omicsGAT: Graph Attention Network for Cancer Subtype Analyses
Abstract
:1. Introduction
2. Results
2.1. Experiments on TCGA Cancer Patient Samples
2.1.1. Datasets and Preprocessing
2.1.2. omicsGAT Improved Overall Cancer Outcome Prediction
2.1.3. omicsGAT Improved Cancer Patient Stratification
2.2. Experimentation on Single-Cell RNA-seq Data
2.2.1. Dataset and Preprocessing
2.2.2. Single Cell Clustering
3. Discussion
4. Methods
4.1. Graph Attention Network
4.2. omicsGAT Classifier
4.3. omicsGAT Clustering
4.4. Baseline Models Used for Comparison
4.4.1. Baselines for Classification Tasks
4.4.2. Baselines for Clustering Tasks
4.5. Evaluation Metrics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, S.C. News feature: Capturing cancer’s complexity. Proc. Natl. Acad. Sci. USA 2015, 112, 4509–4511. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; et al. The growing role of precision and personalized medicine for cancer treatment. Technology 2018, 6, 79–100. [Google Scholar] [CrossRef] [PubMed]
- Spitale, A.; Mazzola, P.; Soldini, D.; Mazzucchelli, L.; Bordoni, A. Breast cancer classification according to immunohistochemical markers: Clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann. Oncol. 2009, 20, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, J.; Bourne, P. Molecular classifications of breast carcinoma with similar terminology and different definitions: Are they the same? Hum. Pathol. 2008, 39, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; Van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010, 7, e1000279. [Google Scholar] [CrossRef]
- Marioni, J.C.; Mason, C.E.; Mane, S.M.; Stephens, M.; Gilad, Y. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008, 18, 1509–1517. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing 2016, 173, 346–354. [Google Scholar] [CrossRef]
- Gao, F.; Wang, W.; Tan, M.; Zhu, L.; Zhang, Y.; Fessler, E.; Vermeulen, L.; Wang, X. DeepCC: A novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis 2019, 8, 44. [Google Scholar] [CrossRef]
- Ahmed, K.T.; Sun, J.; Cheng, S.; Yong, J.; Zhang, W. Multi-omics data integration by generative adversarial network. Bioinformatics 2022, 38, 179–186. [Google Scholar] [CrossRef]
- Yu, X.; Yu, G.; Wang, J. Clustering cancer gene expression data by projective clustering ensemble. PLoS ONE 2017, 12, e0171429. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, Z.; Shah, M.; Zhang, T.; Fan, D.; Zhang, W. Network-based multi-task learning models for biomarker selection and cancer outcome prediction. Bioinformatics 2020, 36, 1814–1822. [Google Scholar] [CrossRef]
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 5–8 December 2005; Volume 2, pp. 729–734. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar] [CrossRef]
- Ahmed, K.T.; Park, S.; Jiang, Q.; Yeu, Y.; Hwang, T.; Zhang, W. Network-based drug sensitivity prediction. BMC Med. Genom. 2020, 13, 193. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, J.; Su, Y.; Zheng, C.H. scCDG: A Method based on DAE and GCN for scRNA-seq data Analysis. In IEEE/ACM Transactions on Computational Biology and Bioinformatics; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Zhang, W.; Chien, J.; Yong, J.; Kuang, R. Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precis. Oncol. 2017, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Tao, Y.; Cai, C.; Cohen, W.W.; Lu, X. From genome to phenome: Predicting multiple cancer phenotypes based on somatic genomic alterations via the genomic impact transformer. In Proceedings of the Pacific Symposium on Biocomputing 2020, Fairmont Orchid, HI, USA, 3–7 January 2020; World Scientific: Singapore, 2020; pp. 79–90. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Hu, J.; Cao, L.; Li, T.; Dong, S.; Li, P. GAT-LI: A graph attention network based learning and interpreting method for functional brain network classification. BMC Bioinform. 2021, 22, 379. [Google Scholar] [CrossRef]
- Linmei, H.; Yang, T.; Shi, C.; Ji, H.; Li, X. Heterogeneous graph attention networks for semi-supervised short text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 4821–4830. [Google Scholar]
- Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous graph attention network. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2022–2032. [Google Scholar]
- Qiu, J.; Tang, J.; Ma, H.; Dong, Y.; Wang, K.; Tang, J. Deepinf: Social influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2110–2119. [Google Scholar]
- Wu, Q.; Zhang, H.; Gao, X.; He, P.; Weng, P.; Gao, H.; Chen, G. Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2091–2102. [Google Scholar]
- Wang, H.; Zhou, G.; Liu, S.; Jiang, J.Y.; Wang, W. Drug-Target Interaction Prediction with Graph Attention networks. arXiv 2021, arXiv:2107.06099. [Google Scholar]
- Long, Y.; Wu, M.; Liu, Y.; Kwoh, C.K.; Luo, J.; Li, X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics 2020, 36, i779–i786. [Google Scholar] [CrossRef]
- Schapke, J.; Tavares, A.; Recamonde-Mendoza, M. EPGAT: Gene Essentiality Prediction With Graph Attention Networks. In IEEE/ACM Transactions on Computational Biology and Bioinformatics; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Zhao, J.; Wang, N.; Wang, H.; Zheng, C.; Su, Y. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder. Front. Genet. 2021, 12, 733906. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.; Fulton, R.; McLellan, M.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.; Fulton, L.; Dooling, D.; Ding, L.; Mardis, E.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, H. A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions. Stat. Its Interface 2013, 6, 167–173. [Google Scholar] [CrossRef]
- Zhang, W.; Ota, T.; Shridhar, V.; Chien, J.; Wu, B.; Kuang, R. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput. Biol. 2013, 9, e1002975. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Filbin, M.G.; Tirosh, I.; Hovestadt, V.; Shaw, M.L.; Escalante, L.E.; Mathewson, N.D.; Neftel, C.; Frank, N.; Pelton, K.; Hebert, C.M.; et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018, 360, 331–335. [Google Scholar] [CrossRef]
- Quah, F.X.; Hemberg, M. SC3s-efficient scaling of single cell consensus clustering to millions of cells. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ullah, F.; Ben-Hur, A. A self-attention model for inferring cooperativity between regulatory features. Nucleic Acids Res. 2021, 49, e77. [Google Scholar] [CrossRef] [PubMed]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Study: SARS-CoV-2 Antibodies. Available online: https://singlecell.broadinstitute.org/single_cell/study/SCP1317/sars-cov-2-antibodies (accessed on 1 August 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Fey, M.; Lenssen, J.E. Fast graph representation learning with PyTorch Geometric. arXiv 2019, arXiv:1903.02428. [Google Scholar]
Cancer Subtype | Method | AUC Score | SD |
---|---|---|---|
ER | SVM | 0.9089 * | 0.0414 |
Random Forest | 0.9177 * | 0.0408 | |
DNN | 0.9498 | 0.0337 | |
GCN | 0.9581 | 0.0289 | |
GraphSAGE | 0.9493 | 0.0288 | |
omicsGAT | 0.9636 | 0.0215 | |
PR | SVM | 0.8199 * | 0.0456 |
Random Forest | 0.8475 * | 0.0476 | |
DNN | 0.8741 * | 0.0405 | |
GCN | 0.8847 * | 0.0441 | |
GraphSAGE | 0.8875 | 0.0450 | |
omicsGAT | 0.9065 | 0.0439 | |
TN | SVM | 0.8905 * | 0.0614 |
Random Forest | 0.8515 * | 0.0609 | |
DNN | 0.9419 * | 0.0400 | |
GCN | 0.9492 | 0.0269 | |
GraphSAGE | 0.9527 | 0.0243 | |
omicsGAT | 0.9611 | 0.0219 |
Hyperparameter | Selection Set |
---|---|
No. of PCA components (features) selected | |
Embedding size of a head | |
No. of heads | |
Network density of adjacency matrix | |
No. of FC layers |
Input Data (Clustering Method) | NMI | NMI SD | ARI | ARI SD |
---|---|---|---|---|
gene expression (hierarchical) | 0.0515 | - | 0.0153 | - |
gene expression (k-means) | 0.4944 | 0.0171 | 0.4468 | 0.0548 |
PCA components (hierarchical) | 0.1222 | - | 0.0353 | - |
PCA components (k-means) | 0.4883 | 0.0176 | 0.4338 | 0.0388 |
DNN-based autoencoder (hierarchical) | 0.1471 | - | 0.0380 | - |
DNN-based autoencoder (k-means) | 0.4544 | 0.0164 | 0.4879 | 0.0301 |
GCN-based autoencoder (hierarchical) | 0.1697 | - | 0.1645 | - |
GCN-based autoencoder (k-means) | 0.5146 | 0.0164 | 0.4879 | 0.0025 |
adjacency matrix (hierarchical) | 0.5448 | - | 0.5505 | - |
omicsGAT embeddings (hierarchical) | 0.6147 | - | 0.6698 | - |
Matrix Type (Clustering Type) | NMI | NMI SD | ARI | ARI SD |
---|---|---|---|---|
gene expression (hierarchical) | 0.0055 | - | 0.0010 | - |
gene expression (k-means) | 0.5052 | 0.0176 | 0.4410 | 0.0145 |
PCA components (hierarchical) | 0.6146 | - | 0.5339 | - |
PCA components (k-means) | 0.5010 | 0.0016 | 0.4640 | 0.0013 |
DNN-based autoencoder (hierarchical) | 0.6304 | - | 0.5687 | - |
DNN-based autoencoder (k-means) | 0.6086 | 0.0226 | 0.5296 | 0.0384 |
GCN-based autoencoder (hierarchical) | 0.5366 | - | 0.4133 | - |
GCN-based autoencoder (k-means) | 0.5110 | 0.0431 | 0.3610 | 0.0568 |
SC3s | 0.6077 | - | 0.5457 | - |
adjacency matrix (hierarchical) | 0.5757 | - | 0.3982 | - |
omicsGAT embeddings (hierarchical) | 0.6584 | - | 0.6366 | - |
Dataset | Input Matrix | NMI | ARI |
---|---|---|---|
BLCA | adjacency matrix | 0.5448 | 0.5505 |
attention matrix | 0.5743 | 0.6373 | |
H3K27M | adjacency matrix | 0.5757 | 0.3982 |
attention matrix | 0.5788 | 0.4821 |
Name | Definition |
---|---|
n | number of samples (i.e., patients or cells) |
m | number of features (i.e., genes) |
p | embedding size for a single head |
h | number of heads |
input feature matrix | |
correlation-based adjacency matrix of samples | |
weight matrix of a single head | |
attention weight matrix of a single head | |
attention coefficients of a single head | |
embedding matrix learned from the model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baul, S.; Ahmed, K.T.; Filipek, J.; Zhang, W. omicsGAT: Graph Attention Network for Cancer Subtype Analyses. Int. J. Mol. Sci. 2022, 23, 10220. https://doi.org/10.3390/ijms231810220
Baul S, Ahmed KT, Filipek J, Zhang W. omicsGAT: Graph Attention Network for Cancer Subtype Analyses. International Journal of Molecular Sciences. 2022; 23(18):10220. https://doi.org/10.3390/ijms231810220
Chicago/Turabian StyleBaul, Sudipto, Khandakar Tanvir Ahmed, Joseph Filipek, and Wei Zhang. 2022. "omicsGAT: Graph Attention Network for Cancer Subtype Analyses" International Journal of Molecular Sciences 23, no. 18: 10220. https://doi.org/10.3390/ijms231810220
APA StyleBaul, S., Ahmed, K. T., Filipek, J., & Zhang, W. (2022). omicsGAT: Graph Attention Network for Cancer Subtype Analyses. International Journal of Molecular Sciences, 23(18), 10220. https://doi.org/10.3390/ijms231810220