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Abstract: Recently, the field of polymer nanocomposites has been an area of high scientific and
industrial attention due to noteworthy improvements attained in these materials, arising from the
synergetic combination of properties of a polymeric matrix and an organic or inorganic nanomate-
rial. The enhanced performance of those materials typically involves superior mechanical strength,
toughness and stiffness, electrical and thermal conductivity, better flame retardancy and a higher
barrier to moisture and gases. Nanocomposites can also display unique design possibilities, which
provide exceptional advantages in developing multifunctional materials with desired properties for
specific applications. On the other hand, machine learning (ML) has been recognized as a powerful
predictive tool for data-driven multi-physical modelling, leading to unprecedented insights and
an exploration of the system’s properties beyond the capability of traditional computational and
experimental analyses. This article aims to provide a brief overview of the most important findings
related to the application of ML for the rational design of polymeric nanocomposites. Prediction,
optimization, feature identification and uncertainty quantification are presented along with different
ML algorithms used in the field of polymeric nanocomposites for property prediction, and selected
examples are discussed. Finally, conclusions and future perspectives are highlighted.

Keywords: machine learning; artificial neural network; carbon nanomaterials; polymer nanocomposites;
property prediction; optimization

1. Introduction

The field of nanocomposite materials is currently an area of strong activity that
promises to have far-reaching impacts on our society. Amongst the extraordinary range
of developing research lines, the introduction of nanofillers into polymers in order to
impart specific and noticeable property improvements is still demonstrating important
advances [1,2]. These nanocomposite materials exhibit significant enhancements in me-
chanical, electrical and thermal properties compared to composite materials incorporating
conventional fillers, such as glass, carbon or aramide fibres, and are currently applied in
automobile, aeronautical, aerospace, marine, civil and many other technological applica-
tions [3–5] that request an outstanding combination of mechanical and thermal properties.
Polymer nanocomposites are made up of two phases: the matrix phase (continuous) and
the nanoreinforcement phase (dispersed), with sizes in the range of 1–100 nm. Usually, a
thermosetting or thermoplastic polymer acts as the matrix with the aim to transfer the load
uniformly to the embedded nanoreinforcement [6]. Different types of nanomaterials are
used to strengthen the polymeric matrix and are known as nanofillers or nanoreinforcing
agents. According to their nature, these nanofillers can be classified into three main groups,
as depicted in Figure 1: (1) organic, including dendrimers, micelles, liposomes, polymer
nanoparticles (NPs) and ferritin; (2) inorganic, including metal NPs (Ag, Au, Cu), metal

Int. J. Mol. Sci. 2022, 23, 10712. https://doi.org/10.3390/ijms231810712 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231810712
https://doi.org/10.3390/ijms231810712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5361-6947
https://orcid.org/0000-0001-7405-2354
https://doi.org/10.3390/ijms231810712
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231810712?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 10712 2 of 37

oxide NPs (e.g., Fe3O4, ZnO, MgO, TiO2) and mesoporous silica; (3) and carbon-based,
including fullerenes, quantum dots, carbon nanotubes, graphene and its derivatives [7,8].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 38 
 

 

dendrimers, micelles, liposomes, polymer nanoparticles (NPs) and ferritin; (2) inorganic, 
including metal NPs (Ag, Au, Cu), metal oxide NPs (e.g., Fe3O4, ZnO, MgO, TiO2) and 
mesoporous silica; (3) and carbon-based, including fullerenes, quantum dots, carbon 
nanotubes, graphene and its derivatives [7,8]. 

 
Figure 1. Classification of the main types of nanomaterials according to their nature into organic, 
inorganic and carbon-based. 

According to their dimensions [9], nanomaterials can be classified as 0D when all 
their dimensions are smaller than 100 nm, such as fullerenes, quantum dots (QDs) and 
metallic NPs, 1D when there are two dimensions smaller than 100 nm, such as carbon 
nanotubes (CNTs), 2D when only one dimension is on the nanoscale, such as graphene, 
and 3D when they are not confined to the nano-scale in any dimension, such as 
dendrimers. 

The ideal design of a nanocomposite involves individual nanoparticles 
homogeneously dispersed in a polymer matrix. The dispersion state of nanoparticles is 
the key challenge to attaining the full potential of property enhancement [10,11]. A 
uniform nanofiller dispersion would lead to a large interfacial area (interface) between the 
nanomaterial and the chains of the neat polymer, which is expected to result in improved 
properties compared to conventional polymer composites incorporating macro- or micro-
fillers. The reinforcing effect of the nanofiller is attributed to several factors, such as nature 
and type of nanofiller, the concentration of nanofiller and polymer, nanofiller aspect ratio, 
geometry, size, orientation and distribution, etc. [12,13]. The assessment of the nanofiller 
dispersion in the polymer matrix is crucial, given that the mechanical and thermal 
properties are strongly related to the morphologies obtained. In this regard, three types 
of nanocomposite morphologies have been observed (Figure 2) [14]: phase separated, 
intercalated and exfoliated nanocomposites. When the polymer is unable to intercalate 
between the nanofiller, a composite of separate phases is attained (Figure 2a), with 

Figure 1. Classification of the main types of nanomaterials according to their nature into organic,
inorganic and carbon-based.

According to their dimensions [9], nanomaterials can be classified as 0D when all their
dimensions are smaller than 100 nm, such as fullerenes, quantum dots (QDs) and metallic
NPs, 1D when there are two dimensions smaller than 100 nm, such as carbon nanotubes
(CNTs), 2D when only one dimension is on the nanoscale, such as graphene, and 3D when
they are not confined to the nano-scale in any dimension, such as dendrimers.

The ideal design of a nanocomposite involves individual nanoparticles homogeneously
dispersed in a polymer matrix. The dispersion state of nanoparticles is the key challenge
to attaining the full potential of property enhancement [10,11]. A uniform nanofiller dis-
persion would lead to a large interfacial area (interface) between the nanomaterial and the
chains of the neat polymer, which is expected to result in improved properties compared to
conventional polymer composites incorporating macro- or micro-fillers. The reinforcing ef-
fect of the nanofiller is attributed to several factors, such as nature and type of nanofiller, the
concentration of nanofiller and polymer, nanofiller aspect ratio, geometry, size, orientation
and distribution, etc. [12,13]. The assessment of the nanofiller dispersion in the polymer
matrix is crucial, given that the mechanical and thermal properties are strongly related to
the morphologies obtained. In this regard, three types of nanocomposite morphologies
have been observed (Figure 2) [14]: phase separated, intercalated and exfoliated nanocom-
posites. When the polymer is unable to intercalate between the nanofiller, a composite of
separate phases is attained (Figure 2a), with comparable properties to those observed in
traditional composites. An intercalated structure, in which a single extended polymer chain
is intercalated between the nanofiller, results in a well-ordered intercalated morphology
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(Figure 2b). When the nanofiller is completely and uniformly dispersed in a continuous
polymer matrix, an exfoliated structure is obtained (Figure 2c). An important aspect of
these nanocomposites is that property improvements are attained at very low reinforcement
loadings (typically 1–10 wt.%) [15].
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The manufacturing process of the nanocomposites is also a key factor condition-
ing the mechanical response together with the long-term performance of the resulting
nanocomposites. Melt-blending, compression moulding, solution processing, resin transfer
moulding and in-situ polymerization are the processes commonly used to prepare poly-
meric nanocomposites (Figure 3) [16]. The choice of manufacturing process depends on the
intended application of the final product. Another parameter determining the mechanical
behaviour of nanocomposite materials is the residual stress and strain [17]. Stress transfer
from the continuous phase to the dispersed phase is a very important phenomenon that
critically affects the strength and stiffness of the composites, and is determined by their
difference in the elastic modulus and the Poisson’s ratio [18]. The coefficient of the thermal
expansion of the matrix and the reinforcement is also needed to be taken into account since
a mismatch in this coefficient may lead to the development of thermal residual stresses [19].

Polymer nanocomposites have synergistic properties that can easily be tailored for
attaining a desirable specific set of properties by selecting the appropriate combination of
continuous and dispersed phases. For optimization and material design, all the processing
parameters should be taken into account simultaneously. Modelling the complex relation-
ships between the governing parameters (both input and output) is very arduous. Despite
the availability of large experimental setups and computational tools, it is tedious and
time-consuming to explore the significance of each of the governing parameters experimen-
tally. Over the last two decades, material science has experienced a progressive shift from
developing raw computational techniques for the design of novel materials to developing
coupled methods that improve the results’ reliability via computational predictions and
experimental validation. Finite element and molecular dynamics simulations have been
applied to model the material behaviour in numerous arenas; however, the complexity
and computational intensiveness of the approaches have prompted researchers to look
for additional alternatives [20–22]. Therefore, many scholars have relied on the machine
learning approach to determine the implication of the process parameters for an optimal
design [23]. Machine learning (ML) is a subset of artificial intelligence that provides sys-
tems with the ability to automatically learn and improve from experience without being
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explicitly programmed. It is trained on huge amounts of data and sets linkages between
input fingerprints and output properties, thus offering a powerful surrogate model for
structure–property analysis [24–28]. ML offers a wider scope for effectively analysing
the behaviour of resulting composites with limited experimentation or computationally
intensive realizations of expensive models (Figure 3).
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The application of ML to polymeric nanocomposites enables us to predict numerous
multifunctional properties based on both the components and their proportions. Many
ML algorithms have been developed for polymer composites depending on the property
types and the datasets available. However, most of the studies are restricted in scope by the
constraints of multiple variables which result in increased dimensionality and uncertainty
caused by the randomness of the data.

This paper aims to provide a brief overview of the most important findings related
to the application of ML for the rational design of polymeric nanocomposites. First,
different types of nanomaterials used in polymer nanocomposites are described. Then,
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prediction, optimization, feature identification and uncertainty quantification are presented
along with different ML algorithms used in the field of polymeric nanocomposites for
property prediction, and selected examples are discussed. Finally, conclusions and future
perspectives are highlighted.

2. Nanofillers in Polymeric Nanocomposites: Properties and Synthesis Methods
2.1. Carbon-Based Nanofillers

Different allotropes from carbon have been recently used as nanofillers in polymeric
nanocomposites, including fullerenes, quantum dots (QDs), carbon nanotubes (CNTs),
graphene (G) and its derivatives graphene oxide (GO) and reduced graphene oxide (rGO)
(Figure 4). The synthesis method of carbon-based nanomaterials strongly influences their
purity and quality, hence the final composite properties [9,29,30].
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2.1.1. Fullerenes

Fullerenes were reported for the first time at Sussex University by Kroto and Smalley
in 1985, when they were working with the sooty residue produced by vaporising carbon in
a helium atmosphere [31]. They contain fused rings of five to seven atoms, are spherical or
ellipsoid in shape with a hollow structure and have sp2 and sp3 carbon atoms. The mass
spectrum of the residue showed peaks corresponding to ball-like polyhedral molecules
which they called “buckyballs”. The most known is C60, named Buckminster fullerene [32].
It consists of a truncated icosahedron, bearing a resemblance to a football ball made of
twenty hexagons and twelve pentagons.

Their structure is characteristic since it is borderless, uncharged, and lacks of bound-
aries or unpaired electrons. These characteristics distinguish fullerenes from other carbon
allotropes, such as graphite or diamond, which have electrical charges and edges with
dangling bonds. Fullerenes are soluble in common organic solvents, such as toluene,
chlorobenzene and 1,2,3-trichloropropane at room temperature [33]. They are chemically
reactive and can be combined with polymers to form nanocomposites with new thermal
and mechanical properties.
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2.1.2. Quantum Dots

Quantum dots (QDs) are 0D semiconductor nanoparticles with optical and electronic
properties that differ from those of larger particles due to a quantum effect in which the elec-
trons are confined in all directions [34]. When QDs are irradiated with UV light, an electron
is excited from the valence to the conduction band, and when it goes back to the ground
state, it emits electromagnetic radiation; this process is known as “photoluminescence”.

Carbon QDs were accidentally discovered in 2004 by Xu et al. [35] during the purifica-
tion of single-walled carbon nanotubes. Besides their fluorescent characteristics, they have
high stability, good conductivity, good biocompatibility and environmental friendliness,
and have been extensively investigated for applications in many fields, including diode
lasers, solar cells, LEDs, inkjet printings, electron transistors, amplifiers and biological
sensors, microscopy and medical imaging [36]. They can be used as donor fluorophores
in Föster resonance energy transfer. Moreover, their improved photostability allows for
the development of highly sensitive devices for cellular imaging, enabling the acquisition
of high-resolution 3D images. They can be employed for tumour targeting under in vivo
conditions [24], biomedicine, optronics, catalysis, and sensing [37].

The main methods used for CQD preparation are hot-injection, heat-up, microwave
and hydrothermal synthesis (Figure 5) [38]. The hot-injection method (Figure 5A) was first
introduced by the works of Murray and co-workers [34], and is the most used to synthesize
a wide variety of monodisperse QDs. However, this method has some shortcomings: the
high temperature of the reaction results in fast reaction rates, hence the mixing of the
reagents must be efficient to produce monodisperse nanoparticles. Moreover, this method
is not suitable for large-scale QD production.

The heat-up approach (Figure 5B) is a single-pot reaction without an injection step.
This results in high polydispersity in size distribution. Another drawback is the need
to employ reagents that have similar reactivities at the desired reaction temperatures.
The microwave method (Figure 5C) uses electromagnetic radiation to achieve a rapid and
homogeneous heating of the reaction. The control over the heating rate enables one to attain
monodisperse QDs [39]. The hydrothermal method (Figure 5D) uses aqueous solvents at a
high temperature and pressure, which leads to the rapid formation of nuclei, resulting in
monodisperse QDs.

2.1.3. Carbon Nanotubes

CNTs were first reported by Iijima in 1991 [40]. They consist in 1D, rolled-up layers of
carbon atoms with sp2 hybridization (Figure 4), and can be classified into single-walled car-
bon nanotubes (SWCNTs), one-piece cylinders with only one carbon layer, double-walled
carbon nanotubes (DWCNTs), with two concentric carbon layers or multi-walled carbon
nanotubes (MWCNTs), with several concentric carbon layers linked by weak interactions.
They have a low density (1.3 g/cm3) and outstanding mechanical, thermal and electrical
properties which depend on their diameter, length and chirality [41]. Their stiffness is the
highest amongst any known material, with a Young’s modulus close to 1 TPa and strength
of about 30 GPa [42]. Depending on their chirality, they can be conducting, semiconducting
or insulating. The conducting ones have a current density in the order of 4 × 109 A/cm2,
much higher than that of metals such as Ag (105 A/cm2). They also show a very high
thermal conductivity (more than 103-fold that of metals such as Cu), and display very high
thermal stability, up to 700 ◦C under an air atmosphere and 2800 ◦C under a vacuum [43].
However, they have a great predisposition to aggregate and form ropes, which leads to
properties worsening, particularly mechanical and electrical. Henceforth, functionalization
with polymers [44] or other molecules is frequently required.

The most common methods to synthesize CNTs are chemical vapor deposition (CVD),
electric arc discharge and laser ablation [45,46]. CVD is a technique in which the vaporized
reactants (hydrocarbon gases) react chemically inside a quartz tube filled with inert gas,
which is placed in a furnace kept at high temperature (500–900 ◦C). The hydrocarbon gases
are pumped into the quartz tube, undergo a pyrolysis reaction and form vapor carbon
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atoms that deposit onto a substrate with metal catalyst nanoparticles of Fe, Co and Ni. The
obtained CNTs are typically purified to obtain the raw CNTs.
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In the arc discharge approach, a potential is applied across pure graphite electrodes
maintained at a high pressure of inert gas filled inside a quartz chamber. When the
electrodes strike each other, an electric arc is generated and the energy is transferred to the
anode, which ionizes the carbon atoms of pure graphite and produces C+ ions in the form
of plasma. These positively charged ions move towards the cathode, where are reduced,
deposited and grown as CNTs [47].

The laser ablation method is a physical vapor deposition method in which a graphite
target placed at a quartz chamber filled with inert gas is vaporized by a laser source. The
vaporized target atoms are swept toward a cooled copper collector by the flow of the inert
gas, where are they deposited and grow [47].

2.1.4. Graphene and Its Derivatives

Graphene (G) is a 2D atomically thick carbon nanomaterial comprising a honeycomb
lattice of sp2 carbon atoms [48]. It was discovered by Novoselov and Geim at Manchester
University in 2004, while exfoliating a graphite pencil with Scotch tape [49]. G has outstand-
ing electrical, optical and thermal properties, combined with a high mechanical resistance,
transparency, low density and flexibility. For instance, it has a thermal conductivity in
the range of 3000–5000 W m−1 K−1 [50], about 10-fold higher than that of other metals
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such as Cu, a very high electron mobility (20,000 cm2 V−1 s−1) and exceptional electrical
conductivity (up to 5000 S cm−1). Moreover, it is one the strongest materials on earth, with a
Young’s modulus of around 1 TPa and tensile strength of about 120 GPa, significantly stiffer
than steel [51]. Additionally, it is a zero-gap semiconductor, electroactive and transparent,
absorbing just 2% of the incident light.

These exceptional properties make G a perfect candidate for many applications, such
as sensors, supercapacitors, fuel cells, photovoltaic devices, batteries, nanocomposites,
flexible electronic devices and so forth [52,53].

G can be modified with polymers via covalent and non-covalent approaches to form
functional nanocomposites. Covalent interactions happen via the formation of chemical
bonds, through approaches named as “grafting-from” and “grafting-to” [4,5]. In the first,
G is used as a growing point for the polymer chains, while in the second there is a direct
coupling of G with the polymer chains, which should incorporate reactive functional
groups. Nevertheless, these strategies can change the aromatic π-system of G and generate
defects that result in a poorer performance. On the other hand, the non-covalent approach
consists in the adsorption of polymers onto G via weak interactions, such as H-bonding,
hydrophobic (van der Waals), H- π, cation- π and so forth.

G synthesis is typically performed by two ways [54], namely the “bottom-up” and
“top-down” approaches (Figure 6). In the top-down methods, the initial material is graphite,
which can be exfoliated mechanically (scotch tape method), in liquid phase (typically with
the aid of ultrasounds to disperse the graphene layers [55,56]) or electrochemically, which
is based on the penetration of graphite by ions from the electrochemical solution using a
potential, as depicted in Figure 6 [57,58].

The bottom-up techniques rely on making graphene from molecular precursors by
chemical vapor deposition (CVD) or epitaxial growth. CVD is an economic and large-scale
method to yield high-quality graphene, even though it is hard to control the thickness of
its films [59]. A hydrocarbon gas is saturated at very high temperatures on a substrate
made of a transition metal. When it cools down, the solubility of carbon decreases, and
the graphene film is made. Epitaxial growth is one of the most expensive methods since
it requires a SiC substrate that is heated at very high temperature. However, it enables a
precise control over the film thickness via tailoring the process parameters.

On the other hand, graphene derivatives are currently used for numerous applications,
including the fabrication of biosensors. Amongst them, the most important is graphene
oxide (GO), and the oxidized form of G with oxygenated functional groups, mainly car-
boxylic groups on the edges and epoxy and hydroxyl groups on the layer plane, typically
synthesized via Hummer´s method using strong oxidizing agents, such as sulfuric or nitric
acid [60,61]. Another well-known derivative is reduced graphene oxide (rGO), which
is obtained via the thermal treatment of GO to remove functional groups [62] or by the
chemical reduction of GO using synthetic reducing agents, such as hydrazine or sodium
borohydride, or more recently eco-friendly, natural reducing agents, such as aminoacids
(i.e., ascorbic acid) or plant extracts.

2.2. Inorganic Nanofillers
2.2.1. Layered Nanoclays

Nanoclays belong to a class of materials made of layered silicates or clay minerals
with traces of metal oxides and organic matter. Clay minerals are hydrous aluminum
phyllosilicates with adjustable amounts of iron, magnesium, alkali metals, alkaline earths
and others cations [63]. Clays have been found to be effective reinforcing fillers for polymer
due to their lamellar structure and high specific surface area (750 m2/g) [11]. Thus, over
the past years, it has been reported that the dispersion of exfoliated clays in polymer
leads to a remarkable increase in stiffness, fire retardancy and barrier properties at a very
low nanoparticle volume fraction [64]. Examples of clays are montmorillonite, saponite,
laponite, hectorite, sepiolite and vermiculite [65]. Among them, montmorillonite (MMT) is
the most widely used in polymer nanocomposites, because of its large availability, well-
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known intercalation/exfoliation chemistry, high surface area and reactivity [11]. MMT
comprises two tetrahedral silica sheets with an alumina octahedral sheet in the middle
(2:1 layered structure), and the hydrated exchangeable cations occupy the spaces between
lattices, as shown in Figure 7 [66].
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2.2.2. Metallic Nanoparticles

AuNPs, also called “gold colloids”, are the most stable among metallic NPs [67].
Generally, gold can be found in the Au+ (aurous) and Au3+ (auric) oxidation states. The
synthesis of AuNPs involves reducing agents (e.g., citric acid, oxalic acid, hydrogen per-
oxide, borohydrides, polyols or sulfites), which act as electron donors that reduce Au+

or Au3+ to Au0. Afterward, stabilizing agents (e.g., trisodium citrate dihydrate; thiolates;
and phosphorus ligands or surfactants, such as cetyltrimethylammonium bromide) are
added in order to prevent aggregation and control NP growth in terms of rate, size and
shape [68]. Recently, increased attention has been placed towards green synthesis methods
that use plants, fungi and microorganisms, since their extracts are rich in natural reducing
and stabilizing agents [68].

AgNPs are widely studied among metallic NPs due to their comprehensive application
in fields such as medicine, pharmacology, microbiology, cell biology, food technology,
water purification, house appliances and so forth [69]. They can be synthesized via sol-
gel, hydrothermal, thermal decomposition, CVD, microwave-assisted combustion and
biogenic synthesis methods. Their production involves reducing Ag+ to Ag0 using various
biomolecules as electron donors, i.e., aldehydes, ketones, carboxylic acids, flavonoids,
tannins, phenols and proteins [70].

CuNPs are naturally synthesized by plants via reducing Cu+ and Cu3+ ions. They can
also be obtained by physical processes that require expensive instruments and chemical
techniques, such as sonochemical reductions, thermal decomposition, electrochemical
synthesis, hydrothermal processes, or microemulsions [71]. However, CuNP fabrication
needs non-aqueous media and an inert atmosphere to prevent the formation of an oxide
layer onto the surface. Other approaches include the protection of the NPs with capping
agents or the conversion of CuNPs to CuO NPs.

2.2.3. Metal Oxide Nanoparticles

ZnO NPs show great potential as antimicrobial agents owing to their large surface
area, reduced size, high surface reactivity and ability to absorb UV radiation [72]. They
can be synthesized through various methods, including thermal decomposition, com-
bustion, vapor transport, the sol-gel method, the hydrothermal method, co-precipitation,
ultrasonication and green synthesis using plant extracts or microorganisms.

TiO2 is an FDA-approved compound for food, drugs, cosmetics and food packaging
usage [73]. It exists in three main polymorphs, namely, anatase, rutile and brookite [74].
The synthetic routes for TiO2 NPs include the sol-gel, hydrothermal and solvothermal
methods, precipitation and electrochemical processes, using titanium chloride, titanium
isopropoxide, or titanyl sulfate-based compounds as precursors. However, these techniques
are detrimental in terms of reaction time and particle size control, hence novel green
synthesis methods have emerged owing to their lack of toxicity and inexpensiveness.

Fe3O4 NPs have attracted a lot of interest for application within the biomedical field
owing to their superparamagnetic and high magnetic susceptibility. Since their behaviour
is strongly dependent upon their size, shape, structure, surface chemistry and colloidal
stability, the choice of synthesis method is highly important. There are three main routes
for Fe3O4 NPs synthesis, namely, physical, chemical and biological techniques, but the
most commonly applied is chemical co-precipitation [75].

2.3. Organic Nanofillers
2.3.1. Nanomicelles

Nanomicelles are formed via the self-assembly of amphiphilic molecules to form a
globular structure with a diameter in the range of 5–100 nm (Figure 8a). The particles may
be formed in aqueous or non-aqueous solutions in which the nonpolar region forms the
interior and the polar region forms the exterior. Different surfactant molecules that may
be non-ionic, ionic and cationic can be used to synthesize nanomicelles. They form only
when the concentration of surfactant is higher than the critical micelle concentration (CMC),
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and the temperature of the system is greater than the critical micelle temperature or Krafft
temperature. These two parameters are dependent on the amount of lipids and proteins in
the micelles [76].
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2.3.2. Liposomes

Liposomes are small artificial vesicles, spherical in shape, and have at least one lipid bi-
layer (Figure 8b). Due to their hydrophobicity and/or hydrophilicity, biocompatibility and
encapsulation capability, they are widely used for drug delivery [77]. Though liposomes
can vary in size from several nanometres to a few micrometres, unilamellar liposomes
are generally in the nanometre range, and can be prepared by sonicating a dispersion
of amphipatic lipids, such as phospholipids, in water; novel methods such as extrusion,
micromixing and the Mozafari method are employed to produce materials for human use.

2.3.3. Nanodendrimers

Nanodendrimers are nanosized, radially symmetric molecules around the core, with a
monodisperse structure that adopts a spherical three-dimensional morphology (Figure 8c).
They are classified according to their generation, which refers to the number of repeated
branching cycles that are performed during its synthesis. They have outstanding properties,
such as polyvalency, self-assembling capability, good chemical stability, solubility and
biocompatibility [78]. They are usually prepared via a divergent or convergent method.
In both of them, the dendrimer grows outwards from a multifunctional core molecule.
The core reacts with monomer molecules containing one reactive and two inactive groups,
giving the first-generation dendrimer. Then, the new periphery of the molecule is activated
for reactions with more monomers.

3. Machine Learning Applied to Polymeric Nanocomposites

ML is regarded as a subset of artificial intelligence that is mainly concerned with
the development of algorithms, which allow a computer to learn from the data and past
experiences on its own. In 1950, Alan Turing (considered the father of artificial intelligence)
published a paper entitled “Computer Machinery and Intelligence”, on the topic of artificial
intelligence. In this paper [79], he posed the question “Can machines think?” In 1952, Arthur
Samuel, who was the pioneer of machine learning, created a program that helped an IBM
computer to play a checkers game. In 1959, the term “Machine Learning” was first coined
by this author, who defined it as “a field of study that gives computers the ability to learn
without being explicitly programmed”. It drew the attention of many scholars who began
investigating this area. In 1959, the first neural network was applied to a real-world problem
to remove echoes over phone lines using an adaptive filter. Progressively, ML turn out to
be a stirring tool for the scientific community, since various statistical and probabilistic
methods were demonstrated to speed up both fundamental and applied research [80]. ML
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algorithms have been widely applied in the fields of biology and chemistry [81,82], which
has stimulated material researchers to explore the option of using them for the design of
novel materials with improved properties and wider applications [83]. The combination
of experiments and computer simulations produces a huge amount of data that enable
us to integrate ML algorithms with material science for property prediction and novel
material design. In the following sections, the applicability of ML algorithms to polymeric
nanocomposites is described.

3.1. Classification of Machine Learning

At a broad level, machine learning can be classified into three types: (1) supervised
learning; (2) unsupervised learning; and (3) reinforcement learning. In supervised learning,
sample labelled data are provided to the machine learning system in order to train it, and
on that basis, it predicts the output [84]. In other words, an algorithm is used to learn the
mapping function from the input to the output: y = f(x) [85]. The goal is to approximate the
mapping function so well that when new input data (x) are provided, the output variables
(y) for that data can be predicted. Once the training and processing are completed, the
model is tested by providing a sample data to check whether it is predicting the exact output
or not. It is named as “supervised learning” since the process of an algorithm learning
from the training dataset is comparable to a student learning under the supervision of the
instructor. The learning stops when the algorithm attains a satisfactory level of performance.
It can be further divided in two categories of algorithms: classification and regression. In
a classification problem, the output variable is a category, such as “red” and “blue” or
“disease” and “no disease”. In a regression problem, the output variable is a real value,
such as “dollars” or “weight”. Typical examples of supervised learning algorithms are
linear regression, random forest, spam filtering and support vector machines [85].

In unsupervised learning, a machine learns without any supervision. The training
is provided to the machine with the set of data that has not been labelled, classified or
categorized, and the algorithm needs to act on that data without any supervision [86]. The
aim is to restructure the input data into new features or a group of objects with similar
patterns. There is no predetermined result. The machine tries to find useful insights from
the huge amount of data. It can be divided into two types of algorithms: clustering and
association [87]. A clustering problem is when you want to discover the inherent groupings
in the data, such as grouping customers by purchasing behaviour. An association rule
learning problem is when you want to discover rules that describe large portions of your
data, such as people that buy X also tend to buy Y. Some popular examples of unsupervised
learning algorithms are k-means for clustering problems and the apriori algorithm for
association rule learning problems.

Reinforcement learning is a feedback-based ML method, in which a learning agent
gets a recompense for each correct action and a penalty for each mistaken action. The
agent learns automatically with this feedback and enhances its performance. The aim is
to obtain the most reward points. In reinforcement learning, the agent interacts with the
environment and explores it. The robotic dog, which automatically learns the movement of
his arms, is an example of reinforcement learning.

Among the three abovementioned types, supervised learning is the most commonly
used in the field of polymeric nanocomposites. Algorithms that fall under this category
typically follow a six-stage approach as described in Figure 9.

• Data acquisition: data should be collected in a systematic way from published articles,
technical reports or from own experimental data. It should be noted that some data
sources or published articles do not report all considered variables.

• Data preparation: After collecting the suitable data, preprocessing is carried out
in terms of formatting, cleaning and sampling. Formatting provides a structure
to the data which enhances its quality. Relevant materials and process variables
affecting the behaviour to be modelled need to be carefully examined. Nanofiller-
related parameters need to be considered, such as type, concentration, shape and size,
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matrix parameters including nature and concentration, the manufacturing process
to fabricate the nanocomposites as well as some nanocomposite properties, such as
density, thickness, porosity, etc. Some of the attributes are deleted in the cleaning
step in order to keep the consistency of all recovered values and ensure data quality.
Incorrect data can hinder the accuracy of ML predictive models. Erroneous data may
arise during both recovering data points from the literature or entering the datapoint
into the database. All entered values need to be double checked to verify that no
erroneous value was included. Then, sampling is used to select a subset of the data
out of a big chunk which can further be used for the training purpose [88]. Converting
the raw information into certain relevant attributes which are further used as input
features for the selected algorithm is a necessary step for getting accurate predictions
and is commonly known as feature engineering [89]. It helps in increasing the learning
accuracy along with improved comprehensibility.

• Selection of the ML method: After data preparation, the next step is to set a hypothesis
function (h(x)) which maps the input parameters (x) to the output (y) and selects a suit-
able ML algorithm to be used (Figure 10). Based on the type of data and whether the
problem is a classification or regression, an appropriate algorithm is chosen [90]. The al-
gorithms most widely used for classification problems are K-nearest neighbour (KNN),
decision trees, neural networks, naive bayes and support vector machine [91]. For
problem regressions, algorithms such as linear regression, support vector regression,
neural networks, Gaussian process and ensemble methods are typically applied [92].

• Training: The selected algorithm is trained with the processed data, which are split
into three subsections: training, cross-validation and testing dataset. The model learns
to process the information using a training dataset. A cross-validation dataset is used
for parameter tuning and to prevent overfitting issues.

• Model evaluation: This is a critical part of the model development process. A model
can be inaccurate despite having a very small data training error. With this aim,
a test dataset is applied to assess the model’s performance, and this sets the basis
for making the final predictions. Accordingly, the final model is chosen and the
hypothesis function is also evaluated. Figure 10 shows the basic scheme for the initial
implementation of ML.
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a hypothesis function that maps the input parameters (x) to the output (y) and selects a suitable
learning algorithm to be used for further prediction.

3.2. Property Prediction, Process Optimization and Uncertainty Quantification

ML has been applied to polymeric nanocomposites for the prediction of the mate-
rial properties, process optimization, microstructural analysis and the quantification of
uncertainties arising in the material and its properties due to the complex manufacturing
processes. Optimization is one of the most important applications of ML. It involves the pro-
cess of training different models multiple times, which is computationally very expensive
and has the tendency of becoming intractable for complex simulations. An optimization
algorithm carries out iterative execution by comparing different models for potential solu-
tions until a satisfactory result is found. Three basic keys define an optimization problem:
(1) variables, the parameters the algorithm can tune; (2) constraints, the boundaries or limits
for these parameters; and (3) the objective function, the goal towards which the algorithm
progresses. Figure 11 displays the classification of optimization algorithms based on the
design variables, objective function and constraints.

Two types of optimization algorithms can be applied: deterministic, which make use of
specific instructions to find the solution and the uncertainties in terms of variable space are
ignored [93,94]; and stochastic, which are probabilistic methods wherein the uncertainties
are modelled with suitable probability distributions [95]. A novel approach, named robust
optimization, is also used to explicitly model and minimize the uncertainty involved in the
problem by using a set-based deterministic description of the uncertainties [96].

Stochastic algorithms use random objective functions and constraints for problem
optimization. Optimal design is attained by comparing different potential hypothesis func-
tions and then estimating each of their corresponding cost function (squared error function)
by identifying the design variables and constraints. The whole optimal problem is then
expressed in a mathematical form and is solved using an optimization algorithm. A scheme
of the procedure followed for the design of an optimal problem is shown in Figure 12.
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Figure 11. Classification of optimization algorithms based on the design variables, objective function
and type of constraints.
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Optimization methods can be significantly improved in terms of efficacy and efficiency
by involving ML algorithms [97,98]. For instance, Salah et al. [99] optimized the process
parameters and predicted the absorption index of polycarbonate (PC)/CNT nanocompos-
ites using a ML of multilayer perceptron network approach. Khanam et al. [100] optimized
the thermal conductivity, crystallization temperature, degradation temperature and tensile
strength of linear low-density polyethylene (LLDPE)/graphene nanoplatelets (1–10 wt%)
nanocomposites processed in a twin-screw extruder with three different screw speeds and
feeder speeds of 50, 100 and 150 rpm. The prediction of properties was performed via
an artificial neural network (ANN). The first three properties increased with rise in both
screw speed and graphene content. The tensile strength reached a maximum at 4 wt%
and a speed of 150 rpm, and these were the optimum conditions for the stress transfer
from the amorphous chains of LLDPE to the graphene nanoplatelets. A similar approach
was used by Zakaulla et al. [101] to predict the mechanical properties of high performance
polyetheretherketone (PEEK) hybrid nanocomposites comprising graphene (2–10 wt%) and
titanium powder (1–5 wt%) prepared via injection moulding [101]. The proposed ANN
model delivered satisfactory results to predict the hardness, tensile strength, modulus of
elasticity and tensile elongation in comparison to experimental measurements (Figure 13),
and the best performance was attained upon the incorporation of 10 wt% graphene. The
correlation factor connected with the training and test dataset was greater than 0.9.
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Yusoff et al. [102] predicted the rheological properties of nanosilica/polymer modified
bitumen using multilayer perceptron neural network models, and attained very good
agreement with the experimental data with R value of 0.978. Recently, Kosicka et al. [103]
used different optimization algorithms to predict the mechanical properties of epoxy-based
nanocomposites reinforced with alumina in the concentration range 5–25 wt%. By using
the Python programming language and available libraries, a neural network generated the
predicted values of selected properties of the nanocomposites, including Young’s modulus,
maximum stress, maximum strain and hardness. The comparison of forecast values with
the values obtained at the stage of laboratory tests confirmed the effectiveness of the
network (63% of forecasts were classified as very accurate, 15% of forecasts were defined
as accurate).

Computational analyses of polymer nanocomposites often meet uncertainties because
of the variations in the material properties, measurement uncertainty, restrictions in the
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test set-up, operating environment and inaccurate geometrical features [104]. Uncertainty
in parametric inputs, initial conditions and the boundary conditions, computational and
numerical uncertainties arising from the unavoidable assumptions and approximations
together with the intrinsic inaccuracy of the model lead to major deviation from the
deterministic values or the expected material behaviour, altering the overall nanocomposite
performance. To ensure that the simulation results are reliable and to understand the risks
for making final product decisions, it is crucial to quantify these uncertainties [105]. In this
regard, Doh et al. [106] used the Bayesian inference approach to quantify the uncertainty of
percolating the electrical conductivity of polymer/CNT nanocomposites. The correlation
between the CNT conductivity and the phase transition parameter along with the critical
exponent significantly affects the electrical conductivity of the resulting composite in the
uncertainty quantification.

3.3. ML Algorithms Used in Polymer Nanocomposites

With the aim to optimize design, researchers are continuously investigating the ex-
ploitation of the growing capabilities of ML algorithms. Such research activities have
resulted in many successful attempts which are summarized in the following subsections.

3.3.1. Neural Networks

Neural networks are the favourite algorithm of material science researchers to in-
vestigate data-intensive aspects. They are mathematical tools inspired by the biological
nervous system and are used to solve a wide range of problems by recognizing under-
lying relationships in the available data [107]. In the human brain, there are millions of
neurons connected via a network which aids in processing the flow of information to
generate meaningful outputs. Similarly in neural networks, there are number of neurons
that act as processors operating in parallel and arranged in different layers. The first layer
(input layer) collects all the information to be considered (preprocessed data). Then the
intermediate (hidden layer), comprising many discreet nodes, is responsible for all the
computations [108]. The last layer (output layer) provides the final predictions. A scheme
of the basic architecture of an artificial neural network (ANN) is provided in Figure 14.
An ANN was defined by Aleksander and Morton [109] as a massively parallel-distributed
processor made up of simple processing units, which has a natural propensity for storing
experimental knowledge and making it available for use. It is similar to the brain in two
aspects: (1) Knowledge is acquired by the network from its environment via a learning
process; (2) Inter-neuron connection strength, known as synaptic weights, is used to store
the acquired knowledge.

The most suitable applications of ANNs are those that have a large available dataset, in
which it is difficult to find an accurate solution due to the existence of several mathematical
approaches and when the dataset is incomplete, noisy or complex. Some properties of
polymer nanocomposites, such as fatigue, wear, creep, etc., are suitable for ANN anal-
ysis [110]. It is ideal in polymeric nanocomposites when only the material composition
and testing conditions are the input data. It can aid to simulate the relationship between
the manufacturing parameters and the material performance, which can be used as the
basis for a computer processing optimization. The required number of trained data can be
reduced by optimizing the ANN architecture and by choosing suitable input parameters.
Multilayer perceptrons (MLPs) and radial basis functions (RBFs) are predictor functions
frequently used in ANNs [111] which help to minimize the error in the predicted outputs.

Feedforward (FF) architecture with backward propagation (BP) is typically applied
for output computation and error minimization. In the FF style, no loops are formed
in the whole network. Information in any of the units of the successive layers does not
receive any feedback, while in the back propagation, synaptic weights are adjusted by back
propagating the error. Weights are updated after each record is run through the network.
One iteration is completed when all the records finish running through the network and
it is known as epoch. The process is repeated after completing one epoch. There are
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mathematical equations (activation functions) for linking the weighted sums of each layer
with the succeeding layer and delivering the output.
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The architecture of ANN model can be mathematically expressed as:

Y = F (x)
Y = A (W × x + Bi) + B0

where Y is the output vector, x is the input vector, A is the activation function (sigmoid,
Tanh, softmax, softplus etc.), W is the matrix that contains the synaptic weights, Bi is the
column vector of biases from the input layer to the hidden layer and B0 is the column vector
of biases from the hidden layer to the output layer.

Matos et al. [112] applied an ANN to examine the potential of epoxy/CNT nanocom-
posites for the manufacture of damage-detecting sensors. The finite element method (FEM)
was used to produce extensive data for ANN, which was then used, at a macroscopic scale,
to predict the conductivity of the nanocomposites as a function of multiaxial strain up to 1%
(Figure 15). Flat dog-bone specimens, dimensioned according to ASTM D638-02, were used
to carry out measurements of the strain-sensing response [112]. Such measurements occur
by placing two electrodes at opposite ends of the specimen end tabs; a potential difference
can then be measured by the same electrodes (2-probe setup) or by an additional pair of
electrodes at different locations along the specimen (4-probe setup). A volume fraction
of 1.0% was selected since it is just above the percolation threshold, and in this region
the nanocomposites are expected to display the most prominent strain-sensing response.
The elastic modulus of the CNTs and epoxy matrix, Poisson’s ratio, CNT diameter and
length were input parameters. The approach did not require calibration parameters to
be determined from complex experiments and took into account the quantum tunnelling
electron transport at the junction between CNTs. The conductivity along the specimens was
non-uniform and its value in the gauge portion was approximately 50% of the value at the
undeformed end tabs, suggesting that a 4-probe setup should yield much more accurate
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measurements than a 2-probe setup (Figure 14). A chief result of this work was the decrease
in computational time: simulations carried out with the FEM needed 3.5 h to run, while the
ANN obtained the same output in less than 0.2 s.
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Different variants of neural networks have been successfully used to predict the be-
haviour of polymeric nanocomposites under different conditions, and some representative
studies are summarized in Table 1. Adaptive neuro fuzzy interference systems (ANFISs)
are another algorithm that has the benefits of neural networks as well as fuzzy logics and
integrates the principles of both in a single architecture. Researchers have implemented
ANNs and ANFISs to predict the impact strength, yield strength and other mechanical
properties of polymeric nanocomposites [113], and concluded that both can be success-
fully implemented to any type of polymer composite to predict mechanical behaviour.
Another class is a convolutional neural network (CNN) which falls under the category
of deep learning. Researchers have applied it for analysing images and quantitatively
predicting the mechanical behaviour of composites by making use of different grid sizes of
the composite microstructure obtained from scanning electron microscope (SEM) analysis.
Using the chemical structure of different polymers, it possible to predict the glass transition
temperature (Tg) along with other polymeric properties.
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Table 1. Representative studies using artificial natural networks (ANNs) to predict the properties of
polymeric nanocomposites.

Nanocomposite ML Model Input Output Ref.

PC/CNT MLP nPC, nCNT, wCNT ε [99]

LLDPE/GNP ANN wGNP; extruder & feeder speed K, Tc, Td, σy [100]

PEEK/G/Ti ANN wG; wTi EPEEK, EG
SEM images H, E, σy [101]

Polymer/SiO2 MLP wp; wSiO2; ω, t η, G [102]

Epoxy/Al2O3 ANN wepoxy wAl2O3,
grain size H, E, εm, σy [103]

Epoxy/CNT ANN Eepoxy, ECNT, ν, ΦCNT, lCNT σ [112]

Polymer/SiO2 ANN + ANFIS vSiO2; ΦSiO2 Epolymer, ESiO2; T [113]

Epoxy/SiO2 ANN Eepoxy, ESiO2; vepoxy; vSiO2; ΦSiO2 T [114]

PTFE/CF/TiO2 ANN vPTFE; vTiO2; t, wr wL: µ [115]

Epoxy/CNT/coir fibre ANN wepoxy wCNT, S [116]

PLA/GNP ANN wPLA, wGNP
processing parameters d, H [117]

Vinyl ester/GNP ANN vGNP; ω, t η, G [118]

Polymer/SiO2 ANN vPolymer; vTiO2 E, εm, σy [119]

PVP/SiO2 ANN wPVP; wSiO2; ω SA [120]

PC/G/BC ANN vPC; vG; vBC; t, wr wL: µ [121]

Polymer/CNT ANN wpolymer; wCNT ΦCNT, lCNT; σCNT σ [122]

Polymer/nanofiller CNN 2D images η, G; Tg [123]

Polymer/GNP ANN Electric vector I [124]

PPy/CNT ANN wPPy; wCNT; P Flux measurements [125]

Styrene/AA/CB ANN wAA; wCB Tg, Tc, Td, [126]

PP/nanoclay MLP + BP wPP; wnanoclay
EPP/Enanoclay

Mechanical lifetime [127]

Epoxy/CNT ANN + BP wCNT; extruder & feed speed Ra [128]

Starch/Clay/AgNPs FF + MLP wstarch; wClay; wAgNO3 AgNPs size [129]

LLDPE/nanoclay ANN + BP wLLDPE; wnanoclay
extruder & feeder speed E, εm, σy [130]

Polymer/QDs ANN + MLP wpolymer; wQDs
Energy levels

Absorption spectrum [131]

PBA/Bi2O3 ANN wPBA; wBi2O3 Td, EF, σF [132]

PA-6/Nanoclay ANN + GA wPA-6; wnanoclay
extruder & feeder speed Ra [133]

LLDPE/G/SiO2 ANN wG; wSiO2 ∆E, δ [134]

PA-6/Nanoclay ANFIS wPA-6; wnanoclay
extruder & feeder speed E [135]

Polymer/CNT ANN wCNT; wpolymer E [136]

nm: matrix refractive index; nCNT: CNT refractive index; wi: weight fraction; vi: volume fraction; K: thermal
conductivity; ε: absorption index; E: elastic modulus; Tc: crystallization temperature; Td: decomposition tempera-
ture; σy: tensile strength; ΦCNT: CNT diameter: lCNT: CNT length; ν: Poisson’s ratio; σ: electrical conductivity;
η: viscosity; G: storage modulus; ω: frequency; εm: maximum strain; T: fracture toughness: CF: carbon fibre;
wr: wear rate; wL: wear loss; µ: friction coefficient; S: shear modulus; d: density; SA: sound absorption; PVP:
polyvinyl pyrrolidone; I: current density; PPy: polypyrrol; P: pressure; AA: acrylonitrile; CB: carbon black; PP:
polypropylene; Ra: roughness; PBA: Polybenzoxazine; EF: flexural modulus; σF: flexural strength; ∆E: band gap;
δ: dipole moment.

3.3.2. Genetic Algorithm

Another approach that can be used to predict the properties of polymer nanocom-
posites is the genetic algorithm (GA). Since its origin in 1975 by researcher John Holland,
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the genetic algorithm [137] has been widely studied and developed. It is a bio-inspired
algorithm based on the theory of evolution of species [138], in which individuals better
adapted to their environment have a better chance of surviving and having offspring, thus
transmitting their genetic characteristics to future generations. In this comparison, each
individual represents a solution to the optimisation problem to be solved and the genetic
load of the individual is precisely the value of the parameters that define the encoding of
the solution. In the design of polymeric nanocomposites, each individual in the population
encodes a specific nanocomposite design. The algorithm manages simultaneously with a
population of individuals competing to reach the next generation (parallel algorithm) [139].
It is defined as an evolutionary algorithm because its execution is based on the evolution of
successive stages for the population of solutions. The fact that it speaks of the probability
of an individual’s survival depending on the degree of adaptation makes the algorithm
non-greedy: factors other than the genetic load itself, such as fortuitous circumstances, may
favour an individual to thrive until a later generation.

The adaptation of an individual is measured by an evaluation function or fitness
function. The fitness function corresponds to a measure of one or more desirable properties
in the nanocomposite. A better quality in such properties means a higher probability of
survival among the population. Depending on the problem, optimisation consists of either
maximising or minimising this function. In the design of nanocomposites, the goal may be
to maximize the material strength, the thermal conductivity, the electrical conductivity [140]
or the hydraulic performance [141]. Other cases are aimed at minimizing the cost function,
in [142] the potential energy of Au-Ag bimetallic nanoparticles is minimized, in [143] the
friction factor is minimized while the heat transfer is maximized. Otherwise, the goal is
the classification of the samples according to their structure [144], so the fitness function
is defined as the classification accuracy, which needs to be maximized. The evaluation
function makes it possible to discriminate between individuals by determining which of
them is the best adapted, i.e., the one with a fitness value closest to the maximum/minimum
of the function.

The implementation of a genetic algorithm is characterised by three basic opera-
tors [145]: the selection operator for selecting individuals to compose the population of
a generation and/or determine the individuals that will have offspring, the crossover or
recombination operator for obtaining individuals descended from progenitor individuals,
and the mutation operator, which, with reduced probability, causes substantial changes in
the composition of some individuals. The consequences of mutation in an individual can
be disastrous for its survival or, on the contrary, very advantageous for it.

Figure 16 shows the basic flowchart of a genetic algorithm. The algorithm starts with
a set of random individuals that make up the initial population. The initial population
represents a set of random solutions to the problem. Since these are random, they are
expected to have fitness values far from the optimum. If the termination conditions
of the algorithm are not met, the algorithm progresses to the next generation. In each
generation, the population is processed with the parent selection, crossover and mutation
operators. The new individuals are then evaluated and the selection of survivors for
the next generation is performed. If the stopping conditions are not met again, a new
generation is started.

This basic diagram accepts additional procedures, such as individual repair and/or
local search. Individual repair is necessary when the encoding of the solutions allows
an individual not to correspond to a feasible solution. It is then necessary to repair the
individual so that it represents a single feasible solution. The local search process consists
of making small changes to the individual so that it results in another individual that is
very similar to the first one, but of higher quality. The local search operation means making
a small shift in the solution space, as opposed to mutation which is a more distant jump in
the solution space. The local search function significantly increases the computational cost,
so it is usually introduced only in some cycles of generations. Including such techniques in
the genetic algorithm makes the algorithm a hybrid method.
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The stopping or termination criteria of the algorithm are generally defined as one or
more of the following:

• The evolution of a maximum number of generations.
• Reaching a certain number of generations in which no appreciable improvement in

the population is detected. After successive generations the average fitness value in
the population remains constant.

• Finding a solution sufficiently close to a previously bounded optimum.

In the following, we discuss in detail the three basic operators mentioned along with
the encoding of the solution and the local search process. A more detailed explanation of
the theory of genetic algorithms can be found in [146–149].

Solution Coding

The encoding process allows the representation of the solutions of the real problem in
individuals manageable by the algorithm. Each individual is represented in the form of a
numerical vector called a chromosome. Each element of the vector is called an allele. A set
of alleles encoding the same characteristic or solution parameter is called a gene. Figure 17
shows an example of binary coding, in which the chromosome (10011011) represents the
solution {x = 9, y = 11}. The chromosome is composed of two genes (gene (1001) refers to
the variable x and the second half of the chromosome or gene (1011) corresponds to the
variable y). Each bit that makes up a gene is an allele.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 24 of 38 
 

 

Solution Coding 
The encoding process allows the representation of the solutions of the real problem 

in individuals manageable by the algorithm. Each individual is represented in the form of 
a numerical vector called a chromosome. Each element of the vector is called an allele. A 
set of alleles encoding the same characteristic or solution parameter is called a gene. Figure 
17 shows an example of binary coding, in which the chromosome (10011011) represents 
the solution {x = 9, y = 11}. The chromosome is composed of two genes (gene (1001) refers 
to the variable x and the second half of the chromosome or gene (1011) corresponds to the 
variable y). Each bit that makes up a gene is an allele. 

Genotype or genotypic space is defined as the space of individuals, while the 
phenotype or phenotypic space is the space of solutions to the real problem. In the 
example of Figure 17, the vector (10011011) corresponds to the genotype, while the 
solution {x = 9, y = 11} refers to the phenotype. 

 
Figure 17. Example of binary coding. The coding of the solution is known as the genotype. The 
individual or chromosome is composed of a given number of genes. The phenotype corresponds to 
the solution represented by the chromosome. 

There are encodings based on order, in which the order that the variables appear in 
has a meaning in the encoding of the solution. These include coding by permutations, as 
in the case of the Travelling Salesman problem, and other codings used, for example, for 
solving Sudoku puzzles. 

In other encodings, the order of the variables is not important for the solution itself, 
which is identified by the value of each gene. There are four types of non-order-based 
encodings: 
• Binary coding. This can be either common binary coding or Gray’s binary coding. 
• Coding with integer values, the content of the genes belongs to the set of integers ℤ. 
• Coding with real values, analogous to the previous one but the variables can only 

take values in ℝ. 
• Finite value coding, in which the variables can take only values pertaining to a 

limited set of values, such as a set of predefined colours or a closed set of positions 
on a board. 
The coding method chosen for a genetic algorithm greatly influences the ability of 

the genetic algorithm to find high quality solutions [150]. It especially affects the 
parameter called locality. The level of locality is closely related to how a solution 
(phenotype) is altered by applying small changes to its chromosome (genotype). A higher 
level of locality implies a lower degree of modification of the solution following changes 
made to the individual. 

Selection of Individuals 
The process of the selection of individuals takes place both in the composition of the 

population for the next generation and in the step prior to the recombination of 
individuals. The selection of individuals, the form and the percentages of the total 
population are defined in the architecture of the algorithm. In some cases, not all 

Figure 17. Example of binary coding. The coding of the solution is known as the genotype. The
individual or chromosome is composed of a given number of genes. The phenotype corresponds to
the solution represented by the chromosome.



Int. J. Mol. Sci. 2022, 23, 10712 23 of 37

Genotype or genotypic space is defined as the space of individuals, while the phe-
notype or phenotypic space is the space of solutions to the real problem. In the example
of Figure 17, the vector (10011011) corresponds to the genotype, while the solution {x = 9,
y = 11} refers to the phenotype.

There are encodings based on order, in which the order that the variables appear in
has a meaning in the encoding of the solution. These include coding by permutations, as
in the case of the Travelling Salesman problem, and other codings used, for example, for
solving Sudoku puzzles.

In other encodings, the order of the variables is not important for the solution itself,
which is identified by the value of each gene. There are four types of non-order-based
encodings:

• Binary coding. This can be either common binary coding or Gray’s binary coding.
• Coding with integer values, the content of the genes belongs to the set of integers Z.
• Coding with real values, analogous to the previous one but the variables can only take

values in R.
• Finite value coding, in which the variables can take only values pertaining to a limited

set of values, such as a set of predefined colours or a closed set of positions on a board.

The coding method chosen for a genetic algorithm greatly influences the ability of the
genetic algorithm to find high quality solutions [150]. It especially affects the parameter
called locality. The level of locality is closely related to how a solution (phenotype) is altered
by applying small changes to its chromosome (genotype). A higher level of locality implies
a lower degree of modification of the solution following changes made to the individual.

Selection of Individuals

The process of the selection of individuals takes place both in the composition of the
population for the next generation and in the step prior to the recombination of individuals.
The selection of individuals, the form and the percentages of the total population are
defined in the architecture of the algorithm. In some cases, not all individuals participate in
recombination. In others, an individual is allowed to be selected several times as a parent
in different pairs.

The selection of individuals is based on the fitness value of them, so those with better
fitness values, i.e., better adaptation, are given a higher probability of selection. However,
randomness does not prevent some poorer quality individuals from passing the selection
process. The efficiency of a selection operator is measured according to its degree of
selective pressure and its degree of diversity, both of which are opposing factors:

• Selective pressure: allows the best individuals to be selected for the recombination
process. It is necessary so that the search process is not random and there is a certain
degree of convergence, focusing the search on promising regions.

• Diversity refers to the differences between individuals. The lack of genetic diversity
causes all individuals in the population to be similar, so their offspring will be similar
as well. The algorithm will progress very slowly or not at all.

Selection techniques can be classified into three main groups [151]: tournament selec-
tion, uniform state selection and proportional selection:

• Selection by tournament: this technique was proposed by [152] and subsequently
studied in [153]. Selection is performed by direct comparisons of the fitness values of
individuals. A number p of individuals is randomly selected. Typically, p = 2 is used,
i.e., a tournament by pairs of individuals. From each pair, the individual with the best
fitness wins. This process is repeated until the selection of individuals is complete. A
variant of this method is to assign a probability of success to the fittest individual in
each set. In this way, the fitness value does not always win.

• Uniform state selection: was proposed by [154] for non-generational genetic algo-
rithms, in which in each generation, only a few individuals are replaced by fitter ones.
It consists of selecting the fittest individuals and subjecting them to the crossover and
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mutation operators. The resulting fittest offspring will replace the worst individuals
in the population in the next generation.

• Proportional selection: individuals are chosen according to the contribution of their
fitness value with respect to the contributions of the rest of the population. This
technique was originally presented by [137] and further developed by [155]. Variants
have appeared, the most widely used of which is the roulette technique.

The roulette selection method consists of assigning each individual a probability of
selection proportional to the position of its fitness in the interval of fitness values of the
existing population. In this way, individuals with better fitness have a greater chance
of being selected than individuals with worse values of the evaluation function. This
technique has become very popular since it was published in [148]. In the following,
we show a numerical example of selection using the roulette technique. Let us suppose
that the algorithm tries to maximise the cost function in a population composed of six
individuals (Nind = 6) with identifiers from 1 to 6. Table 2 records them in a decreasing
order according to their fitness Fi. The first column of the table indicates the identifier
of each individual i, while the second column gives its fitness value Fi. The sum of all
fitness values in the population is 20 as Table 2 shows in the last row. We set the fitness
range [1–20], which will be proportional to the selection probability range [0,1]. The third
column of the table indicates the selection probability pi of individual i by the following
equation. The individual with the best fitness has a probability 1 of being selected in the
operation (crossover or for the next generation), which is an elitist behaviour. As the fitness
value gets worse, individuals have lower probability of selection. The individual with the
worst fitness has a very small, but non-zero probability, allowing the algorithm a certain
randomness or chance in the continuity of poorer adapted individuals.

pi =


Fi

∑
Nind
i=1 Fi

; i = 1

pi−1 +
Fi

∑
Nind
i=1 Fi

; 1 < i ≤ Nind

Table 2. Obtaining selection probabilities for a population of six individuals using the roulette
technique, with the objective of maximizing the fitness function.

Indiv i Fi Probability pi

1 0.5 0.025

2 1 0.075

3 2 0.175

4 3.5 0.35

5 5 0.6

6 8 1.0

∑ 20 -

When the goal is to minimize the cost function, Table 2 is built by sorting the individu-
als in decreasing order of fitness.

Crossing Operator

The aim of the crossover or recombination operation is to explore the solution space in
an intelligent way. A new chromosome or individual is generated from two of them. In the
composition of the offspring, the aim is to extract, preserve and combine part of the genetic
material of its parents, while at the same time adding new sections to the chromosome
that bring diversity to the population. There are numerous types of crossbreeding, some of
which will be briefly described here:
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• Single point crossover: This method was proposed by [137] and is the simplest and
most popular. Subsequently, several variants have emerged. It consists of sectioning
both parent chromosomes at a random point, with each chromosome being subdivided
into two parts. The offspring is composed of one part of each chromosome. Figure 18
shows an example of a single-point crossover. We have used letters (A–G) for the
content of the first parent and numbers (1–7) for the second, with the intention of
highlighting the origin of the fragments in the offspring. Both parents have a length of
seven alleles, and the cut-off point is located between the fourth and fifth allele. The
offspring is assembled from the initial fragment of parent 1 and the final fragment of
the chromosome 2.
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Figure 18. Example of the crossover operation with single point cutting in a genetic algorithm. Each
chromosome is fragmented into two parts and the offspring receives one fragment from each parent.

Depending on the coding used, sometimes not all points on a chromosome are suitable
as cut points. This is the case of cutting at an intermediate point of a gene, possibly
generating offspring with an invalid gene value. The repair function is responsible for
solving conflicts in the viability of offspring.

• Multi-point crossover: this was proposed by [156] as a generalisation of single-point
crossover. It consists of fragmenting both of the parent chromosomes by N random
points, thus obtaining N + 1 fragments of each. The offspring is built by alternating
fragments from each parent. It has been experimentally proven that the N = 2 value
gives better results than single-point cutting. This method shows a greater tendency to
fragment the chromosomes in the central sections than in the areas near the ends [157].

• Uniform crossover: this can be considered as the extreme case of N-point crossover in
the sense that each gene is considered a fragment of the chromosome. The offspring
is formed by permuting the genes of both parents with a certain probability. In most
cases a probability of 0.5 is taken, although some researchers recommend a somewhat
lower probability. The assignment of the content for each gene of the offspring is
performed according to a binary mask of the same length as the parent chromosomes,
in which the value “1” at position i means assigning gene i of the offspring the value
of the same gene of one parent, while the value “0” indicates assigning the content of
gene i of the other parent. Figure 19 shows an example of a uniform crossover with
a binary mask generated by applying a probability of 0.5. Therefore, the offspring
receive information from both parents at 50%.

• Shuffle crossover: this is a technique that can be incorporated into the three previous
types of crossovers in order to reduce the tendency to fragment chromosomes at the
central sections. It consists of applying the same random permutation to both parents
before the crossing operation. After the crossover operation, the reverse permutation
must be applied to the offspring. In this way, the positions of the cut-off points are
more evenly distributed throughout the individual.

• Partial map crossover: this operator is applied in order-based encodings (permutations)
in which the value for a gene cannot be repeated in the same chromosome. The
classic example for this type of coding is the Packet problem, in which each packet
is represented only once in the chromosome content. This type of crossover copies
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part of the genetic information of one of the two parents into the offspring, with
its exact sequence and in the same position. The crossover process is as follows: N
cut points are applied to one of the parents and alternating fragments of the parent
are transferred in their entirety to the individual offspring in a similar way to the
multipoint crossover. For N = 2, the first and third fragments of the selected parent
would be copied to the offspring. The remaining fragments for the offspring are filled
with the values of the genes not present in the offspring and in the order of occurrence
of the second parent. Figure 20 shows an example of this method with N = 2 and the
cut-off points between the second and third genes, and between the fifth and sixth
genes. We have chosen the parents (A B C D E F G) and their inverse (G F E D C B A)
to have a simple example. The offspring chromosome takes the end fragments from
the first parent, resulting in (A B - - - F G). We filled in the three free gaps with the
genes from the second parent in order of appearance, if not already present. In the
example, the first two genes of the second parent (G F) are not considered because
they are already included in the offspring; only (E D C) is filled in.
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Mutation Operator

The mutation operator is generally applied on a small percentage of the population.
However, mutation effects have a great influence on the evolution of the algorithm. In
fact, some evolutionary algorithms, although not genetic algorithms, use mutation as a
fundamental strategy in the search for solutions. The idea behind this operation is to
recreate the genetic mutations produced in species in nature, due to errors in DNA transfer.
In genetic algorithms, mutation achieves several objectives:

• The exploration of new areas in the space of solutions close to “quality solutions”
already studied.

• Ensures diversity in the population to avoid premature convergence of the algorithm.
• In case of premature convergence to a local optimum, the algorithm can be free from

that local maximum/minimum.
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The mutation operation is applied after the crossover operator and only to a defined
percentage of the population. This percentage usually varies between 1% and 5% for binary
coding, and no more than 15% for real coding. Too large a percentage of the mutated
population can turn the search for solutions into a virtually random search. Meanwhile,
too small a percentage would not help the algorithm to get away from possible premature
convergence.

To prevent the best individuals in the population from being mutated with poorer
quality results, one or more copies of these individuals are usually conserved to avoid
losing them. There are different types of mutation depending on the type of coding used. In
binary coding problems, binary mutation is basically applied. This method is the simplest
and most popular.

In binary mutation, a random binary mask is used. The genes of the individual that
have the same position as the “1’s” in the template are modified, i.e., the “1’s” of the
individual become “0’s” and vice versa. The genes in the positions in which the mask
contains “0” are not altered.

A variant of the binary mutation is the uniform binary mutation. The special feature
is how the template binary mask is constructed. A random vector of real numbers in the
interval [0,1] of the same length as the chromosome to be mutated is generated and a
probability threshold is defined. Mask positions matching a value in the vector greater than
the threshold write a “1” in the mask, and “0” the vector value is less than or equal to the
threshold.

For real, integer or finite coding, we have non-uniform mutation and modified non-
uniform mutation. The non-uniform qualifier refers to the fact that the probability of
mutation is variable, depending on the number of generations elapsed. The probability
of mutation decreases as generations progress. This aspect is similar to the simulated
annealing process, in which the system freezes as the algorithm progresses. The following
equation allows us to calculate the mutation probability pi in generation i, always variable
within the range [pMin − pMax], where pMin is its minimum value and pMax indicates the
maximum mutation probability. NMax corresponds to the maximum number of generations
the algorithm can run.

pi = pMax −
i(pMax − pMin)

NMax

The modified non-uniform mutation is the opposite of the non-uniform mutation in the
sense that in this case the probability of mutation increases as the algorithm progresses. This
method is more effective against the problem of premature convergence. As the algorithm
progresses, diversity tends to decrease and the algorithm focuses on smaller solution
areas. The modified non-uniform mutation allows jumps to new, unexplored spaces,
avoiding convergence to some local optimum. The equation expresses the calculation of
the probability of mutation pi, increasing with the number of generations i.

pi = pMin +
i(pMax − pMin)

NMax

For order-based coding, there are mainly four types of mutation, depending on which
genes are altered and how they change: swap mutation of any two genes, swap of two
adjacent genes, random swap of a set of consecutive genes, or swap of a set of consecutive
genes by applying a defined shift to all of them:

• Swap mutation involves exchanging the values of randomly selected genes.
• Adjacent genes swap mutation selects two consecutive genes on the chromosome and

reverses their order.
• In inversion mutation, two random positions on the chromosome are chosen and

the gene values are swapped between them. Suppose the positions are i and j. The
in-terchange operation exchanges the value of gene i with j and vice versa, exchanging
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genes (i + 1) and (j − 1), (i + 2) with (j − 2) and so on until the interval [i–j] is covered,
the last genes exchanged being (i + n) and (j − n), with n = (j − i + 1)/2.

• In shift mutation, a set of consecutive genes to be altered and a direction of displace-
ment (to the right or to the left) is determined. The process consists of each gene in the
interval moving to occupy the immediate position until the last gene affected is made
to correspond to the first position of the same group of genes. The effect is that the
values of all affected genes are shifted one position on the chromosome.

Local Search

Local search is a frequently used method in solving combinatorial optimisation prob-
lems. Given a solution s0, its neighbourhood is explored by searching for a solution s1 close
to and better than s0. The neighbourhood of a solution is formed by the set of solutions that
are reached with a small movement or modification in the solution. Solution s1 is better
than s0 if its fitness is closer to the optimum than fitness of the other. The main problem
with this technique is the great ease with which the algorithm gets trapped in local optima.
There are several possibilities to avoid this outcome:

• Extending the size of the neighbourhood.
• Limiting the number of search iterations.
• Repeating the search algorithm with different starting solutions.

None of them on their own has produced satisfactory results. What generates the best
results is to combine the local search technique with other types of mechanisms in what are
called hybrid algorithms.

GA is a common choice for global optimization and has been used to search poly-
mer space [158]. It completes a structured search through procedures inspired by the
natural evolution of the species. At each iteration, parameter vectors (‘genotypes’) in
a population are updated (selection, crossover and mutation) to generate an offspring,
followed by an evaluation of the objection function value. Up to date, GA has been used
to predict the thermal and optoelectronic properties of neat polymers and fibre-reinforced
composites [159–163]. However, despite its huge potential, applications of GA to polymeric
nanocomposites are still scarce [133,164–166].

Rabothata et al. [167] used GA to optimize both the design parameters and the mechan-
ical properties (elastic modulus and strength) of polymeric nanocomposites. The algorithm
was implemented in Matlab and was fairly accurate to find the optimum property val-
ues. Recently, Mairpady et al. [168] used an ANN combined with a GA to optimize the
concentration of nanofillers and compatibilizing agents of injection moulded high-density
polyethylene (HDPE) bionanocomposites filled with nanoTiO2 or cellulose nanocrystals.
Mechanical properties such as Young’s modulus, tensile strength and fracture strength
were optimized with minimum errors and regression values above 95%. This study shows
promising results for optimizing the amount and type of nanofillers to be added to poly-
meric matrices in order to improve mechanical durability.

3.3.3. Gaussian Process

Gaussian process (GP) is a non-parametric stochastic algorithm used for solving non-
linear problems [169]. It is one of the Naïve Bayer’s variants, widely used to bridge the gap
between computer simulations and physical conditions [170]. GP is characterized by two
functions, namely its mean, µ(xi), and the covariance, c (xi, xj), where i, j vary from 1 to n.
The parameter n is the number of data points and x is the input vector. The GP model can
be expressed as:

F(x) = GP (µ(xi), c (xi, xj))

and the final output can be expressed as

Y(x) = F (x) + err(x)
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where Y(x) is the output of interest and err(x) is the error related with the dataset noise.
The GP does not need setting a hypothesis and finding suitable values for the weights in
the framework. It generates a distribution of all the potential functions that are someway
consistent with the training data.

Wang et al. [171] investigated the interphase properties of polymer nanocomposites,
and used the GP to correlate the feature space with these properties in terms of its vis-
coelastic and dielectric behaviour. The goal was to minimize the difference between a
predicted bulk property and the experimental data. Adaptive optimization was used,
which accepts the feedback from the working environment and then works consequently
to make improved predictions. The GP was chosen as a surrogate model due to its ability
to consider uncertainties and assess the non-linear response with minimum random error.

Hansoge et al. [172] applied the GP to forecast the mechanical behaviour of polymer
nanocomposites reinforced with hairy nanoparticles. Polymer–nanoparticle bond strength
between, grafting density, chain length and the edge length of the nanoparticles were used
as input parameters, whereas the toughness modulus of the resulting composite was the
output variable. Training data were derived from molecular dynamics simulations and
then the GP regression was performed. The results obtained from the GP and the molecular
dynamics simulations were in very good agreement.

Qin et al. [173] studied the effective permittivity of polymeric nanocomposites filled
with nanowires within the frequency range of 1–6 GHz. The influence of increasing
nanowire concentration on the strain sensitivity and permittivity was analysed using a GP
model. GP can also be used for analysing microstructural images of composites in order to
extract significant information from them. Gaussian filters have been used for minimizing
image and signal noise [174]. Schadler et al. [175] developed a methodology to design
polymeric nanocomposites for dielectric applications, and predicted their breakdown
strength. FEM and Monte Carlo simulations were performed for the loss functions and
the dielectric constant, and the results derived from these simulations were then modelled
using GP to study the effect of nanofiller concentration and state of dispersion on the
breakdown strength, loss functions and the dielectric constant.

4. Conclusions and Future Outlook

The outstanding multi-functional properties of polymeric nanocomposites have made
them perfect candidates for a wide number of applications including aerospace, automobile,
marine, civil, and many other technologically demanding industries. The increasing
request for these nanocomposites demands a comprehensive investigation of their physical,
chemical and mechanical behaviour under different environmental conditions. The physical
properties, size and shape of the nanofiller and the microstructure of the nanocomposites
are important factors that condition their final properties. It requires a lot of time and
energy to find high-performance nanocomposites in thousands of combinations, and this
process is very hard and long. The ML approach, trained on enormous amounts of data,
has been demonstrated to be a very powerful predictive tool for data-driven multi-physical
modelling, leading to unique insights and the exploration of their properties beyond
the skill of conventional computational and experimental analyses. Recent studies have
demonstrated its usefulness for structure–property linkage analysis and for speeding up
the design of polymeric nanocomposites. Different ML algorithms including ANN, ANFIS,
MLP, CNN, GA, GP, etc., have been successfully applied to create a mapping between the
fingerprinted input and the target property. The results demonstrate a very good correlation
between the predicted properties and the experimental values, with correlation factors
higher than 0.9. Therefore, studies prove that ML algorithms have many advantages versus
conventional computing in terms of resolution and cost-effectiveness; they can achieve
greater accuracy in the predicted properties, require less expert analysis and fine-tuning
and provide superior flexibility since they can be re-trained using a custom dataset for any
use case.
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Over the past years, most ML-driven approaches were applied to neat polymers and
fibre-reinforced composites. Until 2020, less than 100 papers on ML applied to polymer
nanocomposites were reported. However, in the past two years, over 200 studies dealing
with polymer nanocomposites have been published, many of them related to the prediction
of mechanical properties. The prediction accuracy and generalization of ML models are
strongly correlated with the quantity and quality of samples in the dataset, and these data
are still limited for polymer nanocomposites. Thus, only a few online specific databases
such as NanoMine have been built [176]. This problem is expected to be solved in the near
future by extracting scientific data untapped in numerous scientific journals using laborious
manual excerption or ML-based natural language processing (NLP) techniques [177] or
developing advanced simulation methods, such as the multiscale modelling approach [119].
In this regard, a dataset that contains 1254 groups of data on maximum energy storage
density of polymer nanocomposites has been very recently established [178]. With growing
knowledge on the relationship between microstructures of polymer nanocomposites and
their desired properties, other main descriptors, such as the trap state (effects of chemical
structures, additives, polymer-nanofiller interface etc.), morphologies (linear, cross-linked,
free volume, etc.) and processing conditions should be incorporated into fingerprints to
more accurately predict their thermal, electrical, mechanical, tribological properties and
so forth. Furthermore, more advanced neural network algorithms (i.e., transfer learning,
CNN, etc.) and inverse design methods could be applied for structure–property analysis
and property prediction.

Other options are currently been explored. In particular, hybrid machine learning
can be applied for the property prediction of polymer nanocomposites. It is based on the
idea of combining multiple ML algorithms to increase the overall prediction capability
by tuning mutually and generalizing or adapting to unseen data [179]. Ensemble-based
methods are an example of hybrid ML, which has already been adopted for the prediction
of mechanical response of different types of composites [180,181]. Hybrid machine learning
has the potential to surpass individual ML methods in general. Other recent advances in
ML comprise adaptive learning. Traditional ML uses training and prediction as two main
bases of every algorithm while adaptive learning is founded on reinforcement learning. It
spots and learns from the variations in the input and the output values and considers then
connected. Adaptive ML gets the feedback from the working environment and then acts
consequently to make improved predictions. This has been found to be very promising
for solving non-linear, dynamic systems, even in the presence of uncertainties. Multi-scale
problems are also very frequent in polymeric nanocomposites since they are made of
different phases. Thus, a multiscale analysis method is commonly used to take into account
the size effect of the phases or the reinforcement added on the overall behaviour of polymer
nanocomposites. Adaptive ML has been successfully used for nanoscale bridging in order
to develop efficient nanocomposites [182,183]. Overall, even though the research in this
field is still in its infancy, the abovementioned approaches will aid to expand its potential,
and a very bright near future is envisaged.
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