Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration
Abstract
:1. Introduction
2. Results
2.1. Description of the Upgraded Laser Diffraction Method for the Registration of a Platelet Shape Change Reaction, Aggregation, and Clot Formation
2.2. Adaptation of the LaSca-TMF Laser Particle Analyzer for the Evaluation of the Intracellular Calcium Concentration
2.3. Changes in Temperature Differentially Affected the Platelet Transformation
2.4. The Velocity of Shape Change Accelerated with a Rise in Temperature
2.5. Hypothermia Accelerated Platelet Aggregation
2.6. Hypothermia Increased the Clotting Time
2.7. [Ca2+]i Decreased with the Rise in Temperature
3. Discussion
4. Materials and Methods
4.1. Study Design
- -
- Ethics approval. This study was approved by the Ethics Committee of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (protocols no. 3–03 from 2 March 2021, and no. 1–04 from 7 April 2022) and was performed in compliance with the Declaration of Helsinki. All participants gave written informed consent before inclusion into the study.
- -
- Population. Healthy randomly selected volunteers (n = 15, 7 males, 8 females, and 21–55 years) were enrolled at the Laboratory of Cellular mechanisms of blood homeostasis of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, between December 2021 and May 2022. The exclusion criteria were pregnancy, breastfeeding, participation in another clinical trial, any form of medication interfering with coagulation, and known coagulopathies of the participant.
4.2. Reagents and Working Buffers
4.3. Platelet Preparation
4.4. Laser Diffraction Analysis with Simultaneous Fluorescence Detection
4.4.1. Detection of Platelet Functional Indices
4.4.2. Analysis of Platelet Ca2+ Mobilization
4.5. Confocal Microscopy Analysis of the Platelet Transformations
4.6. Hill Model
4.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gader, A.; Al-Mashhadani, S.; Al-Harthy, S. Direct activation of platelets by heat is the possible trigger of the coagulopathy of heat stroke. Br. J. Haematol. 1990, 74, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kheirbek, T.; Kochanek, A.R.; Alam, H.B. Hypothermia in bleeding trauma: A friend or a foe? Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Levi, M. Hemostasis and Thrombosis in Extreme Temperatures (Hypo- and Hyperthermia). Semin. Thromb. Hemost. 2018, 44, 651–655. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, M.-Y.; Zhao, H.; Tang, Z.-R.; Hua, R.; Mei, X.; Cui, J.; Li, C.-S. Effect of Mild Hypothermia on the Coagulation-Fibrinolysis System and Physiological Anticoagulants after Cardiopulmonary Resuscitation in a Porcine Model. PLoS ONE 2013, 8, e67476. [Google Scholar] [CrossRef]
- Wallner, B.; Schenk, B.; Hermann, M.; Paal, P.; Falk, M.; Strapazzon, G.; Martini, W.Z.; Brugger, H.; Fries, D. Hypothermia-Associated Coagulopathy: A Comparison of Viscoelastic Monitoring, Platelet Function, and Real Time Live Confocal Microscopy at Low Blood Temperatures, an in vitro Experimental Study. Front. Physiol. 2020, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Faraday, N.; Rosenfeld, B. In Vitro Hypothermia Enhances Platelet GPIIb-IIIa Activation and P-Selectin Expression. Anesthesiology 1998, 88, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Högberg, C.; Erlinge, D.; Braun, O. Mild hypothermia does not attenuate platelet aggregation and may even increase ADP-stimulated platelet aggregation after clopidogrel treatment. Thromb. J. 2009, 7, 2. [Google Scholar] [CrossRef]
- Scharbert, G.; Kalb, M.; Marschalek, C.; Kozek-Langenecker, S.A. The Effects of Test Temperature and Storage Temperature on Platelet Aggregation: A Whole Blood In Vitro Study. Anesthesia Analg. 2006, 102, 1280–1284. [Google Scholar] [CrossRef]
- Scharbert, G.; Kalb, M.L.; Essmeister, R.; Kozek-Langenecker, S.A. Mild and moderate hypothermia increases platelet aggregation induced by various agonists: A whole blood in vitro study. Platelets 2010, 21, 44–48. [Google Scholar] [CrossRef]
- Straub, A.; Krajewski, S.; Hohmann, J.D.; Westein, E.; Jia, F.; Bassler, N.; Selan, C.; Kurz, J.; Wendel, H.P.; Dezfouli, S.; et al. Evidence of Platelet Activation at Medically Used Hypothermia and Mechanistic Data Indicating ADP as a Key Mediator and Therapeutic Target. Arter. Thromb. Vasc. Biol. 2011, 31, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Xavier, R.G.; White, A.E.; Fox, S.C.; Wilcox, R.G.; Heptinstall, S. Enhanced platelet aggregation and activation under conditions of hypothermia. Thromb. Haemost. 2007, 98, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Borgman, M.A.; Zaar, M.; Aden, J.K.; Schlader, Z.J.; Gagnon, D.; Rivas, E.; Kern, J.; Koons, N.J.; Convertino, V.A.; Cap, A.P.; et al. Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R145–R156. [Google Scholar] [CrossRef] [PubMed]
- Van Poucke, S.; Huskens, D.; van der Speeten, K.; Roest, M.; Lauwereins, B.; Zheng, M.-H.; Dehaene, S.; Penders, J.; Marcus, A.; Lancé, M. Thrombin generation and platelet activation in cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy—A prospective cohort study. PLoS ONE 2018, 13, e0193657. [Google Scholar] [CrossRef] [PubMed]
- Schmied, H.; Reiter, A.; Kurz, A.; Sessler, D.; Kozek, S. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 1996, 347, 289–292. [Google Scholar] [CrossRef]
- Pan, P.; Song, K.; Yao, Y.; Jiang, T.; Jiang, Q. The Impact of Intraoperative Hypothermia on Blood Loss and Allogenic Blood Transfusion in Total Knee and Hip Arthroplasty: A Retrospective Study. BioMed Res. Int. 2020, 2020, 1096743. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Mascha, E.; Na, J.; Sessler, D.I. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 2008, 108, 71–77. [Google Scholar] [CrossRef]
- Etulain, J.; Lapponi, M.J.; Patrucchi, S.J.; Romaniuk, M.A.; Benzadón, R.; Klement, G.L.; Negrotto, S.; Schattner, M. Hyperthermia inhibits platelet hemostatic functions and selectively regulates the release of alpha-granule proteins. J. Thromb. Haemost. 2011, 9, 1562–1571. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, F.; Chen, X.; Luo, M.; Hu, L.; Lu, Y. The Role of Mitochondria-Derived Reactive Oxygen Species in Hyperthermia-Induced Platelet Apoptosis. PLoS ONE 2013, 8, e75044. [Google Scholar] [CrossRef]
- Tynngard, N.; Lindahl, T.L.; Ramstrom, S. Assays of different aspects of haemostasis—What do they measure? Thromb. J. 2015, 13, 8. [Google Scholar] [CrossRef]
- Paul, B.Z.; Daniel, J.L.; Kunapuli, S.P. Platelet shape change is mediated by both calcium-dependent and-independent signaling pathways: Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. J. Biol. Chem. 1999, 274, 28293–28300. [Google Scholar] [CrossRef] [Green Version]
- Wilde, J.I.; Retzer, M.; Siess, W.; Watson, S.P. ADP-induced platelet shape change: An investigation of the signalling pathways involved and their dependence on the method of platelet preparation. Platelets 2000, 11, 286–295. [Google Scholar] [PubMed]
- Lang, F.; Munzer, P.; Gawaz, M.; Borst, O. Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets. Thromb. Haemost. 2013, 110, 925–930. [Google Scholar] [PubMed]
- Abbasian, N.; Millington-Burgess, S.L.; Chabra, S.; Malcor, J.-D.; Harper, M. Supramaximal calcium signaling triggers procoagulant platelet formation. Blood Adv. 2019, 4, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.I.; Kuijpers, M.J.E.; Heemskerk, J.W.M. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2021, 31, 863–871. [Google Scholar] [CrossRef]
- Sveshnikova, A.N.; Ataullakhanov, F.I.; Panteleev, M.A. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. BioSyst. 2015, 11, 1052–1060. [Google Scholar] [CrossRef]
- Mindukshev, I.; Gambaryan, S.; Kehrer, L.; Schuetz, C.; Kobsar, A.; Rukoyatkina, N.; Nikolaev, V.O.; Krivchenko, A.; Watson, S.P.; Walter, U.; et al. Low angle light scattering analysis: A novel quantitative method for functional characterization of human and murine platelet receptors. Clin. Chem. Lab. Med. (CCLM) 2012, 50, 1253–1262. [Google Scholar] [CrossRef]
- Reiss, C.; Mindukshev, I.; Bischoff, V.; Subramanian, H.; Kehrer, L.; Friebe, A.; Stasch, J.-P.; Gambaryan, S.; Walter, U. The sGC stimulator riociguat inhibits platelet function in washed platelets but not in whole blood. Br. J. Pharmacol. 2015, 172, 5199–5210. [Google Scholar] [CrossRef]
- Beck, F.; Geiger, J.; Gambaryan, S.; Solari, F.A.; Dell’Aica, M.; Loroch, S.; Mattheij, N.J.; Mindukshev, I.; Pötz, O.; Jurk, K.; et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017, 129, e1–e12. [Google Scholar] [CrossRef]
- Oliver, A.E.; Tablin, F.; Walker, N.J.; Crowe, J.H. The internal calcium concentration of human platelets increases during chilling. Biochim. Biophys. Acta 1999, 1416, 349–360. [Google Scholar] [CrossRef]
- Walford, T.; I Musa, F.; Harper, A.G.S. Nicergoline inhibits human platelet Ca2+signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure. Br. J. Pharmacol. 2015, 173, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Varga-Szabo, D.; Braun, A.; Nieswandt, B. Calcium signaling in platelets. J. Thromb. Haemost. 2009, 7, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.I.; Provenzale, I.; Cheung, H.Y.; van Groningen, J.; Tullemans, B.M.; Veninga, A.; Dunster, J.L.; Honarnejad, S.; Hurk, H.V.D.; Kuijpers, M.J.; et al. Ultra-high-throughput Ca2+ assay in platelets to distinguish ITAM-linked and G-protein-coupled receptor activation. iScience 2022, 25, 103718. [Google Scholar] [CrossRef]
- Sage, S.O.; Pugh, N.; Farndale, R.W.; Harper, A.G. Pericellular Ca(2+) recycling potentiates thrombin-evoked Ca(2+) signals in human platelets. Physiol. Rep. 2013, 1, e00085. [Google Scholar] [CrossRef] [PubMed]
- Matthay, Z.A.; Fields, A.T.; Nunez-Garcia, B.; Patel, M.H.; Cohen, M.J.; Callcut, R.A.; Kornblith, L.Z. Dynamic effects of calcium on in vivo and ex vivo platelet behavior after trauma. J. Trauma Acute Care Surg. 2020, 89, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.A.; Crowther, C.M.; Andrus, M.B.; Kenealey, J.D. Resveratrol derivatives increase cytosolic calcium by inhibiting plasma membrane ATPase and inducing calcium release from the endoplasmic reticulum in prostate cancer cells. Biochem. Biophys. Rep. 2019, 19, 100667. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Maekawa, S.; Morita, M. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Sci. Rep. 2017, 7, 13115. [Google Scholar] [CrossRef]
- Ito, E.; Ikemoto, Y.; Yoshioka, T. Thermodynamic implications of high Q10 of thermoTRP channels in living cells. BIOPHYSICS 2015, 11, 33–38. [Google Scholar] [CrossRef]
- Vyklický, L.; Vlachova, V.; Vitásková, Z.; Dittert, I.; Kabát, M.; Orkand, R.K. Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J. Physiol. 1999, 517, 181–192. [Google Scholar] [CrossRef]
- Yurkovich, J.T.; Zielinski, D.C.; Yang, L.; Paglia, G.; Rolfsson, O.; Sigurjónsson, Ó.E.; Broddrick, J.T.; Bordbar, A.; Wichuk, K.; Brynjolfsson, S.; et al. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. J. Biol. Chem. 2017, 292, 19556–19564. [Google Scholar] [CrossRef]
- Lewko, B.; Bryl, E.; Witkowski, J.M.; Latawiec, E.; Gołos, M.; Endlich, N.; Hähnel, B.; Koksch, C.; Angielski, S.; Kriz, W.; et al. Characterization of Glucose Uptake by Cultured Rat Podocytes. Kidney Blood Press. Res. 2005, 28, 1–7. [Google Scholar] [CrossRef]
- Heemskerk, J.W.M.; Sage, S. Calcium Signalling in Platelets and Other Cells. Platelets 1994, 5, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Rink, T.J.; Sage, S.O. Calcium signaling in human platelets. Annu. Rev. Physiol. 1990, 52, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Kazandzhieva, K.; Mammadova-Bach, E.; Dietrich, A.; Gudermann, T.; Braun, A. TRP channel function in platelets and megakaryocytes: Basic mechanisms and pathophysiological impact. Pharmacol. Ther. 2022, 237, 108164. [Google Scholar] [CrossRef]
- Martini, W.Z.; Cortez, D.S.; Dubick, M.A.; Park, M.S.; Holcomb, J.B. Thrombelastography is Better Than PT, aPTT, and Activated Clotting Time in Detecting Clinically Relevant Clotting Abnormalities After Hypothermia, Hemorrhagic Shock and Resuscitation in Pigs. J. Trauma Acute Care Surg. 2008, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, M.J.; Natale, A.M. Effect of hypothermia on the coagulation cascade. Crit Care Med. 1992, 20, 1402–1405. [Google Scholar] [CrossRef]
- Van Poucke, S.; Stevens, K.; Marcus, A.E.; Lance, M.D. Hypothermia: Effects on platelet function and hemostasis. Thromb. J. 2014, 12, 31. [Google Scholar] [CrossRef]
- Zhang, J.-N.; Wood, J.; Bergeron, A.L.; McBride, L.; Ball, C.; Yu, Q.; Pusiteri, A.E.; Holcomb, J.B.; Dong, J.-F. Effects of Low Temperature on Shear-Induced Platelet Aggregation and Activation. J. Trauma 2004, 57, 216–223. [Google Scholar] [CrossRef]
- Søreide, K. Clinical and translational aspects of hypothermia in major trauma patients: From pathophysiology to prevention, prognosis and potential preservation. Injury 2014, 45, 647–654. [Google Scholar] [CrossRef]
- Egidi, M.G.; D’Alessandro, A.; Mandarello, G.; Zolla, L. Troubleshooting in platelet storage temperature and new perspectives through proteomics. Blood Transfus. 2010, 8, s73–s81. [Google Scholar] [CrossRef]
- Shea, S.M.; Thomas, K.A.; Spinella, P.C. The effect of platelet storage temperature on haemostatic, immune, and endothelial function: Potential for personalised medicine. Blood Transfus. 2019, 17, 321–330. [Google Scholar] [CrossRef]
- Dranichnikov, P.; Mahteme, H.; Cashin, P.H.; Graf, W. Coagulopathy and Venous Thromboembolic Events Following Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2021, 28, 7772–7782. [Google Scholar] [CrossRef] [PubMed]
- Tuovila, M.; Erkinaro, T.; Takala, H.; Savolainen, E.-R.; Laurila, P.; Ohtonen, P.; Ala-Kokko, T. Hyperthermic intraperitoneal chemotherapy enhances blood coagulation perioperatively evaluated by thromboelastography: A pilot study. Int. J. Hyperth. 2020, 37, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Connors, J.M.; Levi, M.; Levy, J.H. Heatstroke-induced coagulopathy: Biomarkers, mechanistic insights, and patient management. eClinicalMedicine 2022, 44, 101276. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-C.; Park, J.Y.; Choi, J.Y.; Lee, S.-G.; Eo, S.K.; Oem, J.-K.; Tark, D.-S.; You, M.; Yu, D.-H.; Chae, J.-S.; et al. Pathogenicity of severe fever with thrombocytopenia syndrome virus in mice regulated in type I interferon signaling. Lab. Anim. Res. 2020, 36, 38. [Google Scholar] [CrossRef]
- Maurer-Spurej, E.; Pfeiler, G.; Maurer, N.; Lindner, H.; Glatter, O.; Devine, D.V. Room Temperature Activates Human Blood Platelets. Lab. Investig. 2001, 81, 581–592. [Google Scholar] [CrossRef]
- Breuer, M.; Wendel, H.P.; Peter, K.; Dietz, K.; Ziemer, G.; Straub, A. Critical temperature ranges of hypothermia-induced platelet activation: Possible implications for cooling patients in cardiac surgery. Thromb. Haemost. 2007, 97, 608–616. [Google Scholar] [CrossRef]
- Watts, D.D.; Trask, A.; Soeken, K.; Perdue, P.; Dols, S.; Kaufmann, C. Hypothermic coagulopathy in trauma: Effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J. Trauma 1998, 44, 846–854. [Google Scholar] [CrossRef]
- Krajewski, S.; Kurz, J.; Geisler, T.; Peter, K.; Wendel, H.P.; Straub, A. Combined blockade of ADP receptors and PI3-kinase p110beta fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation. PLoS ONE 2012, 7, e38455. [Google Scholar] [CrossRef]
- Koessler, J.; Klingler, P.; Niklaus, M.; Weber, K.; Koessler, A.; Boeck, M.; Kobsar, A. The Impact of Cold Storage on Adenosine Diphosphate-Mediated Platelet Responsiveness. TH Open 2020, 4, e163–e172. [Google Scholar] [CrossRef]
- Smolenski, A.; Bachmann, C.; Reinhard, K.; Hönig-Liedl, P.; Jarchau, T.; Hoschuetzky, H.; Walter, U. Analysis and Regulation of Vasodilator-stimulated Phosphoprotein Serine 239 Phosphorylation in Vitro and in Intact Cells Using a Phosphospecific Monoclonal Antibody. J. Biol. Chem. 1998, 273, 20029–20035. [Google Scholar] [CrossRef] [Green Version]
- Gambaryan, S.; Geiger, J.; Schwarz, U.R.; Butt, E.; Begonja, A.; Obergfell, A.; Walter, U.; Geiger, J. Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase. Blood 2004, 103, 2593–2600. [Google Scholar] [CrossRef]
- Strother, S.V.; Bull, J.M.; Branham, S.A. Activation of coagulation during therapeutic whole body hyperthermia. Thromb. Res. 1986, 43, 353–360. [Google Scholar] [CrossRef]
- Meyer, M.A.; Ostrowski, S.R.; Overgaard, A.; Ganio, M.S.; Secher, N.H.; Crandall, C.; Johansson, P.I. Hypercoagulability in response to elevated body temperature and central hypovolemia. J. Surg. Res. 2013, 185, e93–e100. [Google Scholar] [CrossRef] [PubMed]
- Gambaryan, S.; Kobsar, A.; Rukoyatkina, N.; Herterich, S.; Geiger, J.; Smolenski, A.; Lohmann, S.M.; Walter, U. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J. Biol. Chem. 2010, 285, 18352–18363. [Google Scholar] [CrossRef] [PubMed]
- Philip Laven MiePlot. Available online: http://www.philiplaven.com/mieplot.htm (accessed on 21 March 2022).
- Schwarz, U.R. Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets–definition and detection of ticlopidine/clopidogrel effects. Thromb. Haemost. 1999, 82, 1145–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Temperature | Vshapemax, % | EC50, nM | h | τ1/2, s |
---|---|---|---|---|
41 °C | 435.00 ± 14.72 **** | 49.44 ± 8.08 | 1.22 ± 0.07 | 4.60 ± 0.22 **** |
37 °C | 327.51 ± 19.09 ‡‡ | 46.44 ± 9.11 | 1.24 ± 0.09 | 6.10 ± 0.48 ‡‡ |
25 °C | 126.25 ± 13.77 | 40.90 ± 3.48 | 1.45 ± 0.17 | 15.88 ± 1.71 |
Temperature | Vaggmax, AU | EC50, nM | h |
---|---|---|---|
41 °C | 105.38 ± 13.12 | 873.68 ± 63.31 **** | 2.70 ± 0.51 ** |
37 °C | 120.20 ± 17.35 † | 599.29 ± 59.67 ‡‡ | 3.86 ± 0.41 ‡‡ |
25 °C | 101.3 ±7.52 | 104.39 ± 11.96 | 1.79 ± 0.27 |
Temperature | 25 °C | 37 °C | 41 °C |
---|---|---|---|
Spontaneous clot formation, min | 14.47 ± 2.40 | 9.81 ± 2.00 † | 9.51 ± 2.00 * |
ADP-induced clot formation, min | 13.30 ± 2.40 | 8.51 ± 1.63 † | 8.79 ± 2.90 * |
Test Temperature | AUCCa max, % | EC50 (Ca2+), nM | h (Ca2+) |
---|---|---|---|
41 °C | 178.25 ± 12.45 *** | 1156.00 ± 99.30 **** | 1.67 ± 0.17 *** |
37 °C | 176.75 ± 11.15 ‡ | 939.20 ± 39.40 ‡‡ | 1.55 ± 0.09 ‡ |
25 °C | 170.00 ± 8.00 | 603.30 ± 27.90 | 1.22 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mindukshev, I.; Fock, E.; Dobrylko, I.; Sudnitsyna, J.; Gambaryan, S.; Panteleev, M.A. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int. J. Mol. Sci. 2022, 23, 10667. https://doi.org/10.3390/ijms231810667
Mindukshev I, Fock E, Dobrylko I, Sudnitsyna J, Gambaryan S, Panteleev MA. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. International Journal of Molecular Sciences. 2022; 23(18):10667. https://doi.org/10.3390/ijms231810667
Chicago/Turabian StyleMindukshev, Igor, Ekaterina Fock, Irina Dobrylko, Julia Sudnitsyna, Stepan Gambaryan, and Mikhail A. Panteleev. 2022. "Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration" International Journal of Molecular Sciences 23, no. 18: 10667. https://doi.org/10.3390/ijms231810667
APA StyleMindukshev, I., Fock, E., Dobrylko, I., Sudnitsyna, J., Gambaryan, S., & Panteleev, M. A. (2022). Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. International Journal of Molecular Sciences, 23(18), 10667. https://doi.org/10.3390/ijms231810667