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Figure S1. The siRNA knockdown efficacy in airway epithelial cells.

16HBE cells were transfected with indicated siRNA and results were normalized to
the expression of ACTB (encoding B-actin) and control (siNC) cells. Data are
representative of three independent experiments and presented as the mean £SEM.
**p<0.01
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Figure S2. HDM mediates sNASP phosphorylation via TLR2/4-MyD88 signaling.

16HBE cells were transfected with indicated siRNA followed by stimulated with
HDM for 24 h and assessed by an immunoblotting (IB) analysis with anti-
pSerine158-sNASP and sNASP antibodies. Densitometric analysis of the Western
blot shown below. Data are representative of three independent experiments and

presented as the mean ¥SEM. ** p < 0.01
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Figure S3. Effects of the PEP-NASP peptide on the inflammation and mucus
production in airway.

Lungs from each group of mice were fixed and stained with H&E (A) and PAS (B).
Images of lung sections were captured by microscope (magnification, x200); scale
bar = 100 um. (n = 10 per group per experiment).



