Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters
Abstract
:1. Introduction
2. Results
2.1. Comparative Statistical Characteristics of the Nucleotide Sequences in the Core Promoters of Metazoans, Plants, Unicellular Fungi, and Protozoan
2.2. Physical and Structural Anisotropy of the Naked DNA in the Core Promoters
2.3. Variations of Ultrasonic Cleavage and DNase I Cleavage Intensities in Core Promoter Sequences
3. Discussion
4. Materials and Methods
Profiles Construction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sarai, A.; Kono, H. Protein-DNA Recognition Patterns and Predictions. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 379–398. [Google Scholar] [CrossRef] [PubMed]
- Rohs, R.; Jin, X.; West, S.M.; Joshi, R.; Honig, B.; Mann, R.S. Origins of Specificity in Protein-DNA Recognition. Annu. Rev. Biochem. 2010, 79, 233–269. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K. Structural Studies of Eukaryotic Transcription Initiation. In Mechanisms of Transcription; Nucleic Acids and Molecular Biology; Eckstein, F., Lilley, D.M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 251–264. ISBN 978-3-642-60691-5. [Google Scholar]
- Pedersen, A.G.; Baldi, P.; Chauvin, Y.; Brunak, S. DNA Structure in Human RNA Polymerase II Promoters. J. Mol. Biol. 1998, 281, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Fukue, Y.; Sumida, N.; Nishikawa, J.; Ohyama, T. Core Promoter Elements of Eukaryotic Genes Have a Highly Distinctive Mechanical Property. Nucleic Acids Res. 2004, 32, 5834–5840. [Google Scholar] [CrossRef] [PubMed]
- Kanhere, A.; Bansal, M. Structural Properties of Promoters: Similarities and Differences between Prokaryotes and Eukaryotes. Nucleic Acids Res. 2005, 33, 3165–3175. [Google Scholar] [CrossRef] [PubMed]
- Florquin, K.; Saeys, Y.; Degroeve, S.; Rouzé, P.; Van de Peer, Y. Large-Scale Structural Analysis of the Core Promoter in Mammalian and Plant Genomes. Nucleic Acids Res. 2005, 33, 4255–4264. [Google Scholar] [CrossRef] [PubMed]
- Abeel, T.; Saeys, Y.; Bonnet, E.; Rouzé, P.; Van de Peer, Y. Generic Eukaryotic Core Promoter Prediction Using Structural Features of DNA. Genome Res. 2008, 18, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Akan, P.; Deloukas, P. DNA Sequence and Structural Properties as Predictors of Human and Mouse Promoters. Gene 2008, 410, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Il’icheva, I.A.; Khodikov, M.V.; Poptsova, M.S.; Nechipurenko, D.Y.; Nechipurenko, Y.D.; Grokhovsky, S.L. Structural Features of DNA That Determine RNA Polymerase II Core Promoter. BMC Genom. 2016, 17, 973. [Google Scholar] [CrossRef] [PubMed]
- Dreos, R.; Ambrosini, G.; Périer, R.C.; Bucher, P. The Eukaryotic Promoter Database: Expansion of EPDnew and New Promoter Analysis Tools. Nucleic Acids Res. 2015, 43, D92–D96. [Google Scholar] [CrossRef]
- Dreos, R.; Ambrosini, G.; Groux, R.; Cavin Périer, R.; Bucher, P. The Eukaryotic Promoter Database in Its 30th Year: Focus on Non-Vertebrate Organisms. Nucleic Acids Res. 2017, 45, D51–D55. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Guerra, M.K.; Li, W.; Galeano, N.F.; Vidal, M.; Gray, J.; Doseff, A.I.; Grotewold, E. Core Promoter Plasticity between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. Plant. Cell 2015, 27, 3309–3320. [Google Scholar] [CrossRef]
- Molina, C.; Grotewold, E. Genome Wide Analysis of Arabidopsis Core Promoters. BMC Genom. 2005, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, D.B.; Chen, H.; Halay, E.D.; Hoffman, A.; Roeder, R.G.; Burley, S.K. Crystal Structure of a Human TATA Box-Binding Protein/TATA Element Complex. Proc. Natl. Acad. Sci. USA 1996, 93, 4862–4867. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.A.; Pugh, B.F. Evidence for Functional Binding and Stable Sliding of the TATA Binding Protein on Nonspecific DNA. J. Biol. Chem. 1995, 270, 13850–13859. [Google Scholar] [CrossRef] [PubMed]
- Okonogi, T.M.; Alley, S.C.; Reese, A.W.; Hopkins, P.B.; Robinson, B.H. Sequence-Dependent Dynamics of Duplex DNA: The Applicability of a Dinucleotide Model. Biophys. J. 2002, 83, 3446–3459. [Google Scholar] [CrossRef]
- Grokhovsky, S.L.; Il’icheva, I.A.; Nechipurenko, D.Y.; Golovkin, M.V.; Panchenko, L.A.; Polozov, R.V.; Nechipurenko, Y.D. Sequence-Specific Ultrasonic Cleavage of DNA. Biophys. J. 2011, 100, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kladde, M.P.; Kohwi, Y.; Kohwi-Shigematsu, T.; Gorski, J. The Non-B-DNA Structure of d(CA/TG)n Differs from That of Z-DNA. Proc. Natl. Acad. Sci. USA 1994, 91, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Travers, A.A. The Structural Basis of DNA Flexibility. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 1423–1438. [Google Scholar] [CrossRef] [PubMed]
- Friedel, M.; Nikolajewa, S.; Sühnel, J.; Wilhelm, T. DiProDB: A Database for Dinucleotide Properties. Nucleic Acids Res. 2009, 37, D37–D40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.; Noy, A.; Lankas, F.; Luque, F.J.; Orozco, M. The Relative Flexibility of B-DNA and A-RNA Duplexes: Database Analysis. Nucleic Acids Res. 2004, 32, 6144–6151. [Google Scholar] [CrossRef] [PubMed]
- Goñi, J.R.; Pérez, A.; Torrents, D.; Orozco, M. Determining Promoter Location Based on DNA Structure First-Principles Calculations. Genome Biol. 2007, 8, R263. [Google Scholar] [CrossRef] [PubMed]
- Gartenberg, M.R.; Crothers, D.M. DNA Sequence Determinants of CAP-Induced Bending and Protein Binding Affinity. Nature 1988, 333, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Allen, M.D.; Yagi, N.; Finch, J.T. Analysis of Co-Crystal Structures to Identify the Stereochemical Determinants of the Orientation of TBP on the TATA Box. Nucleic Acids Res. 1996, 24, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Vargason, J.M.; Henderson, K.; Ho, P.S. A Crystallographic Map of the Transition from B-DNA to A-DNA. Proc. Natl. Acad. Sci. USA 2001, 98, 7265–7270. [Google Scholar] [CrossRef]
- Lu, X.-J.; Olson, W.K. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003, 31, 5108–5121. [Google Scholar] [CrossRef] [PubMed]
- Il’icheva, I.A.; Vlasov, P.K.; Esipova, N.G.; Tumanyan, V.G. The Intramolecular Impact to the Sequence Specificity of B-->A Transition: Low Energy Conformational Variations in AA/TT and GG/CC Steps. J. Biomol. Struct. Dyn. 2010, 27, 667–693. [Google Scholar] [CrossRef] [PubMed]
- Grokhovsky, S.L.; Il’icheva, I.A.; Golovkin, M.V.; Nechipurenko, Y.D.; Nechipurenko, D.Y.; Panchenko, L.A.; Polozov, R.V. Mechanochemical Cleavage of DNA by Ultrasound. Adv. Eng. Res. 2013, 213, 1–24. [Google Scholar]
- Grokhovsky, S.; Il’icheva, I.; Nechipurenko, D.; Golovkin, M.; Taranov, G.; Panchenko, L.; Polozov, R.; Nechipurenko, Y. Quantitative Analysis of Electrophoresis Data—Application to Sequence-Specific Ultrasonic Cleavage of DNA. Gel Electrophor. Princ. Basics 2012, 217, 238. [Google Scholar]
- Suck, D.; Lahm, A.; Oefner, C. Structure Refined to 2A of a Nicked DNA Octanucleotide Complex with DNase I. Nature 1988, 332, 464–468. [Google Scholar] [CrossRef]
- Weston, S.A.; Lahm, A.; Suck, D. X-ray Structure of the DNase I-d(GGTATACC)2 Complex at 2.3 A Resolution. J. Mol. Biol. 1992, 226, 1237–1256. [Google Scholar] [CrossRef]
- Suck, D. DNA Recognition by DNase I. J. Mol. Recognit. 1994, 7, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lazarovici, A.; Zhou, T.; Shafer, A.; Dantas Machado, A.C.; Riley, T.R.; Sandstrom, R.; Sabo, P.J.; Lu, Y.; Rohs, R.; Stamatoyannopoulos, J.A.; et al. Probing DNA Shape and Methylation State on a Genomic Scale with DNase I. Proc. Natl. Acad. Sci. USA 2013, 110, 6376–6381. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Choudhury, D.; Chakrabarti, J.; Bhattacharyya, D. Role of Indirect Readout Mechanism in TATA Box Binding Protein-DNA Interaction. J. Comput. Aided Mol. Des. 2015, 29, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Kaltenbach, L.; Horner, M.A.; Rothman, J.H.; Mango, S.E. The TBP-like Factor CeTLF Is Required to Activate RNA Polymerase II Transcription during C. Elegans Embryogenesis. Mol. Cell 2000, 6, 705–713. [Google Scholar] [CrossRef]
- Chen, R.A.-J.; Down, T.A.; Stempor, P.; Chen, Q.B.; Egelhofer, T.A.; Hillier, L.W.; Jeffers, T.E.; Ahringer, J. The Landscape of RNA Polymerase II Transcription Initiation in C. Elegans Reveals Promoter and Enhancer Architectures. Genome Res. 2013, 23, 1339–1347. [Google Scholar] [CrossRef]
- Khamis, A.M.; Hamilton, A.R.; Medvedeva, Y.A.; Alam, T.; Alam, I.; Essack, M.; Umylny, B.; Jankovic, B.R.; Naeger, N.L.; Suzuki, M.; et al. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis Mellifera. Sci. Rep. 2015, 5, 11136. [Google Scholar] [CrossRef]
- Gazanion, E.; Lacroix, L.; Alberti, P.; Gurung, P.; Wein, S.; Cheng, M.; Mergny, J.-L.; Gomes, A.R.; Lopez-Rubio, J.-J. Genome Wide Distribution of G-Quadruplexes and Their Impact on Gene Expression in Malaria Parasites. PLoS Genet. 2020, 16, e1008917. [Google Scholar] [CrossRef]
- Gage, H.L.; Merrick, C.J. Conserved Associations between G-Quadruplex-Forming DNA Motifs and Virulence Gene Families in Malaria Parasites. BMC Genom. 2020, 21, 236. [Google Scholar] [CrossRef]
- Yang, C.; Ponticelli, A.S. Evidence That RNA Polymerase II and Not TFIIB Is Responsible for the Difference in Transcription Initiation Patterns between Saccharomyces Cerevisiae and Schizosaccharomyces Pombe. Nucleic Acids Res. 2012, 40, 6495–6507. [Google Scholar] [CrossRef]
- Rhind, N.; Chen, Z.; Yassour, M.; Thompson, D.A.; Haas, B.J.; Habib, N.; Wapinski, I.; Roy, S.; Lin, M.F.; Heiman, D.I.; et al. Comparative Functional Genomics of the Fission Yeasts. Science 2011, 332, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Jin, H.; Vvedenskaya, I.; Llenas, J.A.; Zhao, T.; Malik, I.; Visbisky, A.M.; Schwartz, S.L.; Cui, P.; Čabart, P.; et al. Universal Promoter Scanning by Pol II during Transcription Initiation in Saccharomyces Cerevisiae. Genome Biol. 2020, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Auboeuf, D. Physicochemical Foundations of Life That Direct Evolution: Chance and Natural Selection Are Not Evolutionary Driving Forces. Life 2020, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
H. sapiens(−30–−23) | M. mulatta(−31–−24) | M. musculus(−30–−23) | R. norvegicus(−30–−23) | C. familiaris(−30–−23) | G. gallus(−30–−23) | D. melanogaster(−31–−24) | A. mellifera(−32–−25) | |||||||||
1 | TATAAAAG | 0.20% | TATAAAAG | 0.14% | TATAAAAG | 0.34% | TATAAAAG | 0.40% | TATAAAAG | 0.20% | GGGGCGGG | 0.26% | TATAAAAG | 0.84% | TATATATA | 0.66% |
2 | TTTTTTTT | 0.12% | GGGGCGGG | 0.14% | TTTTTTTT | 0.32% | TATAAAGG | 0.18% | GGGCGGGG | 0.20% | TATATAAG | 0.20% | TATAAATA | 0.36% | ATATATAT | 0.49% |
3 | ATAAAAGG | 0.11% | CGCCGCCG | 0.13% | TATATAAG | 0.21% | ATAAAAGG | 0.16% | TATATAAG | 0.16% | TTTTTTTT | 0.18% | CTATAAAA | 0.35% | TATATATT | 0.28% |
4 | GGGCGGGG | 0.11% | GGCGGCGG | 0.11% | ATAAAAGG | 0.19% | TATAAATA | 0.12% | TATAAAAA | 0.15% | CCGCCCCG | 0.18% | ATAAAAGC | 0.34% | CATATATA | 0.15% |
5 | GCCCCGCC | 0.10% | CTATAAAG | 0.10% | TATAAAGG | 0.15% | TATATAAG | 0.12% | CCGGAAGT | 0.13% | GGCGGGGC | 0.18% | GTATAAAA | 0.27% | GTATAAAA | 0.15% |
6 | TATATAAG | 0.10% | CTATAAAA | 0.10% | TATAAATA | 0.12% | TATATAAA | 0.12% | ATAAAGGC | 0.12% | GCGGGGCG | 0.18% | CTATATAA | 0.26% | TATATAAG | 0.15% |
7 | GGGGCGGG | 0.10% | CCCCGCCC | 0.10% | ATATAAGG | 0.11% | TATAAAGA | 0.12% | GCGGCGGC | 0.12% | TATAAAAG | 0.16% | TATAAAAA | 0.24% | TATAAAAG | 0.15% |
8 | TATAAAAA | 0.10% | CCGGAAGC | 0.10% | ATAAATAG | 0.11% | CTATAAAA | 0.12% | TATAAATA | 0.12% | ATAAAAGC | 0.16% | TATATAAG | 0.24% | ATATATAA | 0.15% |
9 | TATAAAGG | 0.09% | CGGCGGCG | 0.09% | ATAAAAGC | 0.10% | ATAAAAAG | 0.11% | GCCCCGCC | 0.12% | GCGGCGGG | 0.15% | TATATAAA | 0.22% | TATATAAA | 0.14% |
10 | CCCCTCCC | 0.08% | TGGGCGGG | 0.08% | ATAAAAAG | 0.10% | ATAAAAGC | 0.10% | CGCCGCCG | 0.11% | GATAAAAG | 0.15% | ATAAATAG | 0.19% | TTATATAT | 0.12% |
11 | CCCCGCCC | 0.08% | CCGCCCCG | 0.08% | GGGGCGGG | 0.10% | TATAAAGC | 0.10% | TTTTTTTT | 0.11% | TATAAAGG | 0.15% | ATATAAAA | 0.17% | TATAAATA | 0.11% |
12 | ATATAAAG | 0.08% | CTATATAA | 0.08% | GCCCCGCC | 0.09% | GCCCCGCC | 0.10% | GGGGCGGG | 0.11% | TATAAAGC | 0.15% | GTATATAA | 0.14% | CTATATAT | 0.11% |
13 | CTATAAAA | 0.08% | CGCCCCGC | 0.08% | TATATAAA | 0.09% | ATAAAGGC | 0.10% | CCCGCCCC | 0.11% | TATAAAAA | 0.15% | ATAAAAAC | 0.13% | TTATATTT | 0.11% |
14 | ATAAAAGC | 0.08% | AAAAAAAA | 0.08% | TATAAGAG | 0.09% | ATATAAAG | 0.10% | ATAAAAGG | 0.09% | CCCGCCCC | 0.13% | TTATAAAA | 0.13% | GTATATAT | 0.11% |
15 | CCCGCCCC | 0.08% | TTATAAAA | 0.07% | ATAAAAGA | 0.08% | TATAAGAG | 0.10% | ATATAAGG | 0.09% | ATAAAAGG | 0.13% | ATATAAGC | 0.12% | ATGTATAT | 0.09% |
16 | CTATAAAG | 0.07% | GCGCCTGC | 0.07% | ATATAAAG | 0.08% | TAAAAGCC | 0.09% | CCCCGCCC | 0.09% | TCCCTCCC | 0.13% | TATAAAAT | 0.12% | TATATGTA | 0.09% |
17 | GAATAAAA | 0.06% | GGAGGAGG | 0.07% | CTATAAAA | 0.08% | GGGGCGGG | 0.09% | CCCTCCCC | 0.09% | CGGGGCGG | 0.13% | ATAAAAGA | 0.12% | AGTATATA | 0.09% |
18 | TTAAAAGG | 0.06% | GCGGCGCG | 0.07% | GATAAAAG | 0.08% | AGATAAAA | 0.09% | GGCGGCGG | 0.09% | CACTTCCG | 0.11% | TAAAAGCC | 0.12% | ATATAAAT | 0.09% |
19 | TTTAAAAG | 0.06% | CATAAAAG | 0.07% | TTTAAAAG | 0.08% | ATAAATAG | 0.09% | GCTTCCGG | 0.09% | CGCTTCCG | 0.11% | ATAAAAGG | 0.12% | ATTATATA | 0.09% |
20 | TATAAGAG | 0.06% | GCGGCGGC | 0.07% | AATAAAAG | 0.07% | TATAAAAA | 0.08% | TATAAAGG | 0.09% | GCCCCGCC | 0.11% | GTATAAAT | 0.12% | TAAATATT | 0.08% |
A. mellifera(−32–−25) | D. rerio(−30–−23) | C. elegans(−31–−24) | A. thaliana(−34–−27) | Z. mays(−34–−27) | S. pombe(−34–−27) | P. falciparum(−39–−32) | ||||||||||
1 | TATATATA | 0.66% | TATAAATA | 0.28% | TATAAAAG | 0.90% | TATATATA | 1.43% | TATATATA | 0.60% | TATATATA | 0.67% | ATATATAT | 5.79% | ||
2 | ATATATAT | 0.49% | TTTATTTT | 0.22% | GTATAAAA | 0.42% | TATAAATA | 0.98% | CTATAAAT | 0.34% | ATATATAT | 0.42% | TATATATA | 4.97% | ||
3 | TATATATT | 0.28% | TATAAAAG | 0.21% | TATAAATA | 0.38% | ATATATAT | 0.76% | CTATATAA | 0.29% | TATATAAA | 0.27% | AAAAAAAA | 3.73% | ||
4 | CATATATA | 0.15% | CTTTTATT | 0.20% | CTATAAAA | 0.28% | TATATAAA | 0.65% | TATAAATA | 0.29% | CTATATAA | 0.23% | TTTTTTTT | 3.59% | ||
5 | GTATAAAA | 0.15% | TTTTATTT | 0.18% | TATATAAA | 0.28% | CTATAAAT | 0.60% | ATATATAT | 0.29% | CATATATA | 0.21% | TATATATT | 1.05% | ||
6 | TATATAAG | 0.15% | TTTAAAAG | 0.17% | TATAAAAA | 0.25% | CTATATAA | 0.52% | CTATATAT | 0.25% | GTATATAT | 0.21% | ATATATAA | 0.79% | ||
7 | TATAAAAG | 0.15% | TATAAAAA | 0.15% | ATAAAAGA | 0.25% | CTATATAT | 0.51% | TATATAAA | 0.24% | CTATATAT | 0.21% | ATATAATA | 0.71% | ||
8 | ATATATAA | 0.15% | TATAAAGC | 0.15% | GTATATAA | 0.24% | ATATATAA | 0.46% | CTATAAAA | 0.23% | ATATATAA | 0.19% | ATATATTT | 0.70% | ||
9 | TATATAAA | 0.14% | TATAAAAC | 0.15% | ATATAAAA | 0.21% | TCTATATA | 0.41% | CCTATAAA | 0.18% | TATATAAG | 0.19% | ATTTTTTT | 0.66% | ||
10 | TTATATAT | 0.12% | ATAAAAGC | 0.14% | TATATAAG | 0.20% | TCTATAAA | 0.39% | GTATATAT | 0.15% | ACTATATA | 0.17% | TTATATAT | 0.63% | ||
11 | TATAAATA | 0.11% | TATATAAA | 0.14% | TATAAAAT | 0.20% | ATATAAAT | 0.39% | TCTATATA | 0.15% | ATATAAAT | 0.17% | TAAATAAA | 0.59% | ||
12 | CTATATAT | 0.11% | TTATTTTG | 0.12% | GTATAAAT | 0.20% | TATAAAAA | 0.29% | ATATATAC | 0.14% | TATAAAAG | 0.17% | TTTATTTT | 0.57% | ||
13 | TTATATTT | 0.11% | TTTAAAAA | 0.12% | ATATAAAT | 0.15% | TTATAAAT | 0.28% | ATATATAA | 0.14% | AAACGATG | 0.17% | TATATAAT | 0.55% | ||
14 | GTATATAT | 0.11% | GAGAGAGA | 0.11% | AGTATAAA | 0.15% | CTATAAAA | 0.28% | GCTATAAA | 0.14% | GTATAAAT | 0.17% | AATAAATA | 0.55% | ||
15 | ATGTATAT | 0.09% | ACTTTTAT | 0.11% | ATAAAAGG | 0.14% | TTTATATA | 0.27% | ATAAATAG | 0.13% | TGAATAAA | 0.15% | AATATATA | 0.55% | ||
16 | TATATGTA | 0.09% | ATAAAAGG | 0.11% | GGTATAAA | 0.13% | TTATATAT | 0.24% | TATAAAAG | 0.13% | TGTATATA | 0.15% | TATTTTTT | 0.55% | ||
17 | AGTATATA | 0.09% | ATAAATAC | 0.11% | TATAAATT | 0.11% | GTATATAT | 0.24% | TATATAAG | 0.13% | TTAAAAAA | 0.12% | TTTTTTTA | 0.50% | ||
18 | ATATAAAT | 0.09% | TATAAACA | 0.11% | ATAAAAAG | 0.11% | ATATAAAC | 0.23% | TATAAAAA | 0.13% | ATATATAG | 0.12% | ATATTATA | 0.50% | ||
19 | ATTATATA | 0.09% | TTTAAATA | 0.11% | TATATATA | 0.11% | ATAAATAA | 0.23% | TATAAAAC | 0.12% | TATATATT | 0.12% | TTTTATTT | 0.50% | ||
20 | TAAATATT | 0.08% | TTTAAAAC | 0.10% | ATAAATAG | 0.10% | TTATATAA | 0.23% | ATATAAAC | 0.12% | AATATAAA | 0.12% | TAAATATA | 0.48% |
PyPu | PuPu | PyPy | PuPy | |
---|---|---|---|---|
H. sapiens | 72.17% | 13.83% | 9.66% | 4.34% |
M. mulatta | 76.49% | 11.61% | 8.78% | 3.11% |
M. musculus | 77.63% | 10.73% | 8.70% | 2.94% |
R. norvegicus | 77.71% | 10.19% | 9.81% | 2.29% |
C. familiaris | 65.34% | 15.73% | 13.04% | 5.89% |
G. gallus | 68.30% | 12.39% | 13.96% | 5.35% |
D. melanogaster | 91.26% | 2.87% | 3.54% | 2.33% |
A. mellifera | 95.40% | 2.59% | 1.60% | 0.40% |
D. rerio | 83.52% | 9.97% | 5.71% | 0.79% |
C. elegans | 90.97% | 2.78% | 5.67% | 0.58% |
A. thaliana | 88.81% | 5.97% | 3.55% | 1.67% |
Z. mays | 75.15% | 9.38% | 10.29% | 5.18% |
S. cerevisiae | 93.59% | 2.21% | 2.19% | 2.01% |
S. pombe | 97.42% | 1.10% | 1.08% | 0.40% |
P. falciparum | 95.09% | 1.68% | 1.95% | 1.29% |
AA | AC | AG | AT | CA | CC | CG | CT | GA | GC | GG | GT | TA | TC | TG | TT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H. sapiens | 1.65% | 0.90% | 1.83% | 0.25% | 38.24% | 5.06% | 13.41% | 0.44% | 4.90% | 2.04% | 5.44% | 1.15% | 8.18% | 3.74% | 12.35% | 0.41% |
M. mulatto | 2.02% | 1.11% | 1.80% | 0.07% | 39.11% | 4.88% | 16.66% | 0.22% | 4.43% | 1.78% | 3.37% | 0.16% | 8.21% | 3.57% | 12.51% | 0.11% |
M. musculus | 2.25% | 1.11% | 1.93% | 0.30% | 42.17% | 4.31% | 11.82% | 0.49% | 3.89% | 1.18% | 2.66% | 0.34% | 9.96% | 3.65% | 13.69% | 0.25% |
R. norvegicus | 1.76% | 0.86% | 1.94% | 0.11% | 39.84% | 4.98% | 13.55% | 0.18% | 3.43% | 1.13% | 3.06% | 0.19% | 9.96% | 4.44% | 14.37% | 0.20% |
C. familiaris | 2.01% | 1.31% | 2.86% | 0.25% | 29.88% | 7.36% | 19.60% | 0.97% | 5.32% | 3.57% | 5.54% | 0.76% | 5.46% | 4.36% | 10.39% | 0.36% |
G. gallus | 2.27% | 1.27% | 1.83% | 0.36% | 31.02% | 8.37% | 19.57% | 0.52% | 4.24% | 3.09% | 4.05% | 0.64% | 4.93% | 4.68% | 12.78% | 0.38% |
D. melanogaster | 0.62% | 0.71% | 0.74% | 0.74% | 57.76% | 0.85% | 3.34% | 0.41% | 0.86% | 0.58% | 0.65% | 0.30% | 22.95% | 1.86% | 7.21% | 0.43% |
A. mellifera | 0.40% | 0.06% | 0.77% | 0.20% | 39.59% | 0.59% | 10.23% | 0.06% | 0.57% | 0.06% | 0.85% | 0.08% | 28.96% | 0.85% | 16.63% | 0.11% |
D. rerio | 2.03% | 0.18% | 2.20% | 0.03% | 36.72% | 1.94% | 14.04% | 0.61% | 3.31% | 0.45% | 2.43% | 0.14% | 13.82% | 2.58% | 18.93% | 0.59% |
C. elegans | 0.62% | 0.15% | 0.45% | 0.14% | 53.76% | 1.35% | 4.34% | 0.74% | 1.18% | 0.21% | 0.53% | 0.07% | 23.56% | 3.01% | 9.31% | 0.58% |
A. thaliana | 0.96% | 0.31% | 0.82% | 0.27% | 43.42% | 1.16% | 5.97% | 0.29% | 3.12% | 0.48% | 1.07% | 0.60% | 27.08% | 1.78% | 12.34% | 0.31% |
Z. mays | 1.48% | 1.45% | 2.21% | 0.71% | 35.00% | 4.52% | 18.22% | 1.74% | 3.15% | 2.07% | 2.54% | 0.94% | 9.62% | 3.20% | 12.32% | 0.83% |
S. cerevisiae | 0.76% | 0.68% | 0.65% | 0.70% | 47.65% | 0.66% | 6.08% | 0.33% | 0.43% | 0.33% | 0.37% | 0.29% | 30.22% | 0.61% | 9.64% | 0.59% |
S. pombe | 0.21% | 0.19% | 0.19% | 0.00% | 36.17% | 0.48% | 6.40% | 0.00% | 0.42% | 0.13% | 0.29% | 0.06% | 36.30% | 0.44% | 18.59% | 0.15% |
P. falciparum | 1.36% | 0.21% | 0.14% | 1.04% | 15.60% | 0.18% | 1.93% | 0.25% | 0.16% | 0.00% | 0.00% | 0.04% | 60.68% | 0.39% | 16.89% | 1.13% |
H. sapiens | M. mulatto | M. musculus | R. norvegicus | C. familiaris | G. gallus | D. melanogaster | A. mellifera | D. rerio | C. elegans | A. thaliana | Z. mays | S. cerevisiae | S. pombe | P. falciparum | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | CCAG | 6.98% | GCAG | 7.62% | TCAG | 7.39% | TCAG | 7.05% | GCAG | 6.40% | GCAG | 8.32% | TCAG | 20.34% | TCAG | 12.47% | TCAG | 6.74% | TCAT | 16.03% | TCAT | 7.58% | CCAC | 4.64% | ACAA | 6.27% | CCAA | 6.60% | TTAT | 22.78% |
2 | GCAG | 6.49% | CCAG | 6.85% | GCAG | 7.02% | GCAG | 6.79% | CCAG | 6.02% | TCAG | 3.77% | TTAG | 7.30% | TTAG | 6.48% | TCAC | 4.46% | TTAT | 7.46% | TCAA | 6.31% | CCAG | 3.99% | CCAA | 6.06% | TTAC | 6.08% | TTAA | 12.92% |
3 | TCAG | 5.99% | TCAG | 5.64% | CCAG | 6.97% | CCAG | 6.53% | TCAG | 4.14% | GCGC | 3.48% | TCAC | 5.17% | CCAG | 3.67% | GCAG | 4.07% | TCAC | 6.42% | TCAC | 5.55% | CCAA | 3.66% | TCAA | 5.22% | TTAA | 5.60% | ATAT | 10.26% |
4 | TCAC | 3.21% | CCAC | 3.13% | TCAC | 3.62% | TCAC | 3.32% | CCGC | 3.06% | CCGC | 3.28% | TCAT | 5.13% | ACAG | 3.65% | TCAT | 2.93% | CCAT | 5.01% | TTAT | 3.79% | GCAG | 2.96% | GCAA | 4.03% | TCAA | 5.46% | TTGT | 6.72% |
5 | CCAC | 2.92% | TCAC | 3.05% | CCAC | 3.18% | CCAC | 3.13% | GCGG | 2.88% | GCAC | 3.26% | CCAG | 4.61% | TCAT | 3.51% | TTGT | 2.71% | TCAG | 4.27% | CCAA | 3.52% | TCAC | 2.94% | CCAT | 3.89% | CTAC | 4.58% | TCAT | 4.45% |
6 | GCAC | 2.35% | GCGC | 2.44% | GCAC | 2.50% | GCGC | 2.36% | GCGC | 2.88% | CCAG | 3.07% | GCAG | 4.58% | GCAG | 3.22% | ACAG | 2.68% | TCAA | 4.10% | TTAA | 3.45% | TCAG | 2.46% | ATAA | 3.85% | CTAA | 4.41% | TTGA | 4.43% |
7 | ACAG | 1.96% | GCAC | 2.29% | ACAG | 2.33% | GCAC | 2.33% | CCAC | 2.32% | TCAC | 2.63% | ACAG | 3.29% | TTGA | 3.13% | ACAC | 2.40% | TTGT | 3.03% | ACAA | 3.22% | CCGC | 2.41% | GTAA | 3.65% | TTGC | 3.89% | ATAA | 4.40% |
8 | GCGC | 1.91% | CCGC | 2.23% | CTGT | 1.98% | CTGT | 2.04% | CCGG | 2.25% | GCGG | 2.61% | TTAT | 2.75% | TCAC | 2.93% | CCAG | 2.29% | CTAT | 2.77% | CCAT | 3.06% | TCGC | 2.27% | ATAT | 3.21% | TCAC | 3.69% | TCAA | 2.93% |
9 | CCGC | 1.89% | GCGG | 2.17% | GCGC | 1.88% | ACAG | 2.02% | TCAC | 2.15% | TCCT | 2.50% | TCAA | 2.55% | TTAC | 2.82% | TTAC | 1.95% | ACAT | 2.61% | CTAA | 2.89% | CTGC | 2.11% | ACAT | 3.15% | CCAC | 3.56% | TTAG | 2.29% |
10 | GGAG | 1.80% | CCAT | 2.02% | CCAT | 1.79% | TCCT | 1.89% | GGAG | 2.11% | CCGT | 2.14% | TTAA | 2.11% | TTAT | 2.76% | TTGA | 1.83% | CCAC | 2.42% | TCAG | 2.74% | CCAT | 2.11% | CTAЛ | 2.89% | TTAG | 3.37% | ACAT | 2.16% |
11 | CCAT | 1.68% | CTGT | 1.99% | TTAG | 1.74% | CTGA | 1.86% | TCCT | 2.00% | CCAC | 2.04% | TTGT | 2.02% | TTGT | 2.70% | GCAC | 1.75% | GCAT | 2.32% | TTGT | 2.47% | GCAC | 2.09% | TTAA | 2.81% | TTGA | 3.31% | TTAC | 1.98% |
12 | TCAT | 1.67% | ACAG | 1.84% | CTGA | 1.59% | CTAG | 1.82% | GCAC | 1.63% | CTGT | 2.02% | GCAT | 1.80% | GTAG | 2.23% | TTAG | 1.75% | TTAA | 2.23% | TTAC | 2.39% | GCAA | 2.01% | TCAT | 2.76% | TTGT | 3.12% | GTAT | 1.57% |
13 | GCGG | 1.64% | GGAG | 1.66% | CCGC | 1.58% | CCGC | 1.80% | ACAG | 1.55% | CCAT | 2.02% | CCAC | 1.68% | ATAG | 2.16% | CTGT | 1.72% | TTAC | 2.02% | TTGA | 2.32% | TCAA | 1.60% | GCAT | 2.68% | CCAT | 2.85% | ACAA | 1.57% |
14 | CTGT | 1.52% | CTAG | 1.65% | CTAG | 1.56% | TTAG | 1.79% | CCGA | 1.54% | GCCT | 1.91% | CCAT | 1.68% | CTAG | 2.06% | CCAC | 1.71% | ACAA | 1.76% | CTAT | 2.00% | CTAG | 1.55% | GTAT | 2.64% | TCAG | 2.33% | ATGT | 1.27% |
15 | TCCT | 1.51% | TTGT | 1.62% | TCAT | 1.55% | CCAT | 1.60% | GCCT | 1.40% | GCGT | 1.81% | GCAC | 1.63% | TTЛЛ | 2.03% | CTGC | 1.59% | ACAC | 1.59% | ATЛЛ | 1.88% | CCGA | 1.52% | TTGA | 2.40% | TTAT | 2.27% | TTGG | 1.13% |
16 | TTGT | 1.44% | TCCT | 1.58% | TTGT | 1.54% | TTGT | 1.48% | GCGT | 1.40% | CTGC | 1.68% | CTAG | 1.60% | TCGA | 1.85% | GCGC | 1.57% | GCAC | 1.59% | CCAC | 1.86% | TTGC | 1.49% | CCAG | 2.03% | ACAA | 2.12% | CTAT | 1.09% |
17 | CTGA | 1.42% | TCAT | 1.58% | TCCT | 1.47% | CTGC | 1.44% | CTGT | 1.30% | GGAG | 1.62% | TTAC | 1.31% | ATCA | 1.77% | GTGT | 1.54% | TTAG | 1.50% | ACAT | 1.84% | TCGA | 1.45% | ACAG | 1.95% | CTGC | 2.06% | CCAT | 1.09% |
18 | TTAG | 1.42% | CCGG | 1.55% | CTGC | 1.43% | GCGG | 1.43% | CCGT | 1.27% | CCCT | 1.47% | ACAT | 1.26% | TCAA | 1.74% | CTGA | 1.53% | TTGA | 1.49% | GCAA | 1.82% | TCGT | 1.43% | CTAT | 1.93% | CCAG | 2.02% | CTAA | 1.04% |
19 | CTGC | 1.40% | CTGC | 1.37% | GGAG | 1.31% | TCAT | 1.36% | CCAT | 1.25% | GTGC | 1.42% | ATAG | 1.19% | ATAT | 1.40% | TTAT | 1.36% | CCAG | 1.40% | GTAA | 1.72% | TCAT | 1.40% | GCAG | 1.92% | CTAT | 1.90% | ATGA | 1.04% |
20 | CCGG | 1.24% | GCGT | 1.35% | GCGG | 1.27% | GTAG | 1.33% | CTGC | 1.25% | GCAT | 1.39% | ACAC | 1.10% | CCAT | 1.28% | TCAA | 1.34% | GTAT | 1.28% | ATAT | 1.67% | ACAG | 1.39% | CCAC | 1.90% | TCAT | 1.81% | GTAA | 1.02% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melikhova, A.V.; Anashkina, A.A.; Il’icheva, I.A. Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. Int. J. Mol. Sci. 2022, 23, 10873. https://doi.org/10.3390/ijms231810873
Melikhova AV, Anashkina AA, Il’icheva IA. Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. International Journal of Molecular Sciences. 2022; 23(18):10873. https://doi.org/10.3390/ijms231810873
Chicago/Turabian StyleMelikhova, Anastasia V., Anastasia A. Anashkina, and Irina A. Il’icheva. 2022. "Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters" International Journal of Molecular Sciences 23, no. 18: 10873. https://doi.org/10.3390/ijms231810873
APA StyleMelikhova, A. V., Anashkina, A. A., & Il’icheva, I. A. (2022). Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. International Journal of Molecular Sciences, 23(18), 10873. https://doi.org/10.3390/ijms231810873