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Abstract: Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes’
endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in
brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophys-
iology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of
biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus
etiology is needed. This manuscript is a focused review of the current research landscape on AQP4
as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing
reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal
physiologic conditions.

Keywords: AQP4; astrogenesis; pediatric hydrocephalus; reactive astrogliosis; premature gliogenesis

1. Introduction

Although 90% of brain tissue is composed of glial cells, most cellular brain studies
have focused on neuronal physiology; consequently, the glial cells have been relegated to a
supportive position. Astrocytes are the most common glial cells in the CNS, accounting for
20 to 40% of total brain cells [1] and play a fundamental role in neural development, neural
circuit function, neurotransmission, blood–brain barrier creation, and neural metabolic sup-
port. Astrocytes support the neurovascular systems by connecting neurons and endothelial
cells, maintaining brain homeostasis, controlling water, amino acid, and neurotransmitter
intake, and monitoring the local activity of synaptic circuits [2–5].

Since Ramon y Cajal proposed the neuron theory in the early 20th century [6], hundreds
of neuron types and functions have been identified [7,8]. However, astrocytes are still consid-
ered a homogeneous population, only classified as protoplasmic or fibrous [9]. Astrocytes’
morphological and functional diversity, including their critical role in governing neuronal
activity, is well-accepted. Therefore, defining astrogliogenesis to identify astrocytes’ functional
and anatomical heterogeneity is crucial to understanding brain physiology [5,10].

Astrogenesis characterization is impeded by a lack of precursor and intermediate
stages markers. Furthermore, astrocytes’ plasticity allows proliferative capabilities after
being differentiated, complicating their identification [5,10]. Recently, our group has
proposed the water channel AQP4 as a possible biomarker of gliogenesis, and its variations
were characterized under control and pathological conditions. In-depth systematic reviews
have been published, focusing on neuromyelitis optica [11] and gliomas [12,13]. This
review focuses on AQP4 expression as a possible biomarker of astrogenesis development
and its hypothetical relationship with pathology causing pediatric hydrocephalus.
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1.1. AQP4: A Possible Astrogenesis Marker

Even though specific markers do not exist for the different stages of astrogenesis, it has
been suggested that astrogenesis progresses trough at least four cellular stages: a radial glial
cell (RGC), an intermediate progenitor cell, a maturing postnatal astrocyte, and an adult
astrocyte. RGCs are fundamental in early brain development, serving as a scaffold for in-
termediate progenitors and neuro-glial precursors. After the cessation of neurogenesis, the
RGCs become gliogenic (gliogenic switch) and the intermediate progenitors and astrocyte
precursors migrate away from the germinal areas to differentiate into astrocytes [5,10,14].

AQP4 is a water channel linked to a glial lineage in the brain since it is expressed
in astrocytes (mainly in the endfeet) and the ependymal cells [15,16]. AQP4 is expressed
in neural stem cells (NSC) and their glial progeny [17] and modulates the proliferation,
survival, migration, and neuronal differentiation of adult NSCs [18–20]. Interestingly, in
adult lesser hedgehog tenrec (Echinops telfairi), immature radial glial cells persist through
adulthood without expressing AQP4 [21]. In zebrafish, another form of astroglial cells
continues through adulthood as RGCs expressing AQP4 [22]. In primates, cortical interlam-
inar astrocytes seem to have an RGC origin since they express typical RGC markers and
adult astrocytes markers such as AQP4 [23]. All the animal findings support that AQP4 is
associated with an astroglial lineage that may remain undifferentiated as RGCs in adult-
hood. In utero, AQP4 labels RGCs committed to the astrocyte lineage in humans [24,25]
and mice [26]. It has been proposed that unpolarized AQP4-positive cells in the brain
show proliferative and regenerative properties as neural stem cells [27]. In mice, the unpo-
larized expression of AQP4 in RGCs is not detected at the end of in utero life (E16), and
the expression of AQP4 is restricted to the astroglial endfeet postnatally (polarized), at
P1–3 [26] However, in humans, the AQP4-positive RGCs are present at the beginning of the
second trimester of the pregnancy (13–14 postconceptional weeks, PCW), and the polarized
expression of AQP4 forming the neurovascular unit is detected at the beginning of the
third trimester (25 PCW) [24,25]. Therefore, the maturation of the expression of AQP4
seems to be delayed in mice compared to humans. Our group reported that unpolarized
expression of AQP4 is explicitly found in a subpopulation of RGCs that do not progress
radially toward the cortical plate but curve to follow white matter tracks, thus serving as
a scaffold for glioblasts to develop and populate the white matter tracks, which in turn,
provides functionality and maturity to the axons. Thus, these AQP4-positive RGCs were
coined as glial stem cells (GSCs) because the projections are not radial and are committed
to astrocytes [25].

Interestingly, GSCs follow a temporospatial expression pattern that may indicate
the end of neurogenesis and the beginning of gliogenesis [24,25]. GSCs’ first detection
is in the glioepithelium of the fimbria of the archicortex and progresses toward fibrous
tracts, such as the corpus callosum (CC), the fornix, and the internal capsule in medial
areas of the brain. From 25 PCW onward, AQP4 is expressed throughout the neocortex,
mainly in the intermediate zone or subplate, giving rise to the cerebral cortex’s white
matter. AQP4 is expressed primarily on the main fibrous tracts of the isocortex, possibly to
provide homeostasis to facilitate neural impulse transmission to incipient fiber tracts. In
general terms, AQP4-positive GSC expression progresses from medial to lateral, starting in
the dorsal and ventral hippocampus archicortex, followed by the CC and the ganglionic
eminences (transitory structures that contribute to the development of first neurogenic,
later gliogenic, and ultimately degenerate), and finally, terminating in the intermediate
zone of the resting brain. AQP4-dependent maturity progresses from medial to polar,
initially in the perisylvian regions and finally in the occipital and prefrontal zones [24,25,28]
(see Figure 1). This correlates with CC maturation. According to classic neuroanatomic
studies and recent human embryology neuroimaging, the colossal connections begin
centrally in the hippocampal primordium and progress bidirectionally both anteriorly
and posteriorly [29–33], with more prominent anterior growth [34,35]. The expression
pattern of AQP4-dependent GSCs could define a developmental pathway for cortical
neuron functionality, with the archicortex (primitive cortex) acquiring functionality in
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early gestation, while the frontal and occipital poles acquire functionality at the end of
gestation. Therefore, there is an ontogenic logic in which occipital and prefrontal areas
achieve functionality and maturity late in brain development since they are responsible for
the vision and complex behaviors such as the expression of personality, respectively.Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 4 of 11 
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Figure 1. Schematic representation of the expression of AQP4 in brain development. In the telen-
cephalon, AQP4 expression starts in GSCs and GBs and progresses from the para hippocampal VZ
toward the glioepithelium of the fimbria of the dorsal hippocampus at 12–13 PCW. At 21 PCW,
AQP4 has advanced medial to lateral in the coronal view, and medial to polar in the sagittal view.
At this point, AQP4 is expressed in the ventricular zone adjacent to the medial portion of the CC,
where the GSCs project their cellular process toward CC fibers. GSCs are also found in the LGE
and the lenticular nucleus projecting toward the internal capsule. At 25 PCW, the AQP4 is patent
cortically, and GSC processes are found projecting from the SVZ to the IZ. Polarized AQP4 expression
is located in the astrocyte’s endfeet as a part of the neurovascular unit at the IZ, indicating maturity
and functionality. LV, lateral ventricle; MZ, marginal zone; CP, cortical plate; SCP, subcortical plate;
IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone; CC, corpus callosum; IC,
internal capsule; DHip, dorsal hippocampus; Tha, thalamus; GE ganglionic eminence; LGE, lateral
ganglionic eminence; MGE, medial ganglionic eminence; Ca, caudate; LN, lenticular nucleus; GP,
glial progenitor; A, astrocyte; BV, blood vessel; AQP4, aquaporin 4.
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In summary, unpolarized expression of AQP4 is found in proliferative cells with
different morphologies: GSCs (with a long projection that is used for other cells to mi-
grate and populate the white matter tracks), and intermediate progenitor cells (without
a long projection and oval shape). We hypothesize that the expression of AQP4 in these
progenitor cells indicates a gliogenic switch that represents the early stages of astrogenesis.
Finally, when AQP4 expression is polarized (astrocytes’ endfeet), this indicates astrocyte
maturity as a final step of the astrogenesis. Currently, three specific markers are accepted
to identify astrocyte precursors: GLAST, FABP7/BLBP/, and FGFR3 [36–39]. GLAST is a
glutamate transporter active in astrocytes, and its expression initiates with the gliogenic
switch indicating specifically astrogenesis precursors. However, FABP7/BLBP/and FGFR3
are also expressed during neurogenic stages, making them unspecific markers [14]. In
humans, AQP4 initiates its expression at the gliogenic switch, labeling different astrocyte
precursors [24,25]. Thus, this water channel shows a similar expression pattern to GLAST
and could be a relevant marker of astrogenesis. Further studies in experimental models
should be conducted to confirm this.

1.2. AQP4 in Pediatric Hydrocephalus: Neurodevelopmental Implications

Hydrocephalus is an abnormal build-up of cerebrospinal fluid associated with dis-
tension of the ventricular system due to impairments in CSF circulation [40,41]. Inflam-
matory response plays a fundamental role in acquired conditions such as postinfectious
and posthemorrhagic hydrocephalus [42–46]. Reactive astrogliosis (one of the primary
expressions of neuroinflammation) is associated with both congenital and acquired hy-
drocephalus [45,47–54]. Historically, the neurodevelopmental consequences of pediatric
hydrocephalus are attributed to parenchymal stretch and periventricular white matter
injury secondary to ventricular enlargement and elevated intracranial pressure [55]. Recent
evidence supports that the alterations in brain development (neuro-gliogenesis) are respon-
sible for the etiology of some congenital hydrocephalus cases. Thus, genetic disruption
of the neuro-gliogenesis in early brain development without CSF dynamic impairment
could be a primary pathological factor in patients with congenital hydrocephalus [56].
In addition, GRC and neural progenitor cell loss due to VZ disruption are associated
with abnormalities in neurogenesis such as abnormal neuroblast migration as intrinsic
mechanisms of congenital [57–59] and posthemorrhagic hydrocephalus [60,61]. AQPs have
been highly studied in brain development under control [24,28,62] and hydrocephalic
conditions [63–71]. It has been proposed that the AQP variations are associated with
hydrocephalus-compensatory mechanisms to decrease the production and increase the
absorption of CSF [66–71]. AQPs have been proposed as possible CSF biomarkers for the
diagnosis and prognosis of hydrocephalus [63–66].

Interestingly, AQP4 modulates the neurogenesis associated with neuroinflamma-
tion [20] and the glial proliferation in astrocyte cultures [72]. Thus, variations of the
expression of AQP4 in the early stages of fetal-onset hydrocephalus may induce neurode-
velopmental disorders associated with decreased neurogenesis. Our group reported an
early differentiation of AQP4 positive GSCs into reactive astrocytes, implying impaired
scaffold functionality in congenital hydrocephalus with spina bifida [25]. The GSCs’ early
differentiation into reactive astrocytes could be considered a complementary neurodevel-
opmental disorder since the GSCs lose their projection, and the glioblasts are no longer
migrating toward the white matter tracks. A similar mechanism of premature progenitor
differentiation into astrocytes has been recently confirmed in a rat model with spina bi-
fida [73]. This early differentiation into astrocytes could explain the characteristic white
matter alterations found in pediatric hydrocephalus [74–76]. In spina bifida patients, the
CC shows partial agenesis in 65% of the cases and hypoplasia in 35%. In obstructive hy-
drocephalus due to mesencephalic aqueduct obstruction, 35% of the cases showed partial
agenesis and 50% hypoplasia of the CC. Finally, 100% of patients with posthemorrhagic
hydrocephalus showed CC hypoplasia [76]. Therefore, this premature differentiation of
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GSCs into reactive astrocytes may contribute to the neuro-gliogenesis disorders in pediatric
hydrocephalus (See Figure 2).Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 6 of 11 
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Figure 2. Schematic representation of astrocyte’s premature differentiation in hydrocephalus. In
non-hydrocephalic conditions, after mid-gestation at the periventricular white matter areas, the
ventricular zone is mainly composed of ECs, RGCs, GSCs, GPs, and NPs (1). When hydrocephalus
pathology develops, a ventricular lining disruption occurs, associated with reactive astrogliosis
(2). This representation proposes that white matter-associated GSCs and GPs become activated under
hydrocephalic conditions suffering a premature differentiation into astrocytes (a,b). This early GSC
differentiation into astrocytes impairs its normal function as a scaffold to guide cells into the white
matter, implying a lack of cell migration resulting in the characteristic hypoplasia or dysgenesis of the
white matter tracks. In turn, the incapability of NPs to migrate triggers periventricular heterotopias.
Finally, a premature differentiation of GPs into astrocytes as a reaction to an inflammatory response
may alter the final fate of the cells and affect their migration (3). LV, lateral ventricle; MZ, marginal
zone; CP, cortical plate; SCP, subcortical plate; IZ, intermediate zone; SVZ, subventricular zone; VZ,
ventricular zone; VZD, ventricular zone disruption; CC, corpus callosum; IC, internal capsule; GSC,
glial stem cell; RGSC, reactive glial stem cell; GP, glial progenitor; RGP, reactive glial progenitor; A,
astrocyte; RGC, radial glial cell; NP, neural progenitor; PVH, periventricular heterotopia.
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In experiments with neural stem cell cultures from mice that differentiate into ependy-
mal cells, a similar mechanism of premature gliogenesis was proposed under posthemor-
rhagic conditions [77,78]. In these experiments, neural stem cells committed to becoming
ependymal cells differentiated into reactive astrocytes changing the final fate of the cells.
These findings support a unified mechanism of neurodevelopmental disorder associated
with early astrocyte differentiation. This differentiation in congenital and acquired hydro-
cephalus conditions may result in primary white matter alterations.

2. Future Work

According to the bibliographic evidence reported in this manuscript, AQP4 is a specific
gliogenesis marker that labels glial stem cells associated with white matter tracks. It also
affects the degree of glial development as more polarization is associated with maturity
(endfeet in neurovascular unit), while no polarization is associated with undifferentiated
cells (GSCs). The glial stem cells and neuroblasts seem to show reactivity under hydro-
cephalic conditions. This reactivity triggers an early differentiation into astrocytes affecting
cell migration and normal neural development, possibly explaining primary white matter
alterations such as agenesis or hypoplasia of the corpus callosum. Current treatments
cannot improve this alteration since it is related to primary neurological development
disorders and not to intracranial pressure. Therefore, complementary treatments should
not only focus on treating intracranial hypertension but also on preventing cellular neurode-
velopmental impairments. Since the inflammatory component plays a fundamental role in
reactive astrogliosis, several anti-inflammatory drugs have been proposed to decrease the
glial response under hydrocephalic conditions to improve linked cellular alterations. For
example, decorin, a proteoglycan that plays a fundamental role in immune regulation and
inflammatory diseases [79], reduces white matter-dependent alterations and cytopathology
associated with juvenile hydrocephalus [80–82].

3. Search Strategy and Selection Criteria

Searches on Pubmed and Google Scholar from 1950 to June 2022 and pertinent papers
were used to find references for this review. The searching terms were “hydrocephalus
and gliogenesis”, “reactive astrogliosis and white matter and hydrocephalus”, “AQP4 and
gliogenesis”, “AQP4 and brain development”, and “AQP4 and neurogenesis”. There were
no language restrictions.

4. Limitations

This review did not strictly adhere to PRISMA guidelines [83]. This review focused
primarily on AQP4, gliogenesis, and hydrocephalus, other pathologies associated with
AQP4 such as neuromyelitis optica or gliomas were not covered.
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