid disaggregating properties in AD | [17,18,21,23,24] |
Cystamine (CYS) | Reduces oxidative stress/apoptosis | Increased BDNF protein levels in mouse frontal cortex, prevention of chronic HAL treatment-induced reduction in BDNF, GSH, and Bcl-xl protein levels, prevention of reduction in neuronal cell viability, BDNF protein levels and apoptosis in ND. | [25,26] |
DHA (fatty acid) | Reduces oxidative stress and modulates membrane fluidity | Increased membrane fluidity and non-amyloidogenic processing of APP in AD HEK293 cells, leading to enhanced secretion of sAPPα. This enhanced secretion of sAPPα was associated with substantial protection against apoptosis induced by ER Ca2+ store depletion | [27] |
Dichloroacetate | Activates the pyruvate dehydrogenase complex and lower cerebral lactate amounts | Neuroprotective activity in HD | [18,28] |
Disaccharide (Trehalose) | Inhibits amyloid formation, aggregation of β-amyloid and autophagic activities against aggregation proteins (huntingtin) | Neuroprotective properties in HD | [18,21] |
Epigallocatechin-3-gallate (Camellia sinensis) | Stabilize mitochondrial functions like ATP levels | Antioxidant properties in AD | [18,21,23] |
Ferulic acid (Smallanthus sonchifolius) | Neuroprotective effect against oxidative stress and cell death induced by Aβ42 oligomers | Antioxidant properties in AD | [18,21,23] |
Flavones | Reduces oxidative stress | Neuroprotection was found to be mediated via activation of the anti-apoptotic cell survival proteins of the ERK1/2 and PI3K/Akt pathways in neuroblastoma cell lines. | [29] |
Ginsenosides Rg1 and Rg3 (Ginseng) | Suppress Aβ induced neurotoxicity, Aβ associated generation of ROS and cell death | Neuroprotective effect in AD | [18,21,23] |
JM-20 (anxiolytic) | Acts through mitochondrial metabolism | Strong antioxidant action and neuroprotective effects against Ca2+-induced impairment in rats brain, which are both elicited at the mitochondrial level | [30] |
LMWSC (sulfated chitosan is the structural analog of heparin converted to low molecular weight polymer by γ-irradiation) | Lipids | Reduction of the intracellular ROS levels in PD, normalization of antioxidant enzymes, mitigation of rotenone induced mitochondrial dysfunction and apoptosis in neuroblastoma cell lines | [31] |
Melatonin | Direct scavenger of many ROS species such as free radicals, peroxylnitrites, hydroxyls, peroxyls, and other nitrous oxides under normal conditions | Antioxidant properties in ND. Protective role against H-89-induced memory impairment in mice brain | [11,32] |
Mitoquinone | Produces direct antioxidant action by scavenging peroxyl, peroxynitrite and superoxide ROS | Antioxidant properties in PD | [33] |
N-acetylcysteine | Protects against cadmium-induced ROS toxicity marked by reduced mitochondrial membrane potential, high cytoplasmic cytochrome c release, reduced Bcl-2 expression, p53 expression and caspase pathways | Neuroprotective properties | [18,34] |
N-acetyl-l-tryptophan (L-NAT) | Neuroprotective in primary motor neurons by inhibition of the secretion of Substance P and IL-1β and mitochondrial dysfunction by inhibiting the release of cytochrome c/Smac/AIF and activation of apoptotic pathways (caspase-1, -9, and -3), as well as proteasomal dysfunction through restoring chymotrypsin-like, trypsin-like, and caspase-like proteasome activity in ALS. | [35] | |
Naringin, hesperidin and kaempferol (flavonoids) | Exerts protective action against peroxynitrite induced oxidative damage and inhibit nitric oxide synthase (involved in HD) | Anti-inflammatory, antioxidant and neuroprotection in HD | [18] |
Nicotinamide | Reduces oxidative stress, acts through mitochondria | Inhibition of ketamine-induced neuro-apoptosis by downregulating Bax, inhibiting cytochrome c release from mitochondria into cytosol, and inhibiting the expression of activated caspase-3 | [36] |
Olanzapine | An antipsychotic agent with affinity for D1 and D2 dopamine receptors as well as 5-HT2A serotonin receptors | Improved motor symptoms in HD | [18] |
Olesoxime | Scavenges the toxic by-products of lipid peroxidation | Antioxidant and neuroprotective activities in NP | [37] |
P7C3 (aminopropyl carbazole) | Acts through mitochondria | P7C3 stabilized mitochondrial membrane potential in PD (dopaminergic cell lines), reduced ROS production, and inhibited GSK3β activation, p53 activity, Bax upregulation and cytochrome c release exposed to MPP+, and prevented neuronal loss in the substantia nigra (mice brain) | [38], p. 3 |
Celastrol (Celastrus regelii) | Inhibits nitric oxide synthase (involved in PD and HD) | Anti-inflammatory, antioxidant and neuroprotective activities in PD and HD | [18,21] |
Peroxiredoxin | Reduces oxidative stress and apoptosis (via signal-regulating kinase (ASK1)-dependent activation of the c-Jun N-terminal kinase/c-Jun and p38 pro-death pathways) | In vitro and in vivo neuroprotection against 6-OHDA toxicity in DA neurons, and preserved motor functions involving the dopamine system in mouse (PD). PRX2 exhibited antioxidant and anti-apoptotic effects via suppression of apoptosis signal-regulating kinase (ASK1)-dependent activation of the c-Jun N-terminal kinase/c-Jun and p38 pro-death pathways | [39] |
Quercetin (flavonoid) | Reduces oxidative stress and inflammatory parameters | Quercetin supplementation decreased the neuronal damage, scavenged the free radicals induced by PCBs and protects PCB-induced apoptosis and oxidative stress in the rat brain. | [40] |
Retinoic acid | Acts through the proteasome | A treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells (PD) | [41] |
Riluzole | Reduces ROS generation via induction of glutathione production | Antioxidant properties in ALS | [42] |
Sesamol (Sesamum indicum) | Suppress inducible nitric oxide synthase (iNOS) expression and neuroinflammation in hippocampus neurons | Antioxidant and neuroprotective activities in HD | [18] |
Sildenafil (phosphodiesterase type 5 inhibitor) | Acts through cyclic GMP phosphodiesterase | Inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK in mice spinal cord (MS). | [43] |
Steroidal lactones (withaferin A, withanolide A, withanolide D-P) (Withania somnifera) | Improves cognitive functions and restores acetyl cholinesterase enzyme activity | Antioxidant and neuroprotective properties in HD | [18] |
Terpene lactones (ginkgolides and bilobalides) and flavonoids (flavonols and flavone glycosides) (Ginkgo biloba) | Stabilize mitochondrial functions like ATP levels and interacts with mitochondrial electron transport chain | Antioxidant and neuroprotective properties in dementia, AD and PD | [18,21,23] |
Triterpene saponin (glycyrrhizin) and phenol (isoliquiritigenin) (Glycyrrhiza) | Reduces oxidative stress and damage to brain cells | Antioxidant, anti-inflammatory and neuroprotective properties in dementia, AD and PD | [18,21,23] |
Triterpenoid saponins (Bacosides A and B) (Herpestis monniera) | Scavenging of free radicals and improves memory | Antioxidant, anti-stress, antidepressant and useful in HD treatment | [18,21] |
Triterpenoid saponins (asiaticoside, asiatic acid and madecassoside) (Centella asiatica) | Reduction in the activity of electron transport chain enzymes and decreased mitochondrial viability | Antioxidant and neuroprotective properties in HD | [18] |
VDAC1-derived peptide | Forms the permeability transition pore that further promotes apoptosis (through mitochondria) | Aβ Entry into SH-SY5Y Cells (AD) Is Inhibited by the VDAC1 N-Ter Peptide | [44] |
Vitamin C | Maintains the integrity of cellular membranes in mitochondria | Antioxidant and neuroprotective activities in NP | [18] |
Vitamin E | Maintains the integrity of cellular membranes in mitochondria | Antioxidant properties in AD | [18,19] |
Y27632/NAD+/ZVAD-FMK/resveratrol | Kinase/Caspase | Y27632 and NAD+ exert strong synapto-protective activities whereas zVAD-FMK and resveratrol fail to protect synapses (in primary neuronal cultures from mice brain) (neurodegeneration) | [45] |
Molecule | Administration | Sample Size | Time Period | Outcomes | Reference |
---|---|---|---|---|---|
Randomized controlled clinical trials in AD during the past year | |||||
Resveratrol | 2 gr daily | n = 45 resveratrol n = 45 placebo | 2 months | Compared with control group, the treated group showed higher MMSE score and lower ADAS-cog score | [48] |
Lower clinical indicators of inflammation (TNF-alpha, IL-6) | |||||
Melatonin | 5 mg (two nights) | n = 4 melatonin n = 4 placebo | 2 nights | Significant relative power increase in the theta band and a decrease in relative power and EEG coherences in the beta and gamma bands | [53] |
Omega-3 fatty acid, carotenoid and vitamin E | 430 mg docosahexaenoic 90 mg eicosapentaenoic acid 10 mg lutein 10 mg meso-zeaxanthin 2 mg zeaxanthin 15 mg vitamin E | n = 30 cases n = 30 placebo | 24 months | Fewer errors in working memory tasks (CANTAB-SWM) | [52] |
Randomized controlled clinical trials in PD during the past year | |||||
Omega3/6 plus vitamins (A, E, γ-tocopherol) | 810 mg eicosapentaenoic acid 4140 mg doxosahexaenoic acid 1800 mg γ-linoleic acid 3150 mg linoleic acid 0.6 mg vitamin A 22 mg vitamin E 460 mg γ-tocopherol | n = 20 Neuroaspis group n = 20 placebo | 30 months | Supplementation delayed disease progression (UPDRS) | [54] |
Inosine | 1500 mg daily | n = 149 inosine group n = 149 placebo | 24 months | Clinical progression (MDS-UPDRS) and dopamine transporter remained unchanged in the untreated group | [55] |
Molecular hydrogen | 6.5 (0.1) vol% hydrogen gas in 2 L/min of mixed air or placebo air, twice a day for 1 h (through inhalation) | n = 7 hydrogen group n = 8 placebo | 16 weeks | No significant differences in clinical progression (UPDRS) | [10] |
Melatonin | 25 mg daily | n = 13 melatonin group n = 13 placebo | 3 months | Significant increase of mitochondrial complex I enzymatic activity and respiratory control ratio | [56] |
Randomized controlled clinical trials in ALS during the past year | |||||
Edaravone | Intravenous 60 mg/d 10 days in alternating cycle of 10 of 14 days of treatment with 14 days off | n = 194 (edaravone plus riluzole) group n = 130 riluzole group | 14 days | Similar survival probability, similar disease progression, similar time to ventilation | [57] |
5.2. Mitochondrial Antioxidant Molecular Targets in Parkinson’s Disease
5.3. Mitochondrial Antioxidant Molecular Targets in Huntington’s Disease
5.4. Mitochondrial Antioxidant Molecular Targets in Amyotrophic Lateral Sclerosis
6. Mitochondrial Antioxidant Interventions in Acute Neurodegeneration
Mitochondrial Antioxidant Molecular Targets in Traumatic Brain Injury
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, H.; Chang, H.Y.; Sang, T.K. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int. J. Mol. Sci. 2018, 19, 3082. [Google Scholar] [CrossRef] [PubMed]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cordero, S.; Noguera-Julian, A.; Cardellach, F.; Fortuny, C.; Morén, C. Mitochondrial changes associated with viral infectious diseases in the paediatric population. Rev. Med. Virol. 2021, 31, e2232. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, I.E. Mitochondria; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992, 59, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, C.; Businaro, R.; Vauzour, D. The role of diet in preventing and reducing cognitive decline. Curr. Opin. Psychiatry 2020, 33, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Manczak, M.; Yin, X.; Wang, R.; Reddy, P.H. Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 2018, 27, 30–40. [Google Scholar] [CrossRef]
- Schwarz, T.L. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 2013, 5, a011304. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, N.; Lu, B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019, 25, 859–875. [Google Scholar] [CrossRef]
- Yoritaka, A.; Kobayashi, Y.; Hayashi, T.; Saiki, S.; Hattori, N. Randomized double-blind placebo-controlled trial of hydrogen inhalation for Parkinson’s disease: A pilot study. Neurol. Sci. 2021, 42, 4767–4770. [Google Scholar] [CrossRef]
- Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem. Soc. Trans. 2018, 46, 891–909. [Google Scholar] [CrossRef]
- Ortiz, J.M.P.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019, 176, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.B.; Blum, N.R. Nucleoside phosphatase activities associated with the tangles and plaques of alzheimer’s disease: A histochemical study of natural and experimental neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 1970, 29, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Santos, M.S.; Oliveira, C. Mitochondrial function impairment induced by amyloid beta-peptide on PC12 cells. Neuroreport 1998, 9, 1749–1755. [Google Scholar] [CrossRef]
- Canevari, L.; Clark, J.B.; Bates, T.E. beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 1999, 457, 131–134. [Google Scholar] [CrossRef]
- The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimer’s Dis.-Search Resul.-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=The+Mechanisms+of+Action+of+Curcumin+in+Alzheimer%E2%80%99s+Disease.+Journal+of+Alzheimer%E2%80%99s+Disease+ (accessed on 22 July 2022).
- Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; di Carlo, M. Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxid. Med. Cell. Longev. 2014, 2014, 780179. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Jiang, J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019, 49, 35–45. [Google Scholar] [CrossRef]
- Hawking, Z.L. Alzheimer’s disease: The role of mitochondrial dysfunction and potential new therapies. Biosci. Horiz. Int. J. Stud. Res. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Sivasangari, K.; Rajan, K.E. Standardized Bacopa monnieri Extract Ameliorates Learning and Memory Impairments through Synaptic Protein, Neurogranin, Pro-and Mature BDNF Signaling, and HPA Axis in Prenatally Stressed Rat Offspring. Antioxidants 2020, 9, E1229. [Google Scholar] [CrossRef] [PubMed]
- Tewari, D.; Stankiewicz, A.; Mocan, A.; Sah, A.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Front. Aging Neurosci. 2018, 10, 3. [Google Scholar] [CrossRef]
- Lee, J.-E.; Sim, H.; Yoo, H.M.; Lee, M.; Baek, A.; Jeon, Y.-J.; Seo, K.-S.; Son, M.-Y.; Yoon, J.S.; Kim, J. Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson’s Disease. Molecules 2020, 25, E3602. [Google Scholar] [CrossRef]
- Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta 2010, 1802, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Li, Y.; Lin, L.; Cao, Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer’s disease via mammalian target of rapamycin-dependent and -independent pathways. Mol. Med. Rep. 2015, 12, 7615–7622. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.; Veeranan-Karmegam, R.; Dhandapani, K.M.; Mahadik, S.P. Cystamine prevents haloperidol-induced decrease of BDNF/TrkB signaling in mouse frontal cortex. J. Neurochem. 2008, 107, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Snyder, S.H. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front. Neurol. 2019, 10, 1315. [Google Scholar] [CrossRef]
- Eckert, G.P.; Chang, S.; Eckmann, J.; Copanaki, E.; Hagl, S.; Hener, U.; Müller, W.E.; Kögel, D. Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochim. Biophys. Acta 2011, 1808, 236–243. [Google Scholar] [CrossRef]
- Sun, X.-Q.; Zhang, R.; Zhang, H.-D.; Yuan, P.; Wang, X.-J.; Zhao, Q.-H.; Wang, L.; Jiang, R.; Bogaard, H.J.; Jing, Z.-C. Reversal of right ventricular remodeling by dichloroacetate is related to inhibition of mitochondria-dependent apoptosis. Hypertens. Res. 2016, 39, 302–311. [Google Scholar] [CrossRef]
- Ravishankar, D.; Corona, G.; Hogan, S.M.; Spencer, J.P.E.; Greco, F.; Osborn, H.M.I. Thioflavones as novel neuroprotective agents. Bioorg. Med. Chem. 2016, 24, 5513–5520. [Google Scholar] [CrossRef]
- Nuñez-Figueredo, Y.; Pardo-Andreu, G.L.; Ramírez-Sánchez, J.; Delgado-Hernández, R.; Ochoa-Rodríguez, E.; Verdecia-Reyes, Y.; Naal, Z.; Muller, A.P.; Portela, L.V.; Souza, D.O. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: Mitoprotection against Ca2+-induced mitochondrial impairment. Brain Res. Bull. 2014, 109, 68–76. [Google Scholar] [CrossRef]
- Manigandan, V.; Nataraj, J.; Karthik, R.; Manivasagam, T.; Saravanan, R.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J. Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson’s Disease. Neurotox. Res. 2019, 35, 505–515. [Google Scholar] [CrossRef]
- Sharif, R.; Aghsami, M.; Gharghabi, M.; Sanati, M.; Khorshidahmad, T.; Vakilzadeh, G.; Mehdizadeh, H.; Gholizadeh, S.; Taghizadeh, G.; Sharifzadeh, M. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function. Behav. Brain Res. 2017, 316, 115–124. [Google Scholar] [CrossRef]
- Park, J.-S.; Davis, R.L.; Sue, C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 2018, 18, 21. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Venkatasubramanian, G.; Berk, M.; Debnath, M. Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 2015, 48, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Sirianni, A.C.; Jiang, J.; Zeng, J.; Mao, L.L.; Zhou, S.; E Sugarbaker, P.; Zhang, X.; Li, W.; Friedlander, R.M.; Wang, X. N-acetyl-l-tryptophan, but not N-acetyl-d-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis. J. Neurochem. 2015, 134, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Ullah, I.; Lee, H.Y.; Naseer, M.I.; Seok, P.M.; Ahmed, J.; Kim, M.O. Protective function of nicotinamide against ketamine-induced apoptotic neurodegeneration in the infant rat brain. J. Mol. Neurosci. 2012, 47, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Flatters, S.J.L. The contribution of mitochondria to sensory processing and pain. Prog. Mol. Biol. Transl. Sci. 2015, 131, 119–146. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, Y.; Hu, Q.; Wu, J.; Ren, H.; Liu, C.-F.; Wang, G. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death. Dis. 2017, 8, e2858. [Google Scholar] [CrossRef]
- Hu, X.; Weng, Z.; Chu, C.; Zhang, L.; Cao, G.; Gao, Y.; Signore, A.; Zhu, J.; Hastings, T.; Greenamyre, J.T.; et al. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J. Neurosci. 2011, 31, 247–261. [Google Scholar] [CrossRef]
- Selvakumar, K.; Bavithra, S.; Suganthi, M.; Benson, C.S.; Elumalai, P.; Arunkumar, R.; Krishnamoorthy, G.; Venkataraman, P.; Arunakaran, J. Protective role of quercetin on PCBs-induced oxidative stress and apoptosis in hippocampus of adult rats. Neurochem. Res. 2012, 37, 708–721. [Google Scholar] [CrossRef]
- Cheng, B.; Martinez, A.A.; Morado, J.; Scofield, V.; Roberts, J.L.; Maffi, S.K. Retinoic acid protects against proteasome inhibition associated cell death in SH-SY5Y cells via the AKT pathway. Neurochem. Int. 2013, 62, 31–42. [Google Scholar] [CrossRef]
- Smith, E.F.; Shaw, P.J.; de Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 2019, 710, 132933. [Google Scholar] [CrossRef]
- Duarte-Silva, E.; Araújo, S.M.D.R.; Oliveira, W.H.; Lós, D.; de França, M.E.R.; Bonfanti, A.; Peron, G.; Thomaz, L.D.L.; Verinaud, L.; Nunes, A.K.D.S.; et al. Sildenafil ameliorates EAE by decreasing apoptosis in the spinal cord of C57BL/6 mice. J. Neuroimmunol. 2018, 321, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Shoshan-Barmatz, V.; Nahon-Crystal, E.; Shteinfer-Kuzmine, A.; Gupta, R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res. 2018, 131, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Deleglise, B.; Lassus, B.; Soubeyre, V.; Alleaume-Butaux, A.; Hjorth, J.J.; Vignes, M.; Schneider, B.; Brugg, B.; Viovy, J.-L.; Peyrin, J.-M. Synapto-protective drugs evaluation in reconstructed neuronal network. PLoS ONE 2013, 8, e71103. [Google Scholar] [CrossRef]
- Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018, 2018, 8152373. [Google Scholar] [CrossRef]
- Zhao, H.F.; Li, N.; Wang, Q.; Cheng, X.J.; Li, X.M.; Liu, T.T. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 2015, 310, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, J.; Zhao, J.; Wang, L. Effect of Resveratrol Combined with Donepezil Hydrochloride on Inflammatory Factor Level and Cognitive Function Level of Patients with Alzheimer’s Disease. J. Healthc. Eng. 2022, 2022, 9148650. [Google Scholar] [CrossRef]
- Wu, H.; Niu, H.; Shao, A.; Wu, C.; Dixon, B.J.; Zhang, J.; Yang, S.; Wang, Y. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases. Mar. Drugs 2015, 13, 5750–5766. [Google Scholar] [CrossRef]
- Bakare, O.O.; Fadaka, A.O.; Akanbi, M.O.; Akinyede, K.A.; Klein, A.; Keyster, M. Evaluation of selected carotenoids of Lycopersicon esculentum variants as therapeutic targets for ’Alzheimer’s disease: An in silico approach. BMC Mol. Cell Biol. 2021, 22, 49. [Google Scholar] [CrossRef]
- Liu, X.; Dhana, K.; Furtado, J.D.; Agarwal, P.; Aggarwal, N.T.; Tangney, C.; Laranjo, N.; Carey, V.; Barnes, L.L.; Sacks, F.M. Higher circulating α-carotene was associated with better cognitive function: An evaluation among the MIND trial participants. J. Nutr. Sci. 2021, 10, e64. [Google Scholar] [CrossRef]
- Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Roche, W.; Coen, R.; Power, T.; Mulcahy, R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin. Nutr. 2022, 41, 405–414. [Google Scholar] [CrossRef]
- Cruz-Aguilar, M.A.; Ramírez-Salado, I.; Hernández-González, M.; Guevara, M.A.; del Río, J.M. Melatonin effects on EEG activity during non-rapid eye movement sleep in mild-to-moderate Alzheimer´s disease: A pilot study. Int. J. Neurosci. 2021, 131, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Pantzaris, M.; Loukaides, G.; Paraskevis, D.; Kostaki, E.-G.; Patrikios, I. Neuroaspis PLP10TM, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg. 2021, 210, 106954. [Google Scholar] [CrossRef] [PubMed]
- Parkinson Study Group SURE-PD3 Investigators. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. JAMA 2021, 326, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Delgado, A.; Ortiz, G.G.; Delgado-Lara, D.L.; González-Usigli, H.A.; González-Ortiz, L.J.; Cid-Hernández, M.; Cruz-Serrano, J.A.; Pacheco-Moisés, F.P. Effect of Melatonin Administration on Mitochondrial Activity and Oxidative Stress Markers in Patients with Parkinson’s Disease. Oxid. Med. Cell. Longev. 2021, 2021, 5577541. [Google Scholar] [CrossRef]
- Witzel, S.; Maier, A.; Steinbach, R.; Grosskreutz, J.; Koch, J.C.; Sarikidi, A.; Petri, S.; Günther, R.; Wolf, J.; Hermann, A.; et al. Safety and Effectiveness of Long-term Intravenous Administration of Edaravone for Treatment of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol. 2022, 79, 121–130. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Langston, J.W. The MPTP Story. J. Parkinsons Dis. 2017, 7, S11–S19. [Google Scholar] [CrossRef]
- Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015, 40, 200–210. [Google Scholar] [CrossRef]
- Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 2010, 1802, 29–44. [Google Scholar] [CrossRef]
- Beal, M.F.; Shults, C.W. Effects of Coenzyme Q10 in Huntington’s disease and early Parkinson’s disease. BioFactors 2003, 18, 153–161. [Google Scholar] [CrossRef]
- Ghosh, A.; Chandran, K.; Kalivendi, S.V.; Joseph, J.; Antholine, W.E.; Hillard, C.J.; Kanthasamy, A.; Kanthasamy, A.; Kalyanaraman, B. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free. Radic. Biol. Med. 2010, 49, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Gilat, M.; Jackson, A.C.; Marshall, N.S.; Rn, D.H.; Mullins, A.E.; Hall, J.M.; Fang, B.A.M.; Yee, B.J.; Wong, K.K.H.; Grunstein, R.R.; et al. Melatonin for rapid eye movement sleep behavior disorder in Parkinson’s disease: A randomised controlled trial. Mov. Disord. 2020, 35, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Kunz, D.; Mahlberg, R. A two-part, double-blind, placebo-controlled trial of exogenous melatonin in REM sleep behaviour disorder. J. Sleep Res. 2010, 19, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, K.; Calingasan, N.Y.; Luo, G.; Szeto, H.H.; Beal, M.F. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid. Redox Signal. 2009, 11, 2095–2104. [Google Scholar] [CrossRef]
- Fu, Y.; Ito, M.; Fujita, Y.; Ito, M.; Ichihara, M.; Masuda, A.; Suzuki, Y.; Maesawa, S.; Kajita, Y.; Hirayama, M.; et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci. Lett. 2009, 453, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, C.; Wang, J.; Huang, X.; Yu, H.; Li, S.; Li, S.; Zhang, Z.; Liu, J.; Yang, X.; et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J. Pineal. Res. 2021, 71, e12774. [Google Scholar] [CrossRef]
- Mayo, J.C.; Sainz, R.M.; Tan, D.-X.; Antolín, I.; Rodríguez, C.; Reiter, R.J. Melatonin and Parkinson’s disease. Endocrine 2005, 27, 169–178. [Google Scholar] [CrossRef]
- McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018, 25, 24–34. [Google Scholar] [CrossRef]
- Farshbaf, M.J.; Ghaedi, K. Huntington’s Disease and Mitochondria. Neurotox. Res. 2017, 32, 518–529. [Google Scholar] [CrossRef]
- Wellington, C.L.; Singaraja, R.; Ellerby, L.; Savill, J.; Roy, S.; Leavitt, B.; Cattaneo, E.; Hackam, A.; Sharp, A.; Thornberry, N.; et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 2000, 275, 19831–19838. [Google Scholar] [CrossRef]
- Carmo, C.; Naia, L.; Lopes, C.; Rego, A.C. Mitochondrial Dysfunction in Huntington’s Disease. Adv. Exp. Med. Biol. 2018, 1049, 59–83. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, O.A.; Ferrante, R.J.; Hughes, D.B.; Klivenyi, P.; Dedeoglu, A.; Ona, V.O.; Friedlander, R.M.; Beal, M.F. Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. J. Neurochem. 2000, 75, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, V.; Singh, K.; Kumar, S.; Kim, Y.-S.; Lee, Y.-M.; Kim, J.-J. Therapeutic Advances for Huntington’s Disease. Brain Sci. 2020, 10, E43. [Google Scholar] [CrossRef] [PubMed]
- Kuboyama, T.; Tohda, C.; Komatsu, K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol. 2005, 144, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.J. Novel therapeutic targets for Huntington’s disease. Expert Opin. Ther. Targets 2005, 9, 639–650. [Google Scholar] [CrossRef]
- Masrori, P.; van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- Kostic, V.; Jackson-Lewis, V.; de Bilbao, F.; Dubois-Dauphin, M.; Przedborski, S. Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997, 277, 559–562. [Google Scholar] [CrossRef]
- Zhu, S.; Stavrovskaya, I.G.; Drozda, M.; Kim, B.Y.S.; Ona, V.; Li, M.; Sarang, S.; Liu, A.S.; Hartley, D.M.; Wu, D.C.; et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002, 417, 74–78. [Google Scholar] [CrossRef]
- Li, W.; Fotinos, A.; Wu, Q.; Chen, Y.; Zhu, Y.; Baranov, S.; Tu, Y.; Zhou, E.W.; Sinha, B.; Kristal, B.S.; et al. N-acetyl-L-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol. Dis. 2015, 80, 93–103. [Google Scholar] [CrossRef]
- Cheah, B.C.; Kiernan, M.C. Dexpramipexole, the R(+) enantiomer of pramipexole, for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010, 13, 911–920. [Google Scholar]
- Li, X.; Zhan, J.; Hou, Y.; Hou, Y.; Chen, S.; Luo, D.; Luan, J.; Wang, L.; Lin, D. Coenzyme Q10 Regulation of Apoptosis and Oxidative Stress in H2O2 Induced BMSC Death by Modulating the Nrf-2/NQO-1 Signaling Pathway and Its Application in a Model of Spinal Cord Injury. Oxid. Med. Cell. Longev. 2019, 2019, 6493081. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, M.; Keshtkar, S.; Azarpira, N.; Aghdaei, M.H.; Geramizadeh, B.; Karimi, M.H.; Shamsaeefar, A.; Motazedian, N.; Nikeghbalian, S.; Al-Abdullah, I.H.; et al. Cytoprotective effects of olesoxime on isolated human pancreatic islets in order to attenuate apoptotic pathway. Biomed Pharm. 2019, 112, 108674. [Google Scholar] [CrossRef] [PubMed]
- Klopstock, T.; Elstner, M.; Bender, A. Creatine in mouse models of neurodegeneration and aging. Amino. Acids. 2011, 40, 1297–1303. [Google Scholar] [CrossRef]
- Cha, S.J.; Kim, K. Effects of the Edaravone, a Drug Approved for the Treatment of Amyotrophic Lateral Sclerosis, on Mitochondrial Function and Neuroprotection. Antioxidants 2022, 11, 195. [Google Scholar] [CrossRef]
- Gupta, R.; Sen, N. Traumatic brain injury: A risk factor for neurodegenerative diseases. Rev. Neurosci. 2016, 27, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gajardo, R.; Matamala, J.M.; Carrasco, R.; Gutiérrez, R.; Melo, R.; Rodrigo, R. Novel therapeutic strategies for traumatic brain injury: Acute antioxidant reinforcement. CNS Drugs 2014, 28, 229–248. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.; Tagliaferri, F.; Servadei, F. Cost of trauma in Europe. Eur. J. Neurol. 2005, 12 (Suppl. S1), 85–90. [Google Scholar] [CrossRef]
- Hardman, J.M.; Manoukian, A. Pathology of head trauma. Neuroimaging Clin. N. Am. 2002, 12, 175–187. [Google Scholar] [CrossRef]
- Samadani, U. When Will a Clinical Trial for Traumatic Brain Injury Succeed?|AANS Neurosurgeon. Available online: https://aansneurosurgeon.org/will-clinical-trial-traumatic-brain-injury-succeed/ (accessed on 18 July 2022).
- Yip, P.K.; Hasan, S.; Liu, Z.-H.; Uff, C.E.G. Characterisation of Severe Traumatic Brain Injury Severity from Fresh Cerebral Biopsy of Living Patients: An Immunohistochemical Study. Biomedicines 2022, 10, 518. [Google Scholar] [CrossRef]
- Hakiminia, B.; Alikiaii, B.; Khorvash, F.; Mousavi, S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam. Clin. Pharmacol. 2022, 36, 612–662. [Google Scholar] [CrossRef]
- Hoffer, M.E.; Balaban, C.; Slade, M.D.; Tsao, J.W.; Hoffer, B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: A double-blind, placebo controlled study. PLoS ONE 2013, 8, e54163. [Google Scholar] [CrossRef] [PubMed]
- Theadom, A.; Mahon, S.; Barker-Collo, S.; McPherson, K.; Rush, E.; Vandal, A.C.; Feigin, V.L. Enzogenol for cognitive functioning in traumatic brain injury: A pilot placebo-controlled RCT. Eur. J. Neurol. 2013, 20, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Razmkon, A.; Sadidi, A.; Sherafat-Kazemzadeh, E.; Mehrafshan, A.; Jamali, M.; Malekpour, B.; Saghafinia, M. Administration of vitamin C and vitamin E in severe head injury: A randomized double-blind controlled trial. Clin. Neurosurg. 2011, 58, 133–137. [Google Scholar] [CrossRef]
- Shahripour, R.B.; Harrigan, M.R.; Alexandrov, A.V. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav. 2014, 4, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Paknahad, Z.; Sheklabadi, E.; Moravejolahkami, A.R.; Chitsaz, A.; Hassanzadeh, A. The effects of Mediterranean diet on severity of disease and serum Total Antioxidant Capacity (TAC) in patients with Parkinson’s disease: A single center, randomized controlled trial. Nutr. Neurosci. 2022, 25, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Izquierdo, V.; Corpas, R.; Roig-Soriano, J.; Chillón, M.; Andres-Lacueva, C.; Somogyvári, M.; Sőti, C.; Sanfeliu, C.; et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev. 2021, 67, 101271. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morén, C.; deSouza, R.M.; Giraldo, D.M.; Uff, C. Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 9328. https://doi.org/10.3390/ijms23169328
Morén C, deSouza RM, Giraldo DM, Uff C. Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2022; 23(16):9328. https://doi.org/10.3390/ijms23169328
Chicago/Turabian StyleMorén, Constanza, Ruth Mary deSouza, Darly Milena Giraldo, and Christopher Uff. 2022. "Antioxidant Therapeutic Strategies in Neurodegenerative Diseases" International Journal of Molecular Sciences 23, no. 16: 9328. https://doi.org/10.3390/ijms23169328
APA StyleMorén, C., deSouza, R. M., Giraldo, D. M., & Uff, C. (2022). Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. International Journal of Molecular Sciences, 23(16), 9328. https://doi.org/10.3390/ijms23169328