Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results
2.2. Adsorption Performances
2.2.1. Adsorption Kinetic
2.2.2. Adsorption Isotherm
2.2.3. Adsorption Thermodynamic
2.2.4. The Effect of pH
2.3. Reusability
2.4. The Probable Adsorption Mechanism
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Cow Dung-Based Biochar Materials
3.3. Adsorption Experiments
3.3.1. Adsorption Kinetic Experiments
3.3.2. Adsorption Isotherm Experiments
3.3.3. Adsorption Thermodynamic Experiments
3.3.4. The Effect of pH on Adsorption Capacities
3.4. Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Srivastava, A.; Saidulu, D.; Gupta, A.K. Advancements of sequencing batch reactor for industrial wastewater treatment: Major focus on modifications, critical operational parameters, and future perspectives. J. Environ. Manag. 2022, 317, 115305. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lv, J.; Qin, C.; Zhang, H.; Wu, L.; Guo, W.; Guo, C.; Xu, J. Chemical fingerprinting of organic micropollutants in different industrial treated wastewater effluents and their effluent-receiving river. Sci. Total Environ. 2022, 838, 156399. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, J.W.; Noh, J.H.; Bae, Y.H.; Maeng, S.K. Potential organic matter management for industrial wastewater guidelines using advanced dissolved organic matter characterization tools. J. Water Process Eng. 2022, 46, 102604. [Google Scholar] [CrossRef]
- Charazinska, S.; Lochynski, P.; Markiewicz, M.; Stolte, S.; Burszta-Adamiak, E. Treatment of electropolishing industrial wastewater and its impact on the immobilisation of Daphnia magna. Environ. Res. 2022, 212, 113438. [Google Scholar] [CrossRef]
- Ramutshatsha-Makhwedzha, D.; Mavhungu, A.; Moropeng, M.L.; Mbaya, R. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 2022, 8, e09930. [Google Scholar] [CrossRef]
- Jing, X.; Yuan, J.; Cai, D.; Li, B.; Hu, D.; Li, J. Concentrating and recycling of high-concentration printing and dyeing wastewater by a disc tube reverse osmosis-Fenton oxidation/low temperature crystallization process. Sep. Purif. Technol. 2021, 266, 118583. [Google Scholar] [CrossRef]
- Tu, Y.; Shao, G.; Zhang, W.; Chen, J.; Qu, Y.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. 2022, 828, 154390. [Google Scholar] [CrossRef]
- Hao, J.; Ji, L.; Li, C.; Hu, C.; Wu, K. Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. E 2018, 88, 137–145. [Google Scholar] [CrossRef]
- Ye, X.; Wu, L.; Zhu, M.; Wang, Z.; Huang, Z.; Wang, M. Lotus pollen-derived hierarchically porous carbons with exceptional adsorption performance toward Reactive Black 5: Isotherms, kinetics and thermodynamics investigations. Sep. Purif. Technol. 2022, 300, 121899. [Google Scholar] [CrossRef]
- Huang, W.; Wu, R.; Chang, J.; Juang, S.; Lee, D. Pristine and manganese ferrite modified biochars for copper ion adsorption: Type-wide comparison. Bioresource Technol. 2022, 360, 127529. [Google Scholar] [CrossRef]
- Liu, B.; Chen, T.; Wang, B.; Zhou, S.; Zhang, Z.; Li, Y.; Pan, X.; Wang, N. Enhanced removal of Cd2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism. J. Hazard. Mater. 2022, 438, 129467. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Han, B.; Liang, J.; Yang, F.; Zhang, K. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. Ecotox. Environ. Saf. 2021, 222, 112538. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, Z.; Zhang, Y.; Li, Y.; Lu, L.; Niu, D. Effect of pretreated cow dung fiber on mechanical and shrinkage properties of cementitious composites. J. Clean. Prod. 2022, 348, 131374. [Google Scholar] [CrossRef]
- Dang, Q.; Zhao, X.; Yang, T.; Gong, T.; He, X.; Tan, W.; Xi, B. Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Sci. Total Environ. 2022, 824, 153837. [Google Scholar] [CrossRef] [PubMed]
- Malolan, R.; Jayaraman, R.S.; Adithya, S.; Arun, J.; Gopinath, K.P.; SundarRajan, P.; Nasif, O.; Kim, W.; Govarthanan, M. Anaerobic digestate water for Chlorella pyrenoidosa cultivation and employed as co-substrate with cow dung and chicken manure for methane and hydrogen production: A closed loop approach. Chemosphere 2021, 266, 128963. [Google Scholar] [CrossRef]
- Sfez, S.; Meester, S.D.; Dewulf, J. Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change. Sci. Total Environ. 2017, 609, 1600–1615. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, S.; Zhuang, J.; Tong, J.; Qi, H. Tribological and physio-mechanical characterization of cow dung fibers reinforced friction composites: An effective utilization of cow dung waste. Tribol. Int. 2019, 131, 200–211. [Google Scholar] [CrossRef]
- Yao, Q.; Qu, H.; Guo, Y.; Zhao, Z.; Qiao, L.; Wu, H.; Dong, A.; Liu, Y. Capturing copper on cow dung-based biochar adsorbents for reuse in water bacterial decontamination. Colloid. Interfac. Sci. 2021, 45, 100515. [Google Scholar] [CrossRef]
- Hou, S.; Jia, S.; Jia, J.; He, Z.; Li, G.; Zuo, Q.; Zhuang, H. Fe3O4 nanoparticles loading on cow dung based activated carbon as an efficient catalyst for catalytic microbubble ozonation of biologically pretreated coal gasification wastewater. J. Environ. Manag. 2020, 267, 110615. [Google Scholar] [CrossRef]
- Ramalingam, R.J.; Sivachidambaram, M.; Vijaya, J.J.; Al-Lohedan, H.A.; Muthumareeswaran, M.R. Synthesis of porous activated carbon powder formation from fruit peel and cow dung waste for modified electrode fabrication and application. Biomass. Bioenerg. 2020, 142, 105800. [Google Scholar] [CrossRef]
- Chen, S.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. J. Hazard. Mater. 2021, 408, 124956. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, G.; Chen, H.; Sun, Y.; Yu, X.; Su, Y.; Tang, S. Preparation of porous carbon-based material from corn straw via mixed alkali and its application for removal of dye. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 173–183. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Porous carbon material derived from fungal hyphae and its application for the removal of dye. RSC Adv. 2019, 9, 25480. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, B.; Xia, Y.; Chen, H.; Chen, G.; Tang, S. Influence of mixed alkali on the preparation of edible fungus substrate porous carbon material and its application for the removal of dye. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125675. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Qi, J.; Chen, H.; Chen, G.; Tang, S. Porous carbon materials based on Physalis alkekengi L. husk and its application for removal of malachite green. Environ. Technol. Innov. 2021, 21, 101343. [Google Scholar] [CrossRef]
- Xia, Y.; Jin, Y.; Qi, J.; Chen, H.; Chen, G.; Tang, S. Preparation of biomass carbon material based on Fomes fomentarius via alkali activation and its application for the removal of brilliant green in wastewater. Environ. Technol. Innov. 2021, 23, 101659. [Google Scholar] [CrossRef]
- Zhu, W.; Li, Y.; Dai, L.; Li, J.; Li, X.; Li, W.; Duan, T.; Lei, J.; Chen, T. Bioassembly of fungal mycelium/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chem. Eng. J. 2018, 339, 214–222. [Google Scholar] [CrossRef]
- Kharrazi, S.; Mirghaffari, N.; Dastgerdi, M.; Soleimani, M. A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technol. 2020, 366, 358–368. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, B.; Chen, G.; Chen, H.; Tang, S. Combining biological and chemical methods to disassemble of cellulose from corn straw for the preparation of porous carbons with enhanced adsorption performance. Int. J. Biol. Macromol. 2022, 209, 315–329. [Google Scholar] [CrossRef]
- Pajda, M.; Wesełucha-Birczynska, A.; Kołodziej, A.; Swietek, M.; Długon, E.; Ziabka, M.; Błazewicz, M. A correlation of Raman data with the nanomechanical results of polymer nanomaterials with carbon nanoparticles. J. Mol. Struct. 2022, 1264, 133305. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Huang, X.; Tang, S.; Chen, H.; Su, Y.; Yu, X.; Chen, S.; Chen, G. Biological self-assembled hyphae/starch porous carbon composites for removal of organic pollutants from water. Chem. Eng. J. 2022, 450, 138264. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.; Huang, Y.; Song, L.; Chen, H.; Zhu, S.; Tang, C. Enhanced adsorption of phosphate on orange peel-based biochar activated by Ca/Zn composite: Adsorption efficiency and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129728. [Google Scholar] [CrossRef]
- Mao, W.; Liu, J.; Yin, B.; Miao, S.; Li, Y.; Kong, D.; Wang, F. Co-Cr composite oxides efficiently catalyzed transfer hydrogenation of α, β-unsaturated aldehydes via N-doped carbon and interfacial electron migration. Mol. Catal. 2022, 524, 112257. [Google Scholar] [CrossRef]
- Qiao, X.; Xia, Y.; Su, X.; Wang, B.; Chen, G.; Chen, H. Preparation of biomass carbon material based on fulvic acid and its application in dye and antibiotic treatments. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128302. [Google Scholar] [CrossRef]
- Gao, W. Porous biomass carbon derived from Clivia miniata leaves via NaOH activation for removal of dye. Materials 2022, 15, 1285. [Google Scholar] [CrossRef]
- Liang, D.; Tian, X.; Zhang, Y.; Zhu, G.; Gao, Q.; Liu, J.; Yu, X. A weed-derived hierarchical porous carbon with a large specific surface area for efficient dye and antibiotic removal. Int. J. Mol. Sci. 2022, 23, 6146. [Google Scholar] [CrossRef]
- Rodríguez-López, M.I.; Pellicer, J.A.; Gómez-Morte, T.; Auñón, D.; Gómez-López, V.M.; Yáñez-Gascón, M.J.; Gil-Izquierdo, Á.; Cerón-Carrasco, J.P.; Crini, G.; Núñez-Delicado, E.; et al. Removal of an Azo dye from wastewater through the use of two technologies: Magnetic cyclodextrin polymers and pulsed light. Int. J. Mol. Sci. 2022, 23, 8406. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Q.; Li, H.; Wang, J.; Tai, G.; Wang, F.; Han, J.; Zhu, Y.; Wu, G. Waste-to-resource strategy to fabricate functionalized MOFs composite material based on durian shell biomass carbon fiber and Fe3O4 for highly efficient and recyclable dye adsorption. Int. J. Mol. Sci. 2022, 23, 5900. [Google Scholar] [CrossRef]
- Luna, M.S.; Greco, F.; Pastore, R.; Mensitieri, G.; Filippone, G.; Aprea, P.; Mallamace, D.; Mallamace, F.; Chen, S. Tailoring Chitosan/LTA Zeolite hybrid aerogels for anionic and cationic dye adsorption. Int. J. Mol. Sci. 2021, 22, 5535. [Google Scholar] [CrossRef]
- Delpiano, G.R.; Tocco, D.; Medda, L.; Magner, E.; Salis, A. Adsorption of Malachite Green and Alizarin Red S dyes using Fe-BTC metal organic framework as adsorbent. Int. J. Mol. Sci. 2021, 22, 788. [Google Scholar] [CrossRef]
- Hamedi, A.; Trotta, F.; Zarandi, M.B.; Zanetti, M.; Caldera, F.; Anceschi, A.; Nateghi, M.R. In situ synthesis of MIL-100(Fe) at the surface of Fe3O4@AC as highly efficient dye adsorbing nanocomposite. Int. J. Mol. Sci. 2019, 20, 5612. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yan, C.; Wang, P.; Rao, L.; Wang, C. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution. Chem. Eng. J. 2020, 387, 124136. [Google Scholar] [CrossRef]
- Ndagijimana, P.; Liu, X.; Yu, G.; Wang, Y. Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption. J. Hazard. Mater. 2019, 368, 602–612. [Google Scholar]
- Blanco-Martínez, D.; Giraldo, L.; Moreno-Piraján, J. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J. Hazard. Mater. 2009, 169, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Mane, V.; Babu, P. Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 2011, 273, 321–329. [Google Scholar] [CrossRef]
- Liu, K.; Li, H.; Wang, Y.; Gou, X.; Duan, Y. Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloid. Surf. A. 2015, 477, 35–41. [Google Scholar] [CrossRef]
- Koniarz, M.P.; Goscianska, J.; Pietrzak, R. Adsorption of dyes on the surface of polymer nanocomposites modified with methylamine and copper(II) chloride. J. Colloid Interf. Sci. 2017, 504, 549–560. [Google Scholar] [CrossRef]
- Anandkumar, J.; Mandal, B. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. J. Hazard. Mater. 2011, 186, 1088–1096. [Google Scholar] [CrossRef]
- Hayeeye, F.; Sattar, M.; Chinpa, W.; Sirichote, O. Kinetics and thermodynamics of Rhodamine B adsorption by gelatin/activated carbon composite beads. Colloid. Surface. A. 2017, 513, 259–266. [Google Scholar] [CrossRef]
- Gad, H.M.H.; El-Sayed, A.A. Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J. Hazard. Mater. 2009, 168, 1070–1081. [Google Scholar] [CrossRef]
- Yu, J.; Li, B.; Sun, X.; Yuan, J.; Chi, R. Polymer modified biomass of baker’s yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. J. Hazard. Mater. 2009, 168, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, S.; Zhu, T. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci-China. 2010, 22, 1273–1280. [Google Scholar] [CrossRef]
- Tuzen, M.; Sarı, A.; Saleh, T.A. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J. Environ. Manage. 2018, 206, 170–177. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, X.; Feng, S.; Guo, Z.; Liang, S. Enhancement of rhodamine B removal by modifying activated carbon developed from Lythrum salicaria L. with pyruvic acid. Colloid. Surface. A. 2016, 489, 154–162. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, J. N-vinylimidazole modified hyper-cross-linked resins and their adsorption toward Rhodamine B: Effect of the cross-linking degree. J. Taiwan Inst. Chem. E. 2017, 80, 293–300. [Google Scholar] [CrossRef]
- Ding, L.; Zou, B.; Gao, W.; Liu, Q.; Wang, Z.; Guo, Y.; Wang, X.; Liu, Y. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloid. Surface. A. 2014, 446, 1–7. [Google Scholar] [CrossRef]
- Mittal, B.H.; Mishra, S.B. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohyd. Polym. 2014, 101, 1255–1264. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 2016, 15, 14–27. [Google Scholar] [CrossRef]
- Chen, S.; Tang, S.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Su, Y.; Chen, G. Preparation of a highly porous carbon material based on quinoa husk and its application for removal of dyes by adsorption. Materials. 2018, 11, 1407. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Duan, L.; Yang, H.; Gao, J. Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. J. Mol. Liq. 2016, 222, 487–494. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Adassoriya, N.; Sarkar, B.; Sirimuthu, N.M.S.; Cooray, A.; Ok, Y.S.; Vithanage, M. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. J. Environ. Manage. 2019, 238, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gu, L.; Chen, L.; Wen, H.; Zhang, D.; Tao, H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. Bioresour. Technol. 2020, 316, 123971. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Niu, Z.; Shi, R.; Tang, J.; Lv, L.; Wang, J.; Fan, Y. Thermal oxidation activation of hydrochar for tetracycline adsorption: The role of oxygen concentration and temperature. Bioresour. Technol. 2020, 306, 123096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, Q.; Hu, X.; Zhang, K.; Chen, C.; Xue, Y. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell. Colloid. Surf. A. 2021, 615, 126254. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms. Chemosphere. 2020, 255, 127057. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ifebajo, A.O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. J. Environ. Manage. 2018, 209, 9–16. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Y.; He, Y.; Liu, X.; Xu, B.; Yu, J.; Dai, C.; Huang, A.; Pang, Y.; Luo, L. Analyses of tetracycline adsorption on alkali-acid modified magnetic biochar: Site energy distribution consideration. Sci. Total Environ. 2019, 650, 2260–2266. [Google Scholar] [CrossRef]
- Miao, J.; Wang, F.; Chen, Y.; Zhu, Y.; Zhou, Y.; Zhang, S. The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent. Appl. Surf. Sci. 2019, 475, 549–558. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Z.; Yang, X.; Ren, Z. Xanthate modified magnetic activated carbon for efficient removal of cationic dyes and tetracycline hydrochloride from aqueous solutions. Colloid. Surface. A. 2021, 615, 126273. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interf. Sci. 2012, 368, 540–546. [Google Scholar] [CrossRef]
- Martins, A.; Pezoti, O.; Cazetta, A.; Bedin, K.; Yamazaki, D.; Bandoch, G.; Asefa, T.; Visentainer, J.; Almeida, V. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Yang, G.; Gao, Q.; Yang, S.; Yin, S.; Cai, X.; Yu, X.; Zhang, S.; Fang, Y. Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere. 2020, 239, 124831. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresour. Technol. 2021, 329, 124856. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, S.; Tabrizi, F.F.; Sardarian, A.R. Efficient tetracycline hydrochloride removal by encapsulated phosphotungstic acid (PTA) in MIL–53 (Fe): Optimizing the content of PTA and recycling study. J. Environ. Chem. Eng. 2020, 8, 103601. [Google Scholar] [CrossRef]
Samples | SBET (m2 g−1) | Vmicro (cm3 g−1) | Pm (nm) | Vtotal (cm3 g−1) |
---|---|---|---|---|
CD | 0.9 | - | 31.93 | 0.0071 |
CDC | 23.8 | - | 7.34 | 0.0436 |
BMCD-K | 1784.6 | 1.0239 | 2.50 | 1.1142 |
BMCD-Na | 1446.1 | 0.9124 | 2.98 | 1.0788 |
BMCD-MB | 4081.1 | 2.5583 | 2.95 | 3.0118 |
Organic Pollutants | Samples | Kinetic Models | Parameters | Concentration C0 (mg L−1) | ||
---|---|---|---|---|---|---|
100 | 200 | 300 | ||||
RhB | BMCD-K | Qe (mg g−1) | 657 | 732 | 783 | |
Pseudo-first-order | k1 (min−1) | 0.2704 | 0.3414 | 0.4440 | ||
Qe.cat (mg g−1) | 622 | 704 | 754 | |||
R2 | 0.9764 | 0.9914 | 0.9930 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0007 | 0.0011 | 0.0017 | ||
Qe.cat (mg g−1) | 661 | 736 | 791 | |||
R2 | 0.9956 | 0.9988 | 0.9985 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 15.57 | 11.78 | 8.99 | ||
C | 488 | 586 | 680 | |||
R2 | 0.8857 | 0.8205 | 0.9010 | |||
BMCD-Na | Qe (mg g−1) | 613 | 634 | 676 | ||
Pseudo-first-order | k1 (min−1) | 0.1556 | 0.1948 | 0.2493 | ||
Qe.cat (mg g−1) | 569 | 614 | 654 | |||
R2 | 0.9523 | 0.9876 | 0.9836 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0004 | 0.0005 | 0.0007 | ||
Qe.cat (mg g−1) | 617 | 648 | 684 | |||
R2 | 0.9463 | 0.9998 | 0.9987 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 23.87 | 18.33 | 15.79 | ||
C | 353 | 445 | 513 | |||
R2 | 0.9135 | 0.7264 | 0.7652 | |||
BMCD-MB | Qe (mg g−1) | 998 | 1086 | 1178 | ||
Pseudo-first-order | k1 (min−1) | 0.1916 | 0.2521 | 0.2593 | ||
Qe.cat (mg g−1) | 928 | 1021 | 1127 | |||
R2 | 0.9559 | 0.9761 | 0.9784 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0003 | 0.0004 | 0.0005 | ||
Qe.cat (mg g−1) | 999 | 1091 | 1180 | |||
R2 | 0.9904 | 0.9956 | 0.9971 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 33.53 | 26.83 | 23.88 | ||
C | 632 | 790 | 882 | |||
R2 | 0.9148 | 0.8863 | 0.8164 | |||
TH | BMCD-K | Qe (mg g−1) | 724 | 879 | 967 | |
Pseudo-first-order | k1 (min−1) | 0.2659 | 0.2399 | 0.2354 | ||
Qe.cat (mg g−1) | 684 | 849 | 935 | |||
R2 | 0.9703 | 0.9891 | 0.9892 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0006 | 0.0005 | 0.0005 | ||
Qe.cat (mg g−1) | 727 | 888 | 975 | |||
R2 | 0.9935 | 0.9998 | 0.9998 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 17.63 | 20.77 | 21.20 | ||
C | 533 | 662 | 746 | |||
R2 | 0.8794 | 0.7407 | 0.7497 | |||
BMCD-Na | Qe (mg g−1) | 778 | 888 | 1010 | ||
Pseudo-first-order | k1 (min−1) | 0.2138 | 0.3077 | 0.2705 | ||
Qe.cat (mg g−1) | 749 | 859 | 973 | |||
R2 | 0.9883 | 0.9889 | 0.9907 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0005 | 0.0007 | 0.0005 | ||
Qe.cat (mg g−1) | 788 | 890 | 1013 | |||
R2 | 0.9998 | 0.9990 | 0.9998 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 20.77 | 15.83 | 15.52 | ||
C | 560 | 720 | 791 | |||
R2 | 0.7404 | 0.7626 | 0.7349 | |||
BMCD-MB | Qe (mg g−1) | 818 | 985 | 1131 | ||
Pseudo-first-order | k1 (min−1) | 0.2886 | 0.2721 | 0.2940 | ||
Qe.cat (mg g−1) | 790 | 944 | 1095 | |||
R2 | 0.9877 | 0.9859 | 0.9913 | |||
Pseudo-second-order | k2 (g mg−1 min−1) | 0.0007 | 0.0006 | 0.0006 | ||
Qe.cat (mg g−1) | 820 | 985 | 1135 | |||
R2 | 0.9989 | 0.9990 | 0.9998 | |||
Intra-particle diffusion | k3 (mg g−1 min−0.5) | 15.83 | 21.17 | 20.94 | ||
C | 651 | 758 | 910 | |||
R2 | 0.7626 | 0.8061 | 0.7467 |
Organic Pollutants | Samples | Isotherm Types | Parameters | |
---|---|---|---|---|
RhB | BMCD-K | Langmuir | Qm (mg g−1) | 843 |
KL (L mg−1) | 0.0501 | |||
R2 | 0.9711 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 376 | ||
nF | 9.19 | |||
R2 | 0.9854 | |||
BMCD-Na | Langmuir | Qm (mg g−1) | 742 | |
KL (L mg−1) | 0.0580 | |||
R2 | 0.7327 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 410 | ||
nF | 8.77 | |||
R2 | 0.9823 | |||
BMCD-MB | Langmuir | Qm (mg g−1) | 1256 | |
KL (L mg−1) | 0.0703 | |||
R2 | 0.8807 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 651 | ||
nF | 9.36 | |||
R2 | 0.9819 | |||
TH | BMCD-K | Langmuir | Qm (mg g−1) | 1161 |
KL (L mg−1) | 0.0238 | |||
R2 | 0.9595 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 302 | ||
nF | 4.74 | |||
R2 | 0.9984 | |||
BMCD-Na | Langmuir | Qm (mg g−1) | 1203 | |
KL (L mg−1) | 0.0258 | |||
R2 | 0.8885 | |||
Freundlich | KF (mg g-1(L mg−1)1/n) | 323 | ||
nF | 4.81 | |||
R2 | 0.9772 | |||
BMCD-MB | Langmuir | Qm (mg g−1) | 1341 | |
KL (L mg−1) | 0.0237 | |||
R2 | 0.9485 | |||
Freundlich | KF (mg g−1(L mg−1)1/n) | 333 | ||
nF | 4.56 | |||
R2 | 0.9933 |
Organic Pollutants | Samples | T (K) | ∆G (kJ mol−1) | ∆H (kJ mol−1) | ∆S (J mol−1 K−1) |
---|---|---|---|---|---|
RhB | BMCD-K | 293 | −1.81 | 4.49 | 21.51 |
303 | −2.03 | ||||
313 | −2.24 | ||||
BMCD-Na | 293 | −1.60 | 2.87 | 15.27 | |
303 | −1.72 | ||||
313 | −1.91 | ||||
BMCD-MB | 293 | −2.93 | 6.41 | 31.86 | |
303 | −3.23 | ||||
313 | −3.56 | ||||
TH | BMCD-K | 293 | −2.37 | 7.98 | 35.48 |
303 | −2.78 | ||||
313 | −3.08 | ||||
BMCD-Na | 293 | −2.67 | 6.02 | 29.67 | |
303 | −2.95 | ||||
313 | −3.27 | ||||
BMCD-MB | 293 | −2.96 | 6.81 | 33.35 | |
303 | −3.19 | ||||
313 | −3.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yu, G.; Chen, Y.; Tang, S.; Su, Y. Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants. Int. J. Mol. Sci. 2022, 23, 10094. https://doi.org/10.3390/ijms231710094
Chen X, Yu G, Chen Y, Tang S, Su Y. Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants. International Journal of Molecular Sciences. 2022; 23(17):10094. https://doi.org/10.3390/ijms231710094
Chicago/Turabian StyleChen, Xiaoxin, Gengxin Yu, Yuanhui Chen, Shanshan Tang, and Yingjie Su. 2022. "Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants" International Journal of Molecular Sciences 23, no. 17: 10094. https://doi.org/10.3390/ijms231710094
APA StyleChen, X., Yu, G., Chen, Y., Tang, S., & Su, Y. (2022). Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants. International Journal of Molecular Sciences, 23(17), 10094. https://doi.org/10.3390/ijms231710094