Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expression of the IH Gene in L. citreum for Hydrolysis of Isoflavone Glycosides
2.2. Evaluation of Hydrolysis of Isoflavone Glycosides with Engineered L. citreum
2.3. Hydrolysis of Isoflavone Glycosides in Fermented Soymilk by Engineered L. citreum
3. Materials and Methods
3.1. Bacterial Strains, Plasmids, and Growth Conditions
3.2. Plasmid Construction
3.3. Protein Preparation and Analysis
3.4. In Vivo β-Glucosidase Activity Assay
3.5. Whole-Cell Bioconversion in a Shake Flask
3.6. Soymilk Fermentation
3.7. HPLC Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
IH | Isoflavone hydrolase from Bifidobacterium animalis subsp. lactis SH5 |
References
- Voicescu, M.; Hellwig, P.; Meghea, A. Antioxidant activity of phytoestrogen type isoflavones in biomimetic environments. N. J. Chem. 2016, 40, 606–612. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy isoflavone: The multipurpose phytochemical. Biomed. Rep. 2013, 1, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbuewu, I.; Uchegbu, M.; Emenalom, O.; Okoli, I.; Iloeje, M. Overview of the chemistry of soy isoflavones, potential threats and potential therapeutic benefits. Electron. J. Environ. Agric. Food Chem. 2010, 9, 682–695. [Google Scholar]
- Yoon, G.-A.; Park, S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract. 2014, 8, 618–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donkor, O.; Shah, N.P. Production of β-Glucosidase and Hydrolysis of Isoflavone Phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in Soymilk. J. Food Sci. 2008, 73, M15–M20. [Google Scholar] [CrossRef]
- Hur, H.-G.; Lay, J.O., Jr.; Beger, R.D.; Freeman, J.P.; Rafii, F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol. 2000, 174, 422–428. [Google Scholar] [CrossRef]
- Gaya, P.; Peirotén, Á.; Medina, M.; Landete, J.M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int. J. Food Sci. Nutr. 2016, 67, 117–124. [Google Scholar] [CrossRef]
- Lee, J.H.; Choung, M.-G. Determination of optimal acid hydrolysis time of soybean isoflavones using drying oven and microwave assisted methods. Food Chem. 2011, 129, 577–582. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Comparison of different methods for the determination of the oil content in oilseeds. J. Am. Oil Chem. Soc. 2001, 78, 95–102. [Google Scholar] [CrossRef]
- Da Silva, L.H.; Celeghini, R.M.; Chang, Y.K. Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chem. 2011, 128, 640–644. [Google Scholar] [CrossRef]
- Liu, C.T.; Erh, M.H.; Lin, S.P.; Lo, K.Y.; Chen, K.I.; Cheng, K.C. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. J. Sci. Food Agric. 2016, 96, 3779–3786. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-I.; Yao, Y.; Chen, H.-J.; Lo, Y.-C.; Yu, R.-C.; Cheng, K.-C. Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer. J. Food. Drug. Anal. 2016, 24, 788–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, C.P.; Drumond, M.M.; Batista, V.L.; Nunes, A.; Mancha-Agresti, P.; Azevedo, V. Vector development timeline for mucosal vaccination and treatment of disease using Lactococcus lactis and design approaches of next generation food grade plasmids. Front. Microbiol. 2018, 9, 1805. [Google Scholar] [CrossRef] [PubMed]
- Michon, C.; Langella, P.; Eijsink, V.; Mathiesen, G.; Chatel, J. Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications. Microb. Cell. Fact. 2016, 15, 70. [Google Scholar] [CrossRef]
- Börner, R.A.; Kandasamy, V.; Axelsen, A.M.; Nielsen, A.T.; Bosma, E.F. Genome editing of lactic acid bacteria: Opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 2018, 366, fny291. [Google Scholar] [CrossRef]
- Sybesma, W.; Burgess, C.; Starrenburg, M.; van Sinderen, D.; Hugenholtz, J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 2004, 6, 109–115. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.; Zhang, S.; Shang, W.; Gao, X.; Wang, H. Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control 2014, 41, 1–6. [Google Scholar] [CrossRef]
- Havas, P.; Kun, S.; Perger-Mészáros, I.; Rezessy-Szabó, J.M.; Nguyen, Q.D. Performances of new isolates of Bifidobacterium on fermentation of soymilk. Acta Microbiol. Immunol. Hung. 2015, 62, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Li, L.; Shin, S.Y.; Lee, K.; Han, N. Production of natural antimicrobial compound d-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active d-lactate dehydrogenase. Lett. Appl. Microbiol. 2014, 59, 404–411. [Google Scholar] [CrossRef]
- Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.; Hugenholtz, J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl. Environ. Microbiol. 2003, 69, 4542–4548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.-K.; Ahn, S.-B.; Lee, S.-M.; Shon, M.-Y.; Kim, S.-Y.; Shin, M.-S. Immune-enhancing effects of Leuconostoc strains isolated from Kimchi. J. Biomed. Res. 2012, 13, 353–356. [Google Scholar]
- Eom, H.-J.; Moon, J.-S.; Seo, E.-Y.; Han, N.S. Heterologous expression and secretion of Lactobacillus amylovorus α-amylase in Leuconostoc citreum. Biotechnol. Lett. 2009, 31, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Jang, S.H.; Cha, J.W.; Jeong, K.J. Development of CRISPR interference (CRISPRi) platform for metabolic engineering of Leuconostoc citreum and its application for engineering riboflavin biosynthesis. Int. J. Mol. Sci. 2020, 21, 5614. [Google Scholar] [CrossRef]
- Jang, S.H.; Cha, J.W.; Han, N.S.; Jeong, K.J. Development of bicistronic expression system for the enhanced and reliable production of recombinant proteins in Leuconostoc citreum. Sci. Rep. 2018, 8, 8852. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.J.; Ryu, A.J.; Li, L.; Han, N.S.; Jeong, K.J. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microb. Cell. Fact. 2016, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Verma, A.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Ismail, B.; Hayes, K. β-Glycosidase activity toward different glycosidic forms of isoflavones. J. Agric. Food Chem. 2005, 53, 4918–4924. [Google Scholar] [CrossRef]
- Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am. J. Clin. Nutr. 2003, 77, 1459–1465. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Nurmi, T.; Adlercreutz, H. A simplified HPLC method for total isoflavones in soy products. Food Chem. 2004, 87, 297–305. [Google Scholar] [CrossRef]
- Youn, S.Y.; Park, M.S.; Ji, G.E. Identification of the β-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 2012, 22, 1714–1723. [Google Scholar]
- Strahsburger, E.; de Lacey, A.M.L.; Marotti, I.; DiGioia, D.; Biavati, B.; Dinelli, G. In vivo assay to identify bacteria with β-glucosidase activity. Electron. J. Biotechnol. 2017, 30, 83–87. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Sukumaran, R.K.; Larroche, C.; Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013, 127, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Chen, Y.Y.; Gonzalez, R.; Peterson, T.C.; Zhao, H.; Baltz, R.H. Synthetic biology advances and applications in the biotechnology industry: A perspective. J. Ind. Microbiol. Biotechnol. 2018, 45, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Jeong, K.J. Recent advances in synthetic biology for the engineering of lactic acid bacteria. Biotechnol. Bioprocess Eng. 2020, 25, 962–973. [Google Scholar] [CrossRef]
- Bae, E.-A.; Park, S.-Y.; KIM, D.-H. Constitutive β-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 2000, 23, 1481–1485. [Google Scholar] [CrossRef]
- Bae, E.-A.; Han, M.J.; Choo, M.-K.; Park, S.-Y.; Kim, D.-H. Metabolism of 20 (S)-and 20 (R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull. 2002, 25, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.-A.; Han, M.J.; Kim, E.-J.; Kim, D.-H. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 2004, 27, 61–67. [Google Scholar] [CrossRef]
- Cheng, D.-L.; Hashimoto, K.; Uda, Y. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem. Toxicol. 2004, 42, 351–357. [Google Scholar] [CrossRef]
- Dabek, M.; McCrae, S.I.; Stevens, V.J.; Duncan, S.H.; Louis, P. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008, 66, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Marotti, I.; Bonetti, A.; Biavati, B.; Catizone, P.; Dinelli, G. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 2007, 55, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.-G.; Rafii, F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 2000, 192, 21–25. [Google Scholar] [CrossRef]
- Wang, X.-L.; Hur, H.-G.; Lee, J.H.; Kim, K.T.; Kim, S.-I. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microbiol. 2005, 71, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-L.; Shin, K.-H.; Hur, H.-G.; Kim, S.-I. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. J. Biotechnol. 2005, 115, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Otgonbayar, G.-E.; Eom, H.-J.; Kim, B.-S.; Ko, J.-H.; Han, N.-S. Mannitol production by Leuconostoc citreum KACC 91348P isolated from kimchi. J. Microbiol. Biotechnol. 2011, 21, 968–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Lee, M.; Jung, J.; Kim, J. pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid 2005, 54, 184–189. [Google Scholar] [CrossRef]
Strain | pNPG (mg/L) | pNP a (mg/L) | Specific Activity a (µmol × min−1 × g of Dry Weight−1 × L−1) |
---|---|---|---|
L. citreum wild type | 400 | 140.2 ± 2.8 | 5.1 ± 0.4 |
800 | 275.5 ± 7.0 | 7.7 ± 0.5 | |
1600 | 617.3 ± 10.0 | 22.4 ± 2.8 | |
L. citreum harboring pCB4270V4-IH | 400 | 227.6 ± 17.4 | 9.9 ± 1.7 |
800 | 443.4 ± 9.2 | 14.9 ± 2.2 | |
1600 | 800.6 ± 29.2 | 36.5 ± 2.1 |
Product | Concentration a (µM) | Conversion Rate a (µM/h) | Conversion Yield a (mol/mol, %) |
---|---|---|---|
Genistein | 6.75 ± 0.07 | 0.23 ± 0.0 | 95.9 ± 0.1 |
Daidzein | 4.72 ± 0.06 | 0.16 ± 0.0 | 96.9 ± 0.0 |
Glycitein | 0.68 ± 0.02 | 0.02 ± 0.0 | 90.0 ± 4.4 |
Strains/Plasmids | Description | Reference |
---|---|---|
Strains | ||
E. coli XL1-Blue | recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1lac [F’ proAB lacIqZ DM15 Tn10 (Tetr)] | Stratagene a |
L. citreum CB2567 | Wild type | [45] |
Plasmids | ||
pCB4270 | L. citreum-E. coli shuttle vector, P710, AmpR, CmR | [26] |
pCB4270V4 | L. citreum-E. coli shuttle vector, P710V4, AmpR, CmR | [24] |
pCB4270V4-IH | pCB4720V4 derivative carrying IH encoding gene, P710V4, eSD2, IH, AmpR, CmR | This study |
Primer Name | Sequence (5′ to 3′) |
---|---|
F-IH | GATGAAAGCAATTTTCGTACTGAAACATCTTAATCATGGAAGGGAGGGTTTTTAATGACGATGACGTTCCCGAA |
R-IH | GCCTAGTGGTGGTGGTGGTGGTGCTTGGCGGAGTGCTCGGCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Jeong, K.J. Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms. Int. J. Mol. Sci. 2022, 23, 9568. https://doi.org/10.3390/ijms23179568
Son J, Jeong KJ. Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms. International Journal of Molecular Sciences. 2022; 23(17):9568. https://doi.org/10.3390/ijms23179568
Chicago/Turabian StyleSon, Jaewoo, and Ki Jun Jeong. 2022. "Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms" International Journal of Molecular Sciences 23, no. 17: 9568. https://doi.org/10.3390/ijms23179568
APA StyleSon, J., & Jeong, K. J. (2022). Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms. International Journal of Molecular Sciences, 23(17), 9568. https://doi.org/10.3390/ijms23179568