A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Data Collection
3.2. Sequence-Based Analysis
3.2.1. Occurrence Frequency of Amino Acids
3.2.2. Aromaticity
3.3. Structure-Based Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Yang, X.; Yang, S.; Zhu, M.; Wang, X. Technology prospecting on enzymes: Application, marketing and engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209017. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, X.; Ge, J. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends Biotechnol. 2021, 39, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Hauer, B. Embracing nature’s catalysts: A viewpoint on the future of biocatalysis. ACS Catal. 2020, 10, 8418–8427. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Brady, D. Broadening the scope of biocatalysis in sustainable organic synthesis. ChemSusChem 2019, 12, 2859–2881. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Atalah, J.; Cáceres-Moreno, P.; Espina, G.; Blamey, J.M. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour. Technol. 2019, 280, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, R.; Jaiswal, A.K. Enzymes in Bioconversion and Food Processing. In Enzymes in Food Technology; Springer: Cham, Switzerland, 2018; pp. 19–40. [Google Scholar]
- Guerrand, D. Lipases industrial applications: Focus on food and agroindustries. OCL—Oilseeds Fats Crops Lipids 2017, 24, D403. [Google Scholar] [CrossRef]
- Liu, X.; Kokare, C. Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–298. [Google Scholar]
- Sanchez, S.; Demain, A.L. Useful Microbial Enzymes—An Introduction. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–11. [Google Scholar]
- Satterfield, C.N. Heterogeneous Catalysis in Industrial Practice; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Littlechild, J.A. Enzymes from extreme environments and their industrial applications. Front. Bioeng. Biotechnol. 2015, 3, 161. [Google Scholar] [CrossRef]
- Synowiecki, J. Some applications of thermophiles and their enzymes for protein processing. Afr. J. Biotechnol. 2010, 9, 7020–7025. [Google Scholar]
- Buchsbaum, C.; Schmidt, M.U. Rietveld refinement of a wrong crystal structure. Acta Crystallogr. Sect. B Struct. Sci. 2007, 63, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.J.; McCague, R.; Wisdom, R.; Lee, C.; Dickson, K.; Ruecroft, G.; O’Brien, F.; Littlechild, J.; Bevan, J.; Roberts, S.M. Development of the biocatalytic resolution of 2-azabicyclo [2.2. 1] hept-5-en-3-one as an entry to single-enantiomer carbocyclic nucleosides. Tetrahedron Asymmetry 1993, 4, 1117–1128. [Google Scholar]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotech 2016, 6, 1–15. [Google Scholar]
- Liszka, M.J.; Clark, M.E.; Schneider, E.; Clark, D.S. Nature versus nurture: Developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 77–102. [Google Scholar] [PubMed]
- Siddiqui, K.S. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol. Adv. 2015, 33, 1912–1922. [Google Scholar] [PubMed]
- Liu, Q.; Xun, G.; Feng, Y. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol. Adv. 2019, 37, 530–537. [Google Scholar]
- Ao, C.; Yu, L.; Zou, Q. Prediction of bio-sequence modifications and the associations with diseases. Brief. Funct. Genom. 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Shang, Y.; Gao, L.; Zou, Q.; Yu, L. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021, 434, 80–89. [Google Scholar] [CrossRef]
- Loladze, V.V.; Ibarra-Molero, B.; Sanchez-Ruiz, J.M.; Makhatadze, G.I. Engineering a thermostable protein via optimization of charge—Charge interactions on the protein surface. Biochemistry 1999, 38, 16419–16423. [Google Scholar]
- Asial, I.; Cheng, Y.X.; Engman, H.; Dollhopf, M.; Wu, B.; Nordlund, P.; Cornvik, T. Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat. Commun. 2013, 4, 2901. [Google Scholar]
- Rigoldi, F.; Donini, S.; Redaelli, A.; Parisini, E.; Gautieri, A. Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng. 2018, 2, 011501. [Google Scholar] [PubMed]
- Liu, R.; Liang, L.; Lacerda, M.P.; Freed, E.F.; Eckert, C.A. Advances in Protein Engineering and Its Application in Synthetic Biology. In New Frontiers and Applications of Synthetic Biology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 147–158. [Google Scholar]
- Li, Y.; Cirino, P.C. Recent advances in engineering proteins for biocatalysis. Biotechnol. Bioeng. 2014, 111, 1273–1287. [Google Scholar] [PubMed]
- Chandler, P.G.; Broendum, S.S.; Riley, B.T.; Spence, M.A.; Jackson, C.J.; McGowan, S.; Buckle, A.M. Strategies for Increasing Protein Stability. In Protein Nanotechnology; Springer: Cham, Switzerland, 2020; pp. 163–181. [Google Scholar]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [PubMed]
- Sterpone, F.; Melchionna, S. Thermophilic proteins: Insight and perspective from in silico experiments. Chem. Soc. Rev. 2012, 41, 1665–1676. [Google Scholar] [PubMed]
- Pucci, F.; Rooman, M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr. Opin. Struct. Biol. 2017, 42, 117–128. [Google Scholar]
- Ahmed, Z.; Zulfiqar, H.; Khan, A.A.; Gul, I.; Dao, F.-Y.; Zhang, Z.-Y.; Yu, X.-L.; Tang, L. iThermo: A Sequence-Based Model for Identifying Thermophilic Proteins Using a Multi-Feature Fusion Strategy. Front. Microbiol. 2022, 13, 790063. [Google Scholar]
- Zhang, D.; Xu, Z.-C.; Su, W.; Yang, Y.-H.; Lv, H.; Yang, H.; Lin, H. iCarPS: A computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics 2021, 37, 171–177. [Google Scholar]
- Tang, H.; Zhao, Y.W.; Zou, P.; Zhang, C.M.; Chen, R.; Huang, P.; Lin, H. HBPred: A tool to identify growth hormone-binding proteins. Int. J. Biol. Sci. 2018, 14, 957–964. [Google Scholar] [CrossRef]
- Ao, C.; Zhou, W.; Gao, L.; Dong, B.; Yu, L. Prediction of antioxidant proteins using hybrid feature representation method and random forest. Genomics 2020, 112, 4666–4674. [Google Scholar] [CrossRef]
- Zulfiqar, H.; Yuan, S.-S.; Huang, Q.-L.; Sun, Z.-J.; Dao, F.-Y.; Yu, X.-L.; Lin, H. Identification of cyclin protein using gradient boost decision tree algorithm. Comput. Struct. Biotechnol. J. 2021, 19, 4123–4131. [Google Scholar]
- Lin, H.; Chen, W. Prediction of thermophilic proteins using feature selection technique. J. Microbiol. Methods 2011, 84, 67–70. [Google Scholar] [PubMed]
- Kumar, S.; Tsai, C.-J.; Nussinov, R. Factors enhancing protein thermostability. Protein Eng. 2000, 13, 179–191. [Google Scholar] [PubMed]
- Clackson, T.; Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 1995, 267, 383–386. [Google Scholar] [PubMed]
- Bogan, A.A.; Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 1998, 280, 1–9. [Google Scholar] [PubMed]
- Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Russell, R.J.; Ferguson, J.M.; Hough, D.W.; Danson, M.J.; Taylor, G.L. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolution. Biochemistry 1997, 36, 9983–9994. [Google Scholar] [PubMed]
- Vogt, G.; Woell, S.; Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 1997, 269, 631–643. [Google Scholar]
- De Farias, S.T.; Bonato, M.C.M. Preferred codons and amino acid couples in hyperthermophiles. Genome Biol. 2002, 3, 1–18. [Google Scholar] [CrossRef]
- Querol, E.; Perez-Pons, J.A.; Mozo-Villarias, A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. Des. Sel. 1996, 9, 265–271. [Google Scholar]
- Haney, P.; Konisky, J.; Koretke, K.; Luthey-Schulten, Z.; Wolynes, P. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins Struct. Funct. Bioinform. 1997, 28, 117–130. [Google Scholar]
- Li, W.; Zhou, X.; Lu, P. Structural features of thermozymes. Biotechnol. Adv. 2005, 23, 271–281. [Google Scholar]
- Gromiha, M.M.; Pathak, M.C.; Saraboji, K.; Ortlund, E.A.; Gaucher, E.A. Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins Struct. Funct. Bioinform. 2013, 81, 715–721. [Google Scholar]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Schell, D.; Thurlkill, R.L.; Imura, S.; Scholtz, J.M.; Gajiwala, K. Contribution of hydrogen bonds to protein stability. Protein Sci. 2014, 23, 652–661. [Google Scholar] [PubMed]
- Trevino, S.R.; Scholtz, J.M.; Pace, C.N. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J. Mol. Biol. 2007, 366, 449–460. [Google Scholar] [PubMed]
- Mattos, C. Protein-water interactions in a dynamic world. Trends Biochem. Sci. 2002, 27, 203–208. [Google Scholar] [PubMed]
- Nishio, Y.; Nakamura, Y.; Kawarabayasi, Y.; Usuda, Y.; Kimura, E.; Sugimoto, S.; Matsui, K.; Yamagishi, A.; Kikuchi, H.; Ikeo, K.; et al. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 2003, 13, 1572–1579. [Google Scholar] [PubMed] [Green Version]
- Catanzano, F.; Barone, G.; Graziano, G.; Capasso, S. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Sci. 1997, 6, 1682–1693. [Google Scholar]
- Sælensminde, G.; Halskau, Ø.; Jonassen, I. Amino acid contacts in proteins adapted to different temperatures: Hydrophobic interactions and surface charges play a key role. Extremophiles 2009, 13, 11–20. [Google Scholar]
- Kumwenda, B.; Litthauer, D.; Bishop, Ö.T.; Reva, O. Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species. Evol. Bioinform. 2013, 9, 327–342. [Google Scholar]
- Lobry, J.; Gautier, C. Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res. 1994, 22, 3174–3180. [Google Scholar] [CrossRef]
- Serrano, L.; Bycroft, M.; Fersht, A.R. Aromatic-aromatic interactions and protein stability: Investigation by double-mutant cycles. J. Mol. Biol. 1991, 218, 465–475. [Google Scholar]
- Anderson, D.E.; Hurley, J.H.; Nicholson, H.; Baase, W.A.; Matthews, B.W. Hydrophobic core repacking and aromatic—Aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117 → Phe. Protein Sci. 1993, 2, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Vishveshwara, S. Aromatic clusters: A determinant of thermal stability of thermophilic proteins. Protein Eng. 2000, 13, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, G.; Zuo, Y. Function determinants of TET proteins: The arrangements of sequence motifs with specific codes. Brief. Bioinform. 2019, 20, 1826–1835. [Google Scholar] [CrossRef]
- Xu, B.F.; Liu, D.Y.; Wang, Z.R.; Tian, R.X.; Zuo, Y.C. Multi-substrate selectivity based on key loops and non-homologous domains: New insight into ALKBH family. Cell. Mol. Life Sci. 2021, 78, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, H.; Sun, Z.-J.; Huang, Q.-L.; Yuan, S.-S.; Lv, H.; Dao, F.-Y.; Lin, H.; Li, Y.-W. Deep-4mCW2V: A sequence-based predictor to identify N4-methylcytosine sites in Escherichia coli. Methods 2022, 203, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, A.; Afanaseva, A.; Khodorkovskiy, M.; Petukhov, M. Design of stable α-helical peptides and thermostable proteins in biotechnology and biomedicine. Acta Nat. 2016, 8, 70–81. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Haider, M.K. Hydrogen bonds in proteins: Role and strength. eLS 2010. [Google Scholar] [CrossRef]
- Gromiha, M.M.; Oobatake, M.; Sarai, A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys. Chem. 1999, 82, 51–67. [Google Scholar] [CrossRef]
- Szilágyi, A.; Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure 2000, 8, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.S.; Degreve, L. An insight into the thermostability of a pair of xylanases: The role of hydrogen bonds. Mol. Phys. 2009, 107, 59–69. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yu, T.-H.; Wong, K.-B. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS ONE 2011, 6, e21624. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Wang, H.-J.; Hwang, J.-K.; Tseng, C.-P. Protein thermal stability enhancement by designing salt bridges: A combined computational and experimental study. PLoS ONE 2014, 9, e112751. [Google Scholar] [CrossRef] [PubMed]
- Missimer, J.H.; Steinmetz, M.O.; Baron, R.; Winkler, F.K.; Kammerer, R.A.; Daura, X.; Van Gunsteren, W.F. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Sci. 2007, 16, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, G.A.; Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997; Volume 12. [Google Scholar]
- Kurata, H.; Tsukiyama, S.; Manavalan, B. iACVP: Markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model. Brief. Bioinform. 2022, 23, bbac265. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, B.; Patra, M.C. MLCPP 2.0: An Updated Cell-penetrating Peptides and Their Uptake Efficiency Predictor. J. Mol. Biol. 2022, 434, 167604. [Google Scholar] [CrossRef] [PubMed]
- Basith, S.; Lee, G.; Manavalan, B. STALLION: A stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction. Brief. Bioinform. 2022, 23, bbab376. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021, 37, 2556–2562. [Google Scholar] [CrossRef]
- Malik, A.; Subramaniyam, S.; Kim, C.B.; Manavalan, B. SortPred: The first machine learning based predictor to identify bacterial sortases and their classes using sequence-derived information. Comput. Struct. Biotechnol. J. 2022, 20, 165–174. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, D.Y.; Yang, W.; Yang, L.; Zuo, Y.C. RaacLogo: A new sequence logo generator by using reduced amino acid clusters. Brief. Bioinform. 2021, 22, bbaa096. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, P.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Wang, Y.; Webb, G.I.; Smith, A.I.; Daly, R.J.; Chou, K.-C. iFeature: A python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 2018, 34, 2499–2502. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, D.Y.; Li, Y.A.; Yang, S.Q.; Liang, Y.C.; Xing, Y.Q.; Zuo, Y.C. RaacFold: A webserver for 3D visualization and analysis of protein structure by using reduced amino acid alphabets. Nucleic Acids Res. 2022, 50, W633–W638. [Google Scholar] [CrossRef] [PubMed]
Helix (%) | Sheet (%) | Coil (%) | Turn (%) | |||||
---|---|---|---|---|---|---|---|---|
Ther | Non-Ther | Ther | Non-Ther | Ther | Non-Ther | Ther | Non-Ther | |
Hsp40 Chaperones | 6.67 | 6.38 | 40.00 | 31.91 | 48.89 | 43.62 | 4.44 | 18.09 |
Nitrogen Regulatory Protein | 31.58 | 17.86 | 31.58 | 32.14 | 24.21 | 30.36 | 12.63 | 19.64 |
Cold Shock Protein | 0.00 | 4.48 | 45.45 | 50.75 | 45.45 | 29.85 | 9.09 | 14.93 |
DNA-Binding Protein HU | 47.06 | 51.32 | 22.35 | 25.00 | 24.71 | 9.21 | 5.88 | 14.47 |
Ribosome-Binding Factor A | 41.51 | 38.89 | 16.04 | 14.81 | 33.96 | 32.41 | 8.49 | 13.89 |
NusG | 19.21 | 0.00 | 24.86 | 43.55 | 37.29 | 35.48 | 18.64 | 20.97 |
Protein RecA | 38.30 | 46.82 | 20.18 | 16.76 | 33.04 | 26.88 | 8.84 | 9.54 |
Thioredoxin | 31.43 | 29.31 | 21.90 | 22.41 | 22.86 | 26.72 | 23.81 | 21.55 |
CheW | 9.27 | 13.17 | 37.75 | 34.13 | 42.38 | 36.53 | 10.60 | 16.17 |
Adenylate Kinase | 52.22 | 49.07 | 14.78 | 14.49 | 22.66 | 22.43 | 10.34 | 14.02 |
Proteins | Hydrogen Bond Ratio | Salt Bridge Ratio |
---|---|---|
Hsp40 Chaperones | 0.50 | 0.65 |
Nitrogen Regulatory Protein | 0.70 | 0.63 |
Cold Shock Protein | 0.44 | 1.00 |
DNA-Binding Protein HU | 0.52 | 0.86 |
Ribosome-Binding Factor A | 0.55 | 1.00 |
NusG | 0.55 | 0.60 |
Protein RecA | 0.66 | 0.43 |
Thioredoxin | 0.48 | 0.31 |
CheW | 0.38 | 0.25 |
Adenylate Kinase | 0.48 | 0.40 |
Proteins | Average Bond Length (Å) | Average DHA Angle | ||
---|---|---|---|---|
Thermophilic | Non-Thermophilic | Thermophilic | Non-Thermophilic | |
Hsp40 Chaperones | 2.41 | 2.40 | 135.20 | 134.41 |
Nitrogen Regulatory Protein | 2.94 | 3.08 | 109.53 | 106.45 |
Cold Shock Protein | 2.25 | 2.99 | 135.85 | 108.01 |
DNA-Binding Protein HU | 3.00 | 3.00 | 108.30 | 109.00 |
Ribosome-Binding Factor A | 2.36 | 2.21 | 139.29 | 134.75 |
NusG | 2.34 | 2.34 | 135.82 | 136.37 |
Protein RecA | 3.02 | 3.04 | 109.23 | 108.02 |
Thioredoxin | 2.24 | 2.31 | 141.92 | 142.46 |
CheW | 2.30 | 2.36 | 133.03 | 142.06 |
Adenylate Kinase | 3.04 | 3.05 | 109.44 | 108.51 |
Protein Name | PDB ID | Organism Name | OGT |
---|---|---|---|
Hsp40 chaperones | 6PRP | Thermus thermophilus | 80 |
Hsp40 chaperones | 6PQM | Escherichia coli | 37 |
Nitrogen regulatory protein | 2EG1 | Aquifex aeolicus | 85 |
Nitrogen regulatory protein | 1PIL | Escherichia coli | 37 |
Cold shock protein | 1G6P | Thermotoga maritima | 80 |
Cold shock protein | 1CSP | Bacillus subtilis | 25–35 |
DNA-binding protein HU | 5EKA | Thermus thermophilus | 85 |
DNA-binding protein HU | 1MUL | Escherichia coli | 37 |
Ribosome-binding factor A | 2KZF | Thermotoga maritima | 90 |
Ribosome-binding factor A | 1KKG | Escherichia coli | 37 |
Transcription antitermination protein NusG | 2LQ8 | Thermotoga maritima | 80 |
Transcription antitermination protein NusG | 2MI6 | Mycobacterium tuberculosis | 30–32 |
Protein RecA | 3HR8 | Thermotoga maritima | 80 |
Protein RecA | 4OQF | Mycobacterium tuberculosis | 32 |
Thioredoxin | 1RQM | Alicyclobacillus acidocaldariu | 60–65 |
Thioredoxin | 2L4Q | Mycobacterium tuberculosis | 30–32 |
Chemotaxis protein CheW | 1K0S | Thermotoga maritima | 80 |
Chemotaxis protein CheW | 2HO9 | Escherichia coli | 37 |
Adenylate kinase | 2RGX | Aquifex aeolicus | 85 |
Adenylate kinase | 4K46 | Photobacterium profundum | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, Z.; Zulfiqar, H.; Tang, L.; Lin, H. A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. Int. J. Mol. Sci. 2022, 23, 10116. https://doi.org/10.3390/ijms231710116
Ahmed Z, Zulfiqar H, Tang L, Lin H. A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. International Journal of Molecular Sciences. 2022; 23(17):10116. https://doi.org/10.3390/ijms231710116
Chicago/Turabian StyleAhmed, Zahoor, Hasan Zulfiqar, Lixia Tang, and Hao Lin. 2022. "A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins" International Journal of Molecular Sciences 23, no. 17: 10116. https://doi.org/10.3390/ijms231710116
APA StyleAhmed, Z., Zulfiqar, H., Tang, L., & Lin, H. (2022). A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. International Journal of Molecular Sciences, 23(17), 10116. https://doi.org/10.3390/ijms231710116