Synchrotron Infrared Microspectroscopy for Stem Cell Research
Abstract
:1. Introduction
2. Brief Overview of Synchrotron Infrared Microspectroscopy in Stem Cell Researches
2.1. Development of Synchrotron-Based FTIR Microscopy and Imaging
2.2. Data Processing of Synchrotron-Based FTIR Microscopy and Imaging
3. Stem Cell Differentiation
3.1. Adipogenic and Osteogenic Differentiation
3.2. Chondrogenic Differentiation
3.3. Neurogenic Differentiation
4. Cancer Stem Cells
5. Putative Stem Cell in Normal Cells
6. Stem Cells Related Regeneration
7. Other Studies
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weissman, I.L. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proc. Natl. Acad. Sci. USA 2015, 112, 8922–8928. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. The Hand Book of Biomarkers, 2nd ed.; Humana: New York, NY, USA, 2017; pp. 15–18. [Google Scholar]
- Dumas, P.; Martin, M.C.; Carr, G.L. IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation. In Synchrotron Light Sources and Free-Electron Lasers; Jaeschke, E., Khan, S., Schneider, J., Hastings, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 2059–2113. [Google Scholar]
- Roman, M.; Wrobel, T.P.; Paluszkiewicz, C.; Kwiatek, W.M. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. J. Biophotonics 2020, 13, e201960094. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.D.; Williams, G.P. Infrared synchrotron radiation from electron storage rings. Appl. Opt. 1983, 22, 2914–2923. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol. 2022, 206, 175–187. [Google Scholar] [CrossRef]
- Cao, J.; Ng, E.S.; McNaughton, D.; Stanley, E.G.; Elefanty, A.G.; Tobin, M.J.; Heraud, P. The characterisation of pluripotent and multipotent stem cells using Fourier transform infrared microspectroscopy. Int. J. Mol. Sci. 2013, 14, 17453–17476. [Google Scholar] [CrossRef] [PubMed]
- Ravera, F.; Efeoglu, E.; Byrne, H.J. Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020, 25, 5554. [Google Scholar] [CrossRef]
- Chan, K.L.A.; Fale, P.L.V.; Atharawi, A.; Wehbe, K.; Cinque, G. Subcellular mapping of living cells via synchrotron microFTIR and ZnS hemispheres. Anal. Bioanal. Chem. 2018, 410, 6477–6487. [Google Scholar] [CrossRef]
- Jamin, N.; Dumas, P.; Monciut, J.; Fridman, W.-H.; Teillaud, J.-L.; Carr, G.L.; Williams, G.P. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc. Natl. Acad. Sci. USA 1998, 95, 4837–4840. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, W.; Liu, Z.; Liu, J.; Cheng, J.; Li, Y.; Li, X.; Hu, J.; Lu, J. Single-Cell Infrared Microspectroscopy Quantifies Dynamic Heterogeneity of Mesenchymal Stem Cells during Adipogenic Differentiation. Anal. Chem. 2021, 93, 671–676. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, W.; Wang, Y.; Liu, J.; Liu, Z.; Li, Y.; Li, X.; Hu, J.; Lu, J. How many cells are enough for single-cell infrared spectroscopy? Chem. Commun. (Camb.) 2020, 56, 3773–3776. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Qian, J.; Pan, X.; Li, X.; Chen, F.; Hu, J.; Lu, J. Single-cell infrared phenomics: Phenotypic screening with infrared microspectroscopy. Chem. Commun. (Camb.) 2020, 56, 13237–13240. [Google Scholar] [CrossRef] [PubMed]
- Chonanant, C.; Jearanaikoon, N.; Leelayuwat, C.; Limpaiboon, T.; Tobin, M.J.; Jearanaikoon, P.; Heraud, P. Characterisation of chondrogenic differentiation of human mesenchymal stem cells using synchrotron FTIR microspectroscopy. Analyst 2011, 136, 2542–2551. [Google Scholar] [CrossRef] [PubMed]
- Doncel-Perez, E.; Ellis, G.; Sandt, C.; Shuttleworth, P.S.; Bastida, A.; Revuelta, J.; Garcia-Junceda, E.; Fernandez-Mayoralas, A.; Garrido, L. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Anal. Bioanal. Chem. 2018, 410, 3649–3660. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tang, Y.; Chen, F.; Liu, X.; Liu, Z.; Zhong, J.; Hu, J.; Lü, J. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level. Biochem. Biophys. Res. Commun. 2016, 478, 1286–1291. [Google Scholar] [CrossRef]
- Lorthongpanich, C.; Thumanu, K.; Tangkiettrakul, K.; Jiamvoraphong, N.; Laowtammathron, C.; Damkham, N.; U-pratya, Y.; Issaragrisil, S. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs. Stem Cell Res. Ther. 2019, 10, 402. [Google Scholar] [CrossRef]
- Tanthanuch, W.; Thumanu, K.; Lorthongpanich, C.; Parnpai, R.; Heraud, P. Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy. J. Mol. Struct. 2010, 967, 189–195. [Google Scholar] [CrossRef]
- Hughes, C.; Liew, M.; Sachdeva, A.; Bassan, P.; Dumas, P.; Hart, C.A.; Brown, M.D.; Clarke, N.W.; Gardner, P. SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 2010, 135, 3133–3141. [Google Scholar] [CrossRef]
- Kelly, J.G.; Nakamura, T.; Kinoshita, S.; Fullwood, N.J.; Martin, F.L. Evidence for a stem-cell lineage in corneal squamous cell carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy and multivariate analysis. Analyst 2010, 135, 3120–3125. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzai, A.A.; Patel, I.I.; Veronesi, G.; Martin-Hirsch, P.L.; Llabjani, V.; Cotte, M.; Stringfellow, H.F.; Martin, F.L. Determination using synchrotron radiation-based Fourier transform infrared microspectroscopy of putative stem cells in human adenocarcinoma of the intestine: Corresponding benign tissue as a template. Appl. Spectrosc. 2014, 68, 812–822. [Google Scholar] [CrossRef]
- Uckermann, O.; Galli, R.; Anger, M.; Herold-Mende, C.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. Label-free identification of the glioma stem-like cell fraction using Fourier-transform infrared spectroscopy. Int. J. Radiat. Biol. 2014, 90, 710–717. [Google Scholar] [CrossRef]
- Kenig, S.; Bedolla, D.E.; Birarda, G.; Faoro, V.; Mitri, E.; Vindigni, A.; Storici, P.; Vaccari, L. Fourier transform infrared microspectroscopy reveals biochemical changes associated with glioma stem cell differentiation. Biophys. Chem. 2015, 207, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev. 2015, 29, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Yousef, I.; Seksek, O.; Gil, S.; Prezado, Y.; Sulé-Suso, J.; Martínez-Rovira, I. Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: First FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst 2016, 141, 2238–2249. [Google Scholar] [CrossRef] [PubMed]
- Nuez-Martinez, M.; Pedrosa, L.; Martinez-Rovira, I.; Yousef, I.; Diao, D.; Teixidor, F.; Stanzani, E.; Martinez-Soler, F.; Tortosa, A.; Sierra, A.; et al. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. Int. J. Mol. Sci. 2021, 22, 9937. [Google Scholar] [CrossRef]
- Walsh, M.J.; Fellous, T.G.; Hammiche, A.; Lin, W.R.; Fullwood, N.J.; Grude, O.; Bahrami, F.; Nicholson, J.M.; Cotte, M.; Susini, J.; et al. Fourier transform infrared microspectroscopy identifies symmetric PO(2)(-) modifications as a marker of the putative stem cell region of human intestinal crypts. Stem Cells 2008, 26, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.J.; Hammiche, A.; Fellous, T.G.; Nicholson, J.M.; Cotte, M.; Susini, J.; Fullwood, N.J.; Martin-Hirsch, P.L.; Alison, M.R.; Martin, F.L. Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy. Stem Cell Res. 2009, 3, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kelly, J.G.; Trevisan, J.; Cooper, L.J.; Bentley, A.J.; Carmichael, P.L.; Scott, A.D.; Cotte, M.; Susini, J.; Martin-Hirsch, P.L.; et al. Microspectroscopy of spectral biomarkers associated with human corneal stem cells. Mol. Vis. 2010, 16, 359–368. [Google Scholar]
- Fogarty, S.W.; Patel, I.I.; Trevisan, J.; Nakamura, T.; Hirschmugl, C.J.; Fullwood, N.J.; Martin, F.L. Sub-cellular spectrochemical imaging of isolated human corneal cells employing synchrotron radiation-based Fourier-transform infrared microspectroscopy. Analyst 2013, 138, 240–248. [Google Scholar] [CrossRef]
- Theophilou, G.; Fogarty, S.W.; Trevisan, J.; Strong, R.J.; Heys, K.A.; Patel, I.I.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Spatial and temporal age-related spectral alterations in benign human breast tissue. J. Mol. Struct. 2016, 1106, 390–398. [Google Scholar] [CrossRef]
- Theophilou, G.; Morais, C.L.M.; Halliwell, D.E.; Lima, K.M.G.; Drury, J.; Martin-Hirsch, P.L.; Stringfellow, H.F.; Hapangama, D.K.; Martin, F.L. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands. Anal. Bioanal. Chem. 2018, 410, 4541–4554. [Google Scholar] [CrossRef]
- Aksoy, C.; Severcan, F. Infrared Spectroscopy and Imaging in Stem Cells and Aging Research. Methods Mol. Biol. 2019, 2045, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef]
- Sandt, C.; Frederick, J.; Dumas, P. Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy. J. Biophotonics 2013, 6, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Thumanu, K.; Tanthanuch, W.; Ye, D.; Sangmalee, A.; Lorthongpanich, C.; Parnpai, R.; Heraud, P. Spectroscopic signature of mouse embryonic stem cell-derived hepatocytes using synchrotron Fourier transform infrared microspectroscopy. J. Biomed. Opt. 2011, 16, 057005. [Google Scholar] [CrossRef]
- Ye, D.; Heraud, P.; Parnpai, R.; Li, T. Reversal of Experimental Liver Damage after Transplantation of Stem-Derived Cells Detected by FTIR Spectroscopy. Stem Cells Int. 2017, 2017, 4585169. [Google Scholar] [CrossRef]
- Heraud, P.; Ng, E.S.; Caine, S.; Yu, Q.C.; Hirst, C.; Mayberry, R.; Bruce, A.; Wood, B.R.; McNaughton, D.; Stanley, E.G.; et al. Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells. Stem Cell Res. 2010, 4, 140–147. [Google Scholar] [CrossRef]
- Sule-Suso, J.; Forsyth, N.R.; Untereiner, V.; Sockalingum, G.D. Vibrational spectroscopy in stem cell characterisation: Is there a niche? Trends Biotechnol. 2014, 32, 254–262. [Google Scholar] [CrossRef]
- Doherty, J.; Raoof, A.; Hussain, A.; Wolna, M.; Cinque, G.; Brown, M.; Gardner, P.; Denbigh, J. Live single cell analysis using synchrotron FTIR microspectroscopy: Development of a simple dynamic flow system for prolonged sample viability. Analyst 2019, 144, 997–1007. [Google Scholar] [CrossRef]
- Holman, H.Y.; Martin, M.C.; McKinney, W.R. Synchrotron-Based FTIR Spectromicroscopy: Cytotoxicity and Heating Considerations. J. Biol. Phys. 2003, 29, 275–286. [Google Scholar] [CrossRef]
- Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H.J.; Dumas, P.; Gazi, E.; Brown, M.; Clarke, N.; Gardner, P. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 2010, 135, 268–277. [Google Scholar] [CrossRef]
- Goormaghtigh, E. Infrared Spectroscopy: Data Analysis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1049–1064. [Google Scholar]
- Bec, K.B.; Grabska, J.; Huck, C.W. Biomolecular and bioanalytical applications of infrared spectroscopy—A review. Anal. Chim. Acta 2020, 1133, 150–177. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Li, L. Dimension reduction for high-dimensional data. In Methods in Molecular Biology; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2010; Volume 620, pp. 417–434. [Google Scholar]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.W.; Marcon, B.H.; Dallagiovanna, B.; Shigunov, P. Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front. Cell Dev. Biol. 2020, 8, 561. [Google Scholar] [CrossRef]
- Liu, L.; Michowski, W.; Kolodziejczyk, A.; Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 2019, 21, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target 2020, 5, 8. [Google Scholar] [CrossRef]
- Gargett, C.E.; Masuda, H. Adult stem cells in the endometrium. Mol. Hum. Reprod. 2010, 16, 818–834. [Google Scholar] [CrossRef]
- Kidman, C.J.; Mamotte, C.D.S.; Eynaud, M.A.; Reinhardt, J.; Vongsvivut, J.; Tobin, M.J.; Hackett, M.J.; Graham, R.M. Tracking biochemical changes induced by iron loading in AML12 cells with synchrotron live cell, time-lapse infrared microscopy. Biochem. J. 2021, 478, 1227–1239. [Google Scholar] [CrossRef]
- Luanpitpong, S.; Janan, M.; Thumanu, K.; Poohadsuan, J.; Rodboon, N.; Klaihmon, P.; Issaragrisil, S. Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers 2019, 11, 576. [Google Scholar] [CrossRef]
- Adachi, T.; Boschetto, F.; Miyamoto, N.; Yamamoto, T.; Marin, E.; Zhu, W.; Kanamura, N.; Tahara, Y.; Akiyoshi, K.; Mazda, O.; et al. In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging. Materials 2020, 13, 4275. [Google Scholar] [CrossRef]
- Fiori, F.; Giuliani, A.; Manescu, C.; Renghini, F.; Rustichell, I. Synchroton Radiation and Nanotechnology for Stem Cell Researchers; Humana Press: Ottawa, ON, Canada, 2012; pp. 81–102. [Google Scholar]
- Dazzi, A.; Prater, C.B. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem. Rev. 2017, 117, 5146–5173. [Google Scholar] [CrossRef] [PubMed]
- Kastner, B.; Johnson, C.M.; Hermann, P.; Kruskopf, M.; Pierz, K.; Hoehl, A.; Hornemann, A.; Ulrich, G.; Fehmel, J.; Patoka, P.; et al. Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains. ACS Omega 2018, 3, 4141–4147. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.C.; Dabat-Blondeau, C.; Unger, M.; Sedlmair, J.; Parkinson, D.Y.; Bechtel, H.A.; Illman, B.; Castro, J.M.; Keiluweit, M.; Buschke, D.; et al. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat. Methods 2013, 10, 861–864. [Google Scholar] [CrossRef] [PubMed]
Number | Absorption Bands (cm−1) | Band Assignments | References |
---|---|---|---|
1 | ~1080 | νs(PO2−) of nucleic acids | [21,27,28,30,32,33] |
2 | 1225–1238 | νas(PO2−) of nucleic acids | [25,27,28,30] |
3 | ~1245 | S-O stretching of proteoglycan | [14] |
4 | ~1443 | νas(CH3) of protein | [30] |
5 | 1550–1580 | amide II | [21,30,32] |
6 | 1630–1650 | amide I | [21,30,32,36] |
7 | 1714–1741 | Ester, C=O stretching of nucleic acids and lipids | [17,29] |
8 | ~2850 | νs(CH2)of lipids | [17,36] |
9 | ~2923 | νas(CH3) of lipids | [17,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Gao, X.; Wang, Y.-D.; Li, X.-L.; Hu, J.; Lü, J.-H. Synchrotron Infrared Microspectroscopy for Stem Cell Research. Int. J. Mol. Sci. 2022, 23, 9878. https://doi.org/10.3390/ijms23179878
Qian J, Gao X, Wang Y-D, Li X-L, Hu J, Lü J-H. Synchrotron Infrared Microspectroscopy for Stem Cell Research. International Journal of Molecular Sciences. 2022; 23(17):9878. https://doi.org/10.3390/ijms23179878
Chicago/Turabian StyleQian, Jiang, Xue Gao, Ya-Di Wang, Xue-Ling Li, Jun Hu, and Jun-Hong Lü. 2022. "Synchrotron Infrared Microspectroscopy for Stem Cell Research" International Journal of Molecular Sciences 23, no. 17: 9878. https://doi.org/10.3390/ijms23179878
APA StyleQian, J., Gao, X., Wang, Y. -D., Li, X. -L., Hu, J., & Lü, J. -H. (2022). Synchrotron Infrared Microspectroscopy for Stem Cell Research. International Journal of Molecular Sciences, 23(17), 9878. https://doi.org/10.3390/ijms23179878