New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Genomic Features
2.2. Carbon Metabolism and Phototrophic Related Genes
2.3. Microcystin Degradation and Related Genes
2.4. Multidrug Efflux Systems
2.4.1. RND Type
CmeABC Efflux System
AcrAB-TolC Efflux System
CzcABC Efflux System
2.4.2. ABC Type
MacAB-TolC Efflux System
HlyBD2-OMP2 Efflux System
2.4.3. MFS Type: MFS-HlyD-OMP Efflux System
3. Materials and Methods
3.1. Isolation and Culture Conditions
3.2. Phylogenetic and Genomic Analyses
3.3. Microcystin Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsuji, K.; Watanuki, T.; Kondo, F.; Watanabe, M.F.; Suzuki, S.; Nakazawa, H.; Suzuki, M.; Uchida, H.; Harada, K.I. Stability of microcystins from cyanobacteria—II. Effect of UV light on decomposition and isomerization. Toxicon 1995, 33, 1619–1631. [Google Scholar] [CrossRef]
- Okano, K.; Maseda, H.; Sugita, K.; Saito, T.; Utsumi, M.; Maekawa, T.; Kobayashi, M.; Sugiura, N. Biochemical characteristics of microcystin LR degradation by typical protease. Jpn. J. Water Treat. Biol. 2006, 42, 27–35. [Google Scholar] [CrossRef]
- Kim, S.G.; Joung, S.H.; Ahn, C.Y.; Ko, S.R.; Boo, S.M.; Oh, H.M. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiol. Ecol. 2010, 74, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Chun, S.J.; Ko, S.R.; Kim, J.; Ahn, C.Y.; Oh, H.M. Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake. J. Environ. Manag. 2017, 203, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.G.; Riddles, P.; Jones, G.J.; Smith, W.; Blakeley, R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol. 2001, 16, 523–534. [Google Scholar] [CrossRef]
- Saito, T.; Okano, K.; Park, H.D.; Itayama, T.; Inamori, Y.; Neilan, B.A.; Burns, B.P.; Sugiura, N. Detection and sequencing of the microcystin LR degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol. Lett. 2003, 229, 271–276. [Google Scholar] [CrossRef]
- Ho, L.; Hoefel, D.; Saint, C.P.; Newcombe, G. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res. 2017, 41, 4685–4695. [Google Scholar] [CrossRef]
- Shimizu, K.; Maseda, H.; Okano, K.; Kurashima, T.; Kawauchi, Y.; Xue, Q.; Utsumi, M.; Zhang, Z.; Sugiura, N. Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. J. Biosci. Bioeng. 2012, 114, 630–634. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014.
- Gilbert, P.; McBain, A.J. Biocide usage in the domestic setting and concern about antibacterial and antibiotic resistance. J. Infect. 2001, 43, 85–91. [Google Scholar] [CrossRef]
- Peltier, E.; Vincent, J.; Finn, C.; Graham, D.W. Zinc-induced antibiotic resistance in activated sludge bioreactors. Water Res. 2010, 44, 3829–3836. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.S.; Fu, C.I.; Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. Lond B Biol Sci. 2016, 371, 20150292. [Google Scholar] [CrossRef] [PubMed]
- Urdaneta, V.; Casadesus, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med. 2017, 4, 163. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Seukep, A.J.; Kuete, V.; Nahar, L.; Sarker, S.D.; Guo, M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J. Pharm. Anal. 2020, 10, 277–290. [Google Scholar] [CrossRef]
- Alquethamy, S.F.; Adams, F.G.; Naidu, V.; Khorvash, M.; Pederick, V.G.; Zang, M.; Paton, J.C.; Paulsen, I.T.; Hassan, K.A.; Cain, A.K.; et al. The role of zinc efflux during Acinetobacter baumannii infection. ACS Infect. Dis. 2020, 6, 150–158. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Lewinson, O.; Padan, E.; Bibi, E. Do physiological roles foster persistence of Drug/Multidrug-efflux transporters? A case study. Nat. Rev. Microbiol. 2005, 3, 566–572. [Google Scholar] [CrossRef]
- Fraud, S.; Poole, K. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 1068–1074. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; Rybenkov, V.V. Permeability barriers of Gram-negative pathogens. Ann. N. Y. Acad. Sci. 2020, 1459, 5–18. [Google Scholar] [CrossRef]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in Bacteria. Clin. Microbiol. Rev. 2006, 19, 382–402. [Google Scholar] [CrossRef] [PubMed]
- El Meouche, I.; Dunlop, M.J. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science 2018, 362, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.L.; Duque, E.; Gallegos, M.T.; Godoy, P.; Ramos-Gonzalez, M.I.; Rojas, A.; Teran, W.; Segura, A. Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microbiol. 2002, 56, 743–768. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; Nikaido, H. Multidrug resistance mechanisms: Drug efflux across two membranes. Mol. Microbiol. 2000, 37, 219–225. [Google Scholar] [CrossRef]
- Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef]
- Sly, L.I.; Cahill, M.M. Transfer of Blastobacter natatorius (Sly1985) to the genus Blastomonas gen. nov.as Blastomonas natatoria comb. nov. Int. J. Syst. Bacteriol. 1997, 47, 566–568. [Google Scholar] [CrossRef]
- Hiraishi, A.; Kuraishi, H.; Kawahara, K. Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al. 1997 as Blastomonas ursincola comb. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 1113–1118. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, Y.; Liu, X.; Gu, Z.; Jiao, N.; Liu, H.; Zhou, Y.; Shen, L. Blastomonas aquatica sp. nov., a bacteriochlorophyll-containing bacterium isolated from lake water. Int. J. Syst. Evol. Microbiol. 2015, 65, 1653–1658. [Google Scholar] [CrossRef]
- Castro, D.J.; Llamas, I.; Bejar, V.; Martinez-Checa, F. Blastomonas quesadae sp. nov., isolated from a saline soil by dilution-to-extinction cultivation. Int. J. Syst. Evol. Microbiol. 2017, 67, 2001–2007. [Google Scholar] [CrossRef]
- Lee, H.G.; Ko, S.R.; Lee, J.W.; Lee, C.S.; Ahn, C.Y.; Oh, H.M.; Jin, L. Blastomonas fulva sp. nov., aerobic photosynthetic bacteria isolated from a Microcystis culture. Int. J. Syst. Evol. Microbiol. 2017, 67, 3071–3076. [Google Scholar] [CrossRef]
- Meng, Y.C.; Liu, H.C.; Kang, Y.Q.; Zhou, Y.G.; Cai, M. Blastomonas marina sp. nov., a bacteriochlorophyll-containing bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 2017, 67, 3015–3019. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, V.; Schoepp, B.; Vermeglio, A. Photoinduced electron transfer and cytochrome content in obligate aerobic phototrophic bacteria from genera Erythromicrobium, Sandaracinobacter, Erythromonas, Roseococcus and Erythrobacter. Photosyn. Res. 1998, 57, 117–128. [Google Scholar] [CrossRef]
- Zeng, Y.; Koblízek, M.; Feng, F.; Liu, Y.; Wu, Z.; Jian, J. Whole-genome sequences of an aerobic anoxygenic phototroph, Blastomonas sp. strain AAP53, isolated from a freshwater desert lake in Inner Mongolia, China. Genome Announc. 2013, 1, e0007113. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.; Siqueira, A.S.; Dos Santos, B.G.; da Silva, F.D.; Lima, C.P.; Cardoso, J.F.; Vianez-Júnior, J.L.; Nunes, M.R.; Gonçalves, E.C. Draft genome sequence of Blastomonas sp. strain CACIA 14H2, a heterotrophic bacterium associated with Cyanobacteria. Genome Announc. 2014, 2, e01200-13. [Google Scholar] [CrossRef]
- Dziga, D.; Wladyka, B.; Zielińska, G.; Meriluoto, J.; Wasylewski, M. Heterologous expression and characterisation of microcystinase. Toxicon 2012, 59, 578–586. [Google Scholar] [CrossRef]
- Okano, K.; Shimizu, K.; Maseda, H.; Kawauchi, Y.; Utsumi, M.; Itayama, T.; Zhang, Z.; Sugiura, N. Whole-genome sequence of the microcystin-degrading bacterium Sphingopyxis sp. strain C-1. Genome Announc. 2015, 3, e00838-15. [Google Scholar] [CrossRef]
- Jin, H.; Nishizawa, T.; Guo, Y.; Nishizawa, A.; Park, H.D.; Kato, H.; Tsuji, K.; Harada, K. Complete genome sequence of a microcystin-degrading bacterium, Sphingosinicella microcystinivorans strain B-9. Microbiol. Resour. Announc. 2018, 7, e00898-18. [Google Scholar] [CrossRef]
- Jiang, Y.; Shao, J.; Wu, X.; Xu, Y.; Li, R. Active and silent members in the mlr gene cluster of a microcystin-degrading bacterium isolated from Lake Taihu, China. FEMS Microbiol Lett. 2011, 322, 108–114. [Google Scholar] [CrossRef]
- Okano, K.; Shimizu, K.; Saito, T.; Maseda, H.; Utsumi, M.; Itayama, T.; Sugiura, N. Draft genome sequence of the microcystin-degrading bacterium Novosphingobium sp. strain MD-1. Microbiol Resour Announc. 2020, 9, e01413-19. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Huang, F.; Feng, H.; Wei, J.; Massey, I.Y.; Liang, G.; Zhang, F.; Yin, L.; Kacew, S.; Zhang, X.; et al. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Res. 2020, 174, 115638. [Google Scholar] [CrossRef] [PubMed]
- Bogomolnaya, L.M.; Andrews, K.D.; Talamantes, M.; Maple, A.; Ragoza, Y.; Vazquez-Torres, A.; Andrews-Polymenis, H. The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. MBio 2013, 4, e00630-13. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 2014, 453, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.T.; Gratwick, K.S.; Kollman, J.; Park, D.; Nies, D.H.; Goffeau, A.; Saier, M.H. The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1999, 1, 107–125. [Google Scholar] [PubMed]
- Li, X.Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.A.; Farokhyfar, M.; Rather, P.N. Multiple roles for a novel RND-type efflux system in Acinetobacter baumannii AB5075. Microbiologyopen 2016, 6, e00418. [Google Scholar] [CrossRef]
- Henderson, P.J.F.; Maher, C.; Elbourne, L.D.H.; Eijkelkamp, B.A.; Paulsen, I.T.; Hassan, K.A. Physiological functions of bacterial “Multidrug” Efflux Pumps. Chem Rev. 2021, 121, 5417–5478. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harbor Perspect Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Li, M.; Gu, R.; Su, C.C.; Routh, M.D.; Harris, K.C.; Jewell, E.S.; McDermott, G.; Yu, E.W. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J. Mol. Biol. 2007, 374, 591–603. [Google Scholar] [CrossRef]
- Chai, B.; Tsoi, T.; Sallach, J.B.; Liu, C.; Landgraf, J.; Bezdek, M.; Zylstra, G.; Li, H.; Johnston, C.T.; Teppen, B.J.; et al. Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression. Sci. Total Environ. 2020, 712, 135525. [Google Scholar] [CrossRef]
- Colclough, A.L.; Alav, I.; Whittle, E.E.; Pugh, H.L.; Darby, E.M.; Legood, S.W.; McNeil, H.E.; Blair, J.M.A. RND efflux pumps in gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol. 2020, 15, 143–157. [Google Scholar] [CrossRef]
- Piddock, L.J. Multidrug-resistance efflux pumps—not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Lu, Y.K.; Marden, J.; Han, M.; Swingley, W.D.; Mastrian, S.D.; Chowdhury, S.R.; Hao, J.; Helmy, T.; Kim, S.; Kurdoglu, A.A.; et al. Metabolic flexibility revealed in the genome of the cyst-forming alpha-1 proteobacterium Rhodospirillum centenum. BMC Genom. 2010, 11, 325. [Google Scholar] [CrossRef]
- Nierman, W.C.; Feldblyum, T.V.; Laub, M.T.; Paulsen, I.T.; Nelson, K.E.; Eisen, J.A.; Heidelberg, J.F.; Alley, M.R.; Ohta, N.; Maddock, J.R.; et al. Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 2001, 98, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.M.; Giovannoni, S.J.; Ferriera, S.; Johnson, J.; Cho, J.C. Complete genome sequence of Erythrobacter litoralis HTCC2594. J. Bacteriol. 2009, 191, 2419–2420. [Google Scholar] [CrossRef] [PubMed]
- Greene, N.P.; Kaplan, E.; Crow, A.; Koronakis, V. Antibiotic resistance mediated by the MacB ABC transporter family: A structural and functional perspective. Front. Microbiol. 2018, 9, 950. [Google Scholar] [CrossRef]
- Turlin, E.; Heuck, G.; Simões Brandão, M.I.; Szili, N.; Mellin, J.R.; Lange, N.; Wandersman, C. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiologyopen 2014, 3, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Anes, J.; McCusker, M.P.; Fanning, S.; Martins, M. The ins and outs of RND efflux pumps in Escherichia coli. Front. Microbiol. 2015, 6, 587. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Nies, D.H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacteriol. 1995, 177, 2707–2712. [Google Scholar] [CrossRef] [Green Version]
- Elbourne, L.D.; Tetu, S.G.; Hassan, K.A.; Paulsen, I.T. TransportDB 2.0: A database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017, 45, D320–D324. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Huang, Y.W.; Liou, R.S.; Chang, Y.C.; Yang, T.C. MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J. Antimicrob. Chemother. 2014, 69, 3221–3226. [Google Scholar] [CrossRef] [PubMed]
- Methe, B.A.; Nelson, K.E.; Eisen, J.A.; Paulsen, I.T.; Nelson, W.; Heidelberg, J.F.; Wu, D.; Wu, M.; Ward, N.; Beanan, M.J.; et al. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science 2003, 302, 1967–1969. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Aziz, R.K.; Devoid, S.; Disz, T.; Edwards, R.A.; Henry, C.S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. SEED servers: High-performance access to the SEED genomes, annotations, and metabolic models. PLoS ONE 2012, 7, e48053. [Google Scholar] [CrossRef]
- Meyer, F.; Overbeek, R.; Rodriguez, A. FIGfams: Yet another set of protein families. Nucleic Acids Res. 2009, 37, 6643–6654. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A genomic perspective on protein families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 24, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Rzhetsky, A.; Nei, M. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 1992, 9, 945–967. [Google Scholar]
- Felsenstein, J. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhou, Y.; Sun, R.; Wei, H.; Li, Y.; Yin, L.; Pu, Y. Biodegradation of microcystin-LR and-RR by a novel microcystin-degrading bacterium isolated from Lake Taihu. Biodegradation 2014, 25, 447–457. [Google Scholar] [CrossRef]
Item | Description |
---|---|
General feature | |
Classification | Domain Bacteria |
Phylum Proteobacteria | |
Class Alphaproteobacteria | |
Order Sphingomonadales | |
Family Sphingomonadaceae | |
Genus Blastomonas | |
Type strain | KCTC 42354T |
Gram stain | Negative |
Morphology | Rods |
Motility | Non-motile |
Temperature range | 10–37 °C |
Salinity range | NaCl, 0 to 1% |
pH range | 6–8 |
Project name | PRJNA377807 |
Geographic location | South Korea |
Collection date | June-15, 2014 |
Environment (biome) | Freshwater microalgae |
Isolation source | Co-culture of microalgae |
Sequencing | |
Sequencing platform | PacBio RS II with P6-C4 chemistry |
Assembler SMRT Analysis v2.3.0 | SMRT Analysis v2.3.0 |
Annotation source | Prokka v1.13 |
Genes | Locus Tag (Length, bp) | Description | Similarity (NT, %) | Similarity (AA, %) | Related Taxa |
---|---|---|---|---|---|
mlrA | B5J99_03485 (945) | Microcystin degrading enzyme, MlrA | 51.9 | 40.0 | Novosphingobium sp. THN1 |
Microcystin degrading enzyme, MlrA | 51.8 | 39.3 | Sphingomonas sp. ACM-3962 | ||
Microcystin degrading enzyme, MlrA | 95.4 | 38.5 | Stenotrophomonas sp. EMS | ||
Microcystin degrading enzyme, MlrA | 49.1 | 40.3 | Novosphingobium sp. MD-1 | ||
Microcystin degrading enzyme, MlrA | 51.5 | 42.2 | Sphingosinicella sp. JEZ-8L | ||
mlrB | B5J99_03460 (1644) | Microcystin degrading enzyme, MlrB | 49.5 | 27.5 | Sphingopyxis sp. X20 |
Microcystin degrading enzyme, MlrB | 49.2 | 27.1 | Sphingomonas sp. ACM-3962 | ||
Microcystin degrading enzyme, MlrB | 49.4 | 27.7 | Sphingopyxis sp. MB-E | ||
Microcystin degrading enzyme, MlrB | 49.9 | 27.3 | Sphingopyxis sp. C-1 | ||
Microcystin degrading enzyme, MlrB | 49.0 | 31.3 | Novosphingobium sp. MD-1 | ||
mlrC | B5J99_03490 (834) | M55 family metallopeptidase | 61.0 | 53.7 | Steroidobacter cummioxidans 35Y |
D-aminopeptidase, DppA | 55.8 | 54.0 | Sphingosinicella microcystinivorans B9 | ||
D-aminopeptidase, DppA | 59.5 | 52.9 | Sphingomonas sp. Y57 | ||
D-aminopeptidase, DppA | 55.8 | 54.0 | Sphingosinicella microcystinivorans DSM 19791 | ||
M55 family metallopeptidase | 58.2 | 42.1 | Paucibacter toxinivorans DSM 16998 | ||
mlrD1 | B5J99_03465 (774) | ABC transporter ATP-binding protein | 99.4 | 99.2 | Blastomonas sp. AAP25 |
ABC transporter ATP-binding protein | 85.8 | 89.1 | Erythrobacter ramosus DSM 8510 | ||
Dipeptide transporter ATP-binding subunit | 63.7 | 57.4 | Citreicella sp. C3M06 | ||
ABC transporter ATP-binding protein | 62.2 | 56.5 | Bosea sp. 32-68-6 | ||
Dipeptide transporter ATP-binding subunit | 60.3 | 56.3 | Inquilinus limosus Inq sc_033 | ||
mlrD2 | B5J99_03470 (918) | ABC-type glutathione transport system ATPase | 99.5 | 98.9 | Blastomonas sp. AAP25 |
ABC transporter ATP-binding protein | 83.6 | 86.2 | Erythrobacter ramosus DSM 8510 | ||
ABC transporter ATP-binding protein | 48.6 | 46.4 | Virgibacillus litoralis DSM 21085 | ||
ABC transporter ATP-binding protein | 48.7 | 49.2 | Marinomonas pollencensis CECT 7375 | ||
ABC transporter ATP-binding protein | 57.7 | 52.7 | Aliidongia dinghuensis CGMCC 1.15725 | ||
mlrD3 | B5J99_03475 (816) | ABC transporter permease | 86.5 | 95.9 | Erythrobacter ramosus DSM 8510 |
ABC transporter permease | 59.4 | 54.0 | Paucibacter toxinivorans DSM 16998 | ||
D, D-dipeptide ABC transporter permease | 58.1 | 53.1 | Ensifer sp. ZNC0028 | ||
D, D-dipeptide ABC transporter permease | 57.6 | 53.1 | Ensifer adhaerens ST2 | ||
D, D-dipeptide ABC transporter permease | 57.4 | 52.7 | Mesorhizobium sp. INR15 | ||
mlrD4 | B5J99_03480 (1002) | ABC transporter permease | 99.2 | 98.7 | Blastomonas sp. AAP25 |
ABC transporter permease | 86.0 | 90.7 | Erythrobacter ramosus DSM 8510 | ||
ABC transporter permease | 60.9 | 53.8 | Sphingomonadaceae bacterium BROCD036 | ||
ABC transporter permease | 58.6 | 52.1 | Hypericibacter terrae R5913 | ||
D,D-dipeptide transport system permease, DdpB | 56.2 | 49.7 | Advenella mimigardefordensis DSM 17166 |
Genes | Locus Tag (Length, bp) | Description | Similarity (AA, %) | E-Value | Related Taxa |
---|---|---|---|---|---|
cmeA1 | B5J99_10820 (1155) | Membrane fusion protein of RND family efflux pump | 59.3 | 3 × 10−12 | Sphingomonas wittichii RW1 |
cmeA2 | B5J99_15890 (1197) | Membrane fusion protein of RND family efflux pump | 48.7 | 3 × 10−91 | Sphingomonas wittichii RW1 |
cmeB1 | B5J99_10825 (3192) | Multidrug efflux RND transporter permease | 62.5 | 0.0 | Sphingomonas wittichii RW1 |
cmeB2 | B5J99_15895 (3207) | Multidrug efflux RND transporter permease | 58.1 | 0.0 | Sphingomonas wittichii RW1 |
cmeC1 | B5J99_10830 (1437) | Efflux transporter outer membrane protein | 50.4 | 3 × 10−12 | Sphingomonas wittichii RW1 |
cmeC2 | B5J99_15900 (1467) | Efflux transporter outer membrane protein | 44.8 | 2 × 10−92 | Sphingomonas wittichii RW1 |
acrA1 | B5J99_04740 (1150) | Membrane-fusion protein | 35.1 | 3 × 10−49 | Rhodospirillum centenum SW |
acrA2 | B5J99_18545 (1224) | Efflux system membrane fusion protein | 56.0 | 3 × 10−12 | Erythrobacter litoralis HTCC2594 |
acrB1 | B5J99_04745 (3081) | RND multidrug efflux transporter | 50.1 | 0.0 | Caulobacter crescentus CB15 |
acrB2 | B5J99_18540 (3183) | RND multidrug efflux transporter | 72.9 | 0.0 | Erythrobacter litoralis HTCC2594 |
czcA | B5J99_01270 (3153) | Cobalt/zinc/cadmium resistance protein | 71.3 | 0.0 | Caulobacter crescentus CB15 |
czcB | B5J99_01265 (1212) | Cobalt/zinc/cadmium efflux RND transporter, | 56.4 | 3 × 10−13 | Caulobacter crescentus CB15 |
czcC | B5J99_01260 (1245) | Heavy metal RND efflux outer membrane protein | 37.0 | 6 × 10−52 | Caulobacter crescentus CB15 |
macA | B5J99_16005 (1275) | Macrolide-specific efflux protein | 43.4 | 6 × 10−78 | Geobacter sulfurreducens PCA |
macB | B5J99_15995 (1251) | Macrolide export ATP-binding/permease protein | 46.4 | 2 × 10−86 | Rhodospirillum centenum SW |
ftsE | B5J99_16000 (713) | Macrolide export ATP-binding/permease protein | 61.6 | 1 × 10−69 | Geobacter uraniireducens Rf4 |
hlyB | B5J99_15940 (1659) | HlyB family ABC transporter | 51.8 | 3 × 10−15 | Novosphingobium aromaticivorans DSM 12444 |
hlyD2 | B5J99_15945 (1053) | HlyD family efflux transporter periplasmic adaptor | 57.5 | 2 × 10−11 | Novosphingobium aromaticivorans DSM 12444 |
omp2 | B5J99_15950 (1503) | Outer membrane protein | 48.1 | 1 × 10−11 | Novosphingobium aromaticivorans DSM 12444 |
MFS1 | B5J99_05315 (1667) | MFS transporter | 39.5 | 1 × 10−11 | Sphingomonas wittichii RW1 |
hylD1 | B5J99_05310 (1054) | HlyD family secretion protein | 54.9 | 1 × 10−11 | Sphingomonas wittichii RW1 |
omp1 | B5J99_05305 (1287) | RND efflux system outer membrane protein | 53.2 | 1 × 10−12 | Sphingomonas wittichii RW1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Cui, C.; Zhang, C.; Ko, S.-R.; Li, T.; Jin, F.-J.; Ahn, C.-Y.; Oh, H.-M.; Lee, H.-G. New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature. Int. J. Mol. Sci. 2022, 23, 10856. https://doi.org/10.3390/ijms231810856
Jin L, Cui C, Zhang C, Ko S-R, Li T, Jin F-J, Ahn C-Y, Oh H-M, Lee H-G. New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature. International Journal of Molecular Sciences. 2022; 23(18):10856. https://doi.org/10.3390/ijms231810856
Chicago/Turabian StyleJin, Long, Chengda Cui, Chengxiao Zhang, So-Ra Ko, Taihua Li, Feng-Jie Jin, Chi-Yong Ahn, Hee-Mock Oh, and Hyung-Gwan Lee. 2022. "New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature" International Journal of Molecular Sciences 23, no. 18: 10856. https://doi.org/10.3390/ijms231810856
APA StyleJin, L., Cui, C., Zhang, C., Ko, S. -R., Li, T., Jin, F. -J., Ahn, C. -Y., Oh, H. -M., & Lee, H. -G. (2022). New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature. International Journal of Molecular Sciences, 23(18), 10856. https://doi.org/10.3390/ijms231810856