Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies
Abstract
:1. Introduction
2. Results
2.1. Correlative Confocal and STED Microscopy
2.2. STORM Imaging
2.3. STORMGraph Analysis of nAChR Nanoclusters
2.4. STORMGraph + ASTRICS Analysis of nAChR Nanoclusters
2.5. Comparison between STED and STORM Parameters
2.6. Nanocluster Distribution in the Peripheral and Central Regions of the Coverglass-Adhered Plasmalemma
2.7. ASTRICS for Low Dimensional Data and Its Combination with STORMGraph
3. Discussion
3.1. The Idea behind Complementary Correlative Microscopy Approaches
3.2. The Alexa Fluor 647 Fluorophore and Imaging Conditions
3.3. STORM Nanocluster Metrics
3.4. ASTRICS for Low Dimensional Data and Its Combination with STORMGraph
3.5. STORM Localizations Filtered by Photons Emitted Revealed the Occurrence of a Mesoscale Distribution Similar to That Directly Apparent in STED Samples
3.6. Complementarity of Nanoscopies, Biosensors, and Biological Implications of the Findings
4. Material and Methods
4.1. Materials
4.2. Cell Culture
4.3. Cell-Surface Fluorescence Staining of nAChRs
4.4. Single-Molecule Stochastic Optical Reconstruction Microscopy (STORM) Single-Molecule Localization Microscopy (SMLM)
4.5. STED Nanoscopy Imaging
4.6. Superresolution Data Analysis
4.6.1. Sub-Diffraction Coordinates of STED Superresolution Images in Fixed Specimens Stained with Alexa Fluor 647-BTX or Alexa Fluor 647-mAb
4.6.2. Single-Molecule STORM Localization in Specimens Stained with Alexa Fluor 647-BTX or Alexa Fluor 647-mAb
4.6.3. Nanocluster/STED Analysis Using STORMGraph
4.6.4. Nanocluster Analysis Using the Combination of STORMGraph + ASTRICS
4.6.5. Cluster Shape Analysis Using an Elliptic Fitting Algorithm
4.6.6. Inter-Particle Distance Using Delaunay Triangulation
4.6.7. Nearest Particle Distance Analysis
4.6.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albuquerque, E.X.; Barnard, E.A.; Porter, C.W.; Warnick, J.E. The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proc. Natl. Acad. Sci. USA 1974, 71, 2818–2822. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, M.M.; Marchaterre, M.; Harris, R. Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle: Evaluated by using a scanning electron microscope autoradiographic procedure. J. Cell Biol. 1988, 106, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- Barrantes, F.J. Muscle endplate cholinoreceptors. Pharmac. Ther. 1988, 38, 331–385. [Google Scholar] [CrossRef]
- Morise, J.; Suzuki, K.G.N.; Kitagawa, A.; Wakazono, Y.; Takamiya, K.; Tsunoyama, T.A.; Nemoto, Y.L.; Takematsu, H.; Kusumi, A.; Oka, S. AMPA receptors in the synapse turnover by monomer diffusion. Nat. Commun. 2019, 10, 5245. [Google Scholar] [CrossRef] [PubMed]
- Dahan, M.; Lévi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003, 302, 442–445. [Google Scholar] [CrossRef]
- Deutsch, E.; Weigel, A.V.; Akin, E.J.; Fox, P.; Hansen, G.; Haberkorn, C.J.; Loftus, R.; Krapf, D.; Tamkun, M.M. Kv2. 1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol. Biol. Cell 2012, 23, 2917–2929. [Google Scholar] [CrossRef]
- Choquet, D.; Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 2003, 4, 251–265. [Google Scholar] [CrossRef]
- Choquet, D.; Triller, A. The dynamic synapse. Neuron 2013, 80, 691–703. [Google Scholar] [CrossRef]
- Weigel, A.V.; Fox, P.D.; Akin, E.J.; Ecklund, K.H.; Tamkun, M.M.; Krapf, D. Size of cell-surface Kv2. 1 domains is governed by growth fluctuations. Biophys. J. 2012, 103, 1727–1734. [Google Scholar] [CrossRef]
- Hell, S.W.; Sahl, S.J.; Bates, M.; Zhuang, X.; Heintzmann, R.; Booth, M.J.; Martin, J.; Bewersdorf, J.; Shtengel, G.; Hess, H.; et al. The 2015 super-resolution microscopy roadmap. J. Phys. D Appl. Phys. 2015, 48, 443001. [Google Scholar] [CrossRef]
- Kellner, R.R.; Baier, C.J.; Willig, K.I.; Hell, S.W.; Barrantes, F.J. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 2007, 144, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Almarza, G.; Sanchez, F.; Barrantes, F.J. Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS ONE 2014, 9, e100346. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.; Huang, B.; Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 2008, 12, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, A.; Camino, P.A.; Barrantes, F.J. Cholesterol modulates acetylcholine receptor diffusion by tuning confinement sojourns and nanocluster stability. Sci. Rep. 2018, 8, 11974. [Google Scholar] [CrossRef]
- Mosqueira, A.; Camino, P.A.; Barrantes, F.J. Antibody-induced crosslinking and cholesterol-sensitive, anomalous diffusion of nicotinic acetylcholine receptors. J. Neurochem. 2020, 152, 663–674. [Google Scholar] [CrossRef]
- Bates, M.; Huang, B.; Dempsey, G.T.; Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Sciense 2007, 317, 1749–1753. [Google Scholar] [CrossRef]
- Annibale, P.; Vanni, S.; Scarselli, M.; Rothlisberger, U.; Radenovic, A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Meth. 2011, 8, 527–528. [Google Scholar] [CrossRef]
- Scurll, J.M.; Abraham, L.; Wei Zheng, D.; Tafteh, R.; Chou, K.C.; Gold, M.R.; Coombs, D. StormGraph: A graph-based algorithm for quantitative clustering analysis of heterogeneous single-molecule localization microscopy data. bioRxiv 2020, 515627. [Google Scholar] [CrossRef]
- Scurll, J.M. Measuring inter-cluster similarities with Alpha Shape TRIangulation in loCal Subspaces (ASTRICS) facilitates visualization and clustering of high-dimensional data. arXiv 2022, arXiv:2107.07603. [Google Scholar]
- Roccamo, A.M.; Pediconi, M.F.; Aztiria, E.; Zanello, L.; Wolstenholme, A.; Barrantes, F.J. Cells defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcholine receptor. Eur. J. Neurosci. 1999, 11, 1615–1623. [Google Scholar] [CrossRef]
- Akkiraju, N.; Edelsbrunner, H.; Facello, M.; Fu, P.; Mücke, E.P.; Varela, C. Alpha shapes: Definition and software. In Proceedings of the GCG: International Computational Geometry Software Workshop, Minneapolis, MN, USA, 11 September 1995. [Google Scholar]
- Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Dudok, B.; Barna, L.; Ledri, M.; Szabo, S.I.; Szabadits, E.; Pinter, B.; Woodhams, S.G.; Henstridge, C.M.; Balla, G.Y.; Nyilas, R.; et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 2015, 18, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Barna, L.; Dudok, B.; Miczan, V.; Horvath, A.; Laszlo, Z.I.; Katona, I. Correlated confocal and super-resolution imaging by VividSTORM. Nat. Protoc. 2016, 11, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 2009, 106, 22287–22292. [Google Scholar] [CrossRef]
- Rossman, U.; Dadosh, T.; Eldar, Y.C.; Oron, D. cSPARCOM: Multi-detector reconstruction by confocal super-resolution correlation microscopy. Opt. Express 2021, 29, 12772–12786. [Google Scholar] [CrossRef] [PubMed]
- Damenti, M.; Coceano, G.; Pennacchietti, F.; Bodén, A.; Testa, I. STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells. Neurobiol. Dis. 2021, 155, 105361. [Google Scholar] [CrossRef]
- Inavalli, V.; Lenz, M.O.; Butler, C.; Angibaud, J.; Compans, B.; Levet, F.; Tonnesen, J.; Rossier, O.; Giannone, G.; Thoumine, O.; et al. A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat. Methods 2019, 16, 1263–1268. [Google Scholar] [CrossRef]
- Tam, J.; Merino, D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem. 2015, 135, 643–658. [Google Scholar] [CrossRef]
- Egger, B.; Sprecher, S.G. Super-Resolution STED and STORM/PALM Microscopy for Brain Imaging. In Advanced Optical Methods for Brain Imaging; Kao, F.-J., Keiser, G., Gogoi, A., Eds.; Springer: Singapore, 2019; pp. 245–258. [Google Scholar]
- Dempsey, G.T.; Vaughan, J.C.; Chen, K.H.; Bates, M.; Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 2011, 8, 1027–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Song, K.-H.; Lin, W.; Sun, C.; Schatz, G.C.; Zhang, H.F. Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 3914–3921. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, K.H.; Dong, B.; Davis, J.L.; Shao, G.; Sun, C.; Zhang, H.F. Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. Appl. Opt. 2019, 58, 2248–2255. [Google Scholar] [CrossRef] [PubMed]
- Donnert, G.; Eggeling, C.; Hell, S.W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 2007, 4, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Parajo, M.F.; Cambi, A.; Torreno-Pina, J.A.; Thompson, N.; Jacobson, K. Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 2014, 127 Pt 23, 4995–5005. [Google Scholar] [CrossRef]
- Raghupathy, R.; Anilkumar, A.A.; Polley, A.; Singh, P.P.; Yadav, M.; Johnson, C.; Suryawanshi, S.; Saikam, V.; Sawant, S.D.; Panda, A.; et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 2015, 161, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Varma, R.; Sarasij, R.C.; Ira; Gousset, K.; Krishnamoorthy, G.; Rao, M.; Mayor, S. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 2004, 116, 577–589. [Google Scholar] [CrossRef]
- Goswami, D.; Gowrishankar, K.; Bilgrami, S.; Ghosh, S.; Raghupathy, R.; Chadda, R.; Vishwakarma, R.; Rao, M.; Mayor, S. Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity. Cell 2008, 135, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- van Zanten, T.S.; Cambi, A.; Koopman, M.; Joosten, B.; Figdor, C.G.; Garcia-Parajo, M.F. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl. Acad. Sci. USA 2009, 106, 18557–18562. [Google Scholar] [CrossRef]
- Sieber, J.J.; Willig, K.I.; Heintzmann, R.; Hell, S.W.; Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 2006, 90, 2843–2851. [Google Scholar] [CrossRef]
- Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361–374. [Google Scholar] [CrossRef]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef]
- Nair, D.; Hosy, E.; Petersen, J.D.; Constals, A.; Giannone, G.; Choquet, D.; Sibarita, J.B. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 13204–13224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, D.M.; Rentero, C.; Rossy, J.; Magenau, A.; Williamson, D.; Rodriguez, M.; Gaus, K. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 2010, 3, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Griffie, J.; Boelen, L.; Burn, G.; Cope, A.P.; Owen, D.M. Topographic prominence as a method for cluster identification in single-molecule localisation data. J. Biophotonics 2015, 8, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Rubin-Delanchy, P.; Burn, G.L.; Griffie, J.; Williamson, D.J.; Heard, N.A.; Cope, A.P.; Owen, D.M. Bayesian cluster identification in single-molecule localization microscopy data. Nat. Meth. 2015, 12, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Griffié, J.; Peters, R.; Owen, D.M. An agent-based model of molecular aggregation at the cell membrane. PLoS ONE 2020, 15, e0226825. [Google Scholar] [CrossRef]
- Williamson, D.J.; Burn, G.L.; Simoncelli, S.; Griffié, J.; Peters, R.; Davis, D.M.; Owen, D.M. Machine learning for cluster analysis of localization microscopy data. Nat. Commun. 2020, 11, 1493. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining; AAAI Press: Portland, Oregon, 1996; pp. 226–231. [Google Scholar]
- Ta, H.; Keller, J.; Haltmeier, M.; Saka, S.K.; Schmied, J.; Opazo, F.; Tinnefeld, P.; Munk, A.; Hell, S.W. Mapping molecules in scanning far-field fluorescence nanoscopy. Nat. Commun. 2015, 6, 7977. [Google Scholar] [CrossRef]
- Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; Amir, E.-A.D.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.; Jager, A.; Zunder, E.R.; et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 2015, 162, 184–197. [Google Scholar] [CrossRef]
- Strehl, A.; Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 2003, 3, 583–617. [Google Scholar]
- Lancichinetti, A.; Fortunato, S. Consensus clustering in complex networks. Sci. Rep. 2012, 2, 336. [Google Scholar] [CrossRef]
- Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 056117. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.O.; Ashourvan, A.; Muldoon, S.F.; Vettel, J.M.; Bassett, D.S. Applications of community detection techniques to brain graphs: Algorithmic considerations and implications for neural function. Proc. IEEE. Inst. Electr. Electron. Eng. 2018, 106, 846–867. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Andronov, L.; Orlov, I.; Lutz, Y.; Vonesch, J.-L.; Klaholz, B.P. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 2016, 6, 24084. [Google Scholar] [CrossRef]
- Levet, F.; Hosy, E.; Kechkar, A.; Butler, C.; Beghin, A.; Choquet, D.; Sibarita, J.B. SR-Tesseler: A method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 2015, 12, 1065–1071. [Google Scholar] [CrossRef]
- Sil, P.; Mateos, N.; Nath, S.; Buschow, S.; Manzo, C.; Suzuki, K.G.N.; Fujiwara, T.; Kusumi, A.; Garcia-Parajo, M.F.; Mayor, S. Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Mol. Biol. Cell 2020, 31, 561–579. [Google Scholar] [CrossRef]
- Paz, M.L.; Barrantes, F.J. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem. Neurosci. 2019, 10, 2186–2194. [Google Scholar] [CrossRef]
- Matta, J.A.; Gu, S.; Davini, W.B.; Bredt, D.S. Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science 2021, 373, eabg6539. [Google Scholar] [CrossRef]
- Barrantes, F.J. Cholesterol effects on nicotinic acetylcholine receptor. J. Neurochem. 2007, 103 (Suppl. 1), 72–80. [Google Scholar] [CrossRef]
- Olek, A.J.; Krikorian, J.G.; Daniels, M.P. Early stages in the formation and stabilization of acetylcholine receptor aggregates on cultured myotubes: Sensitivity to temperature and azide. Dev. Biol. 1986, 117, 24–34. [Google Scholar] [CrossRef]
- Olek, A.J.; Ling, A.; Daniels, M.P. Development of ultrastructural specializations during the formation of acetylcholine receptor aggregates on cultured myotubes. J. Neurosci. 1986, 6, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanes, J.R.; Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2001, 2, 791–805. [Google Scholar] [CrossRef]
- Bates, M.; Dempsey, G.T.; Chen, K.H.; Zhuang, X. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 2012, 13, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ovesný, M.; Krizek, P.; Borkovec, J.; Svindrych, Z.; Hagen, G.M. ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 2014, 30, 2389–2390. [Google Scholar] [CrossRef]
- Stetson, P.B. DAOPHOT—A computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 1987, 99, 191. [Google Scholar] [CrossRef]
- Bates, M.; Jones, S.; Zhuang, X. Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging. Cold Spring Harb. Protoc. 2013, 2013, 498–500. [Google Scholar] [CrossRef]
- Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 476–480. [Google Scholar] [CrossRef]
- Zhang, Y.; Máté, G.; Müller, P.; Hillebrandt, S.; Krufczik, M.; Bach, M.; Kaufmann, R.; Hausmann, M.; Heermann, D.W. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS ONE 2015, 10, e0128555. [Google Scholar]
- Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods. Rev. Reg. Stud. 2007, 37, 5–27. [Google Scholar] [CrossRef]
Parameters | BTX | mAb |
---|---|---|
% Localizations in nanoclusters | 29.12 (24.31–36.34) | 56.04 (53.18–60.17) |
Single nanocluster area (μm²) | 0.0025 (0.0024–0.0026) | 0.0013 (0.0013–0.0014) |
Molecule density (number of molecules/μm² within individual nanocluster) | 8726 (8422–9025) | 19,661 (18,941–20,408) |
Validated localizations per nanocluster | 20 (20–21) | 25 (24–26) |
Inter-nanocluster centroid distance (μm) | 2.25 (2.24–2.26) | 1.58 (1.57–1.59) |
BTX | mAb | |||
---|---|---|---|---|
Median | Peripheral Region | Central Region | Peripheral Region | Central Region |
% Molecules in nanoclusters | 24.99 (19.59–32.28) | 35.11 (29.00–42.61) | 57.80 (44.92–62.34) | 54.32 (49.06–60.94) |
Single nanocluster area (nm²) | 2494 (2294–2658) | 2665 (2531–2813) | 1375 (1297–1519) | 1337 (1264–1411) |
Nanocluster density (number of molecules/nm²) | 9.15 (8.65–9.81) | 8.21 (7.80–8.67) | 20.14 (18.97–21.23) | 19.29 (18.61–20.25) |
Molecules/nanocluster | 20 (19–21) | 21 (20–22) | 25 (23–26) | 25 (24–26) |
Inter-nanocluster centroid distance (nm) | 2248 (2233–2262) | 2272 (2253–2291) | 1478 (1467–1489) | 1663 (1651–1673) |
STORM | STED | |||
---|---|---|---|---|
Parameters | BTX | mAb | BTX | mAb |
% Localizations in nanoclusters | 29.12 (24.31–36.34) | 56.04 (53.18–60.17) | - | - |
Nanocluster/spot area (μm²) | 0.0025 (0.0024–0.0026) | 0.0013 (0.0013–0.0014) | 0.004 (0.003–0.005) | 0.001 (0.0006–0.0017) |
Relative nanocluster density (number of molecules/μm²) | 8726 (8422–9025) | 19,661 (18,941–20,408) | - | - |
Validated localizations per nanocluster | 20 (20–21) | 25 (24–26) | - | - |
Inter-nanocluster/spot centroid distance (μm) | 2.25 (2.24–2.26) | 1.58 (1.57–1.59) | 4.42 (4.36–4.47) | 3.2 (3.06–3.32) |
Nanocluster/spot eccentricity | 0.72 (0.71–0.73) | 0.69 (0.68–0.70) | 0.93 (0.91–0.94) | 0.89 (0.85–0.94) |
Major axis length of nanocluster/spot (μm) | 0.086 (0.084–0.088) | 0.061 (0.060–0.063) | 0.360 (0.332–0.399) | 0.150 (0.107–0.267) |
Inter-particle distances (nm) | 42.42 (42.23–42.63) | 14.23 (14.17–14.28) | 366.5 (362.6–369.7) | 153.9 (150.5–158.4) |
Nearest particle distances (nm) | 15.70 (15.50–15.80) | 11.20 (11.10–11.20) | 75.70 (70.40–80.70) | 20.65 (19.50–22.70) |
Maximum distance of considerable clustering (nm) | 47.00 (41.60–51.00) | 109.0 (72.20–208.0) | 317.5 (300.0–357.0) | 354.0 (311.0 566.0) |
STORM Data after Filtering | ||
---|---|---|
Parameters | BTX | mAb |
Cluster area (μm²) | 0.0053 (0.0032–0.0076) | 0.0007 (0.0005–0.0016) |
Cluster centroid distance (μm) | 4.82 (4.72–4.90) | 4.34 (4.29–4.40) |
Cluster eccentricity | 0.95 (0.91–0.96) | 0.92 (0.88–0.95) |
Major axis length of cluster (μm) | 0.207 (0.173–0.255) | 0.087 (0.076–0.104) |
Maximum distance of considerable clustering (nm) | 347.0 (284.0–408.0) | 292.0 (190.0–503.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saavedra, L.A.; Buena-Maizón, H.; Barrantes, F.J. Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. Int. J. Mol. Sci. 2022, 23, 10435. https://doi.org/10.3390/ijms231810435
Saavedra LA, Buena-Maizón H, Barrantes FJ. Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. International Journal of Molecular Sciences. 2022; 23(18):10435. https://doi.org/10.3390/ijms231810435
Chicago/Turabian StyleSaavedra, Lucas A., Héctor Buena-Maizón, and Francisco J. Barrantes. 2022. "Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies" International Journal of Molecular Sciences 23, no. 18: 10435. https://doi.org/10.3390/ijms231810435
APA StyleSaavedra, L. A., Buena-Maizón, H., & Barrantes, F. J. (2022). Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. International Journal of Molecular Sciences, 23(18), 10435. https://doi.org/10.3390/ijms231810435