Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response
Abstract
:1. Introduction
2. Results
2.1. Effects of Surfactin on Proteins Associated with Inflammation of the Pancreas in T2DM Mice
2.2. Effects of Surfactin on the Pancreatic Histopathology and Function in T2DM Mice
2.3. Effects of Surfactin on Proteins Associated with Glycometabolism of the Pancreas in T2DM Mice
2.4. Effects of Surfactin on Proteins Associated with Inflammation of the Colon in T2DM MICE
2.5. Effects of Surfactin on the Colonic Tight Junction Protein in T2DM Mice
2.6. Effects of Surfactin on Glucose Metabolism-Related Parameters of the Serum in T2DM Mice
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Fermentation and Production of Surfactin from Bacillus Amyloliquefaciens fmb50
4.3. Animal Experimental Design
4.4. Collection and Preparation of Samples
4.5. Measurement for Critical Parameters in Serum
4.6. Histological Analysis
4.7. Western Blot Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Sibusiso, L.; Hou, L.; Jiang, H.; Chen, P.; Zhang, X.; Tong, H. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int. J. Biol. Macromol. 2019, 131, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.C.; Chen, Y.L.; Hwang, P.A.; Chen, T.H.; Chou, T.C. Fucoidan ameliorates pancreatic β-cell death and impaired insulin synthesis in streptozotocin-treated β cells and mice via a Sirt-1-dependent manner. Mol. Nutr. Food. Res. 2017, 61, 1700136. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhen, M.; Zhou, C.; Deng, R.; Yu, T.; Wu, Y.; Bai, C. Gadofullerene nanoparticles reverse dysfunctions of pancreas and improve hepatic insulin resistance for type 2 diabetes mellitus treatment. ACS Nano 2019, 13, 8597–8608. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhu, B.R.; Jia, Q.; Li, Y.M.; Wang, T.; Wang, H.Y. Cinnamtannin D1 protects pancreatic β-cells from glucolipotoxicity-induced apoptosis by enhancement of autophagy in vitro and in vivo. J. Agric. Food Chem. 2020, 68, 12617–12630. [Google Scholar] [CrossRef] [PubMed]
- Hudish, L.I.; Reusch, J.E.; Sussel, L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J. Clin. Investig. 2019, 129, 4001–4008. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela Zamudio, F.; Segura Campos, M.R. Amaranth, quinoa and chia bioactive peptides: A comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes. Crit. Rec. Food. Sci. 2020, 62, 2707–2721. [Google Scholar] [CrossRef]
- Wang, T.; Sun, P.; Chen, L.; Huang, Q.; Chen, K.; Jia, Q.; Wang, H. Cinnamtannin D-1 protects pancreatic β-cells from palmitic acid-induced apoptosis by attenuating oxidative stress. J. Agric. Food Chem. 2014, 62, 5038–5045. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Xu, Z.; Xue, Y.; Zhang, D.; Zhang, Y.; Li, X. Fucoidan protects the pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats. Food Funct. 2022, 13, 2693–2709. [Google Scholar] [CrossRef]
- Zouari, R.; Ben Abdallah-Kolsi, R.; Hamden, K.; Feki, A.E.; Chaabouni, K.; Makni-Ayadi, F.; Ghribi-Aydi, D. Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats. Pept. Sci. 2015, 104, 764–774. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, X.; Yang, T.; Shang, J.; Shang, L.; Mai, H.; Qi, G. Immunomodulation therapy of diabetes by oral administration of a surfactin lipopeptide in NOD mice. Vaccine 2014, 32, 6812–6819. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Kim, M.S.; Song, I.B.; Park, B.K.; Lim, J.H.; Park, S.C.; Yun, H.I. Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J. Health Sci. 2009, 55, 351–355. [Google Scholar] [CrossRef]
- Sun, L.J.; Wang, Y.L.; Liu, H.M.; Xu, D.F.; Nie, F.H.; Zhou, Z.F.; Li, J.R. Hemolytic and mice acute oral toxicity evaluation of a new antimicrobial peptide APNT-6. J. Fish. China 2012, 36, 974–978. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhao, H.Y.; Meng, F.Q.; Zhou, L.B.; Pang, X.Y.; Lu, Z.X.; Lu, Y.J. Ameliorated effects of a lipopeptide surfactin on insulin resistance in vitro and in vivo. Food Sci. Nutr. 2022, 10, 2455–2469. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Lu, Y.J.; Shan, M.Y.; Zhao, H.Y.; Lu, Z.X.; Lu, Y.J. A mini-review: Mechanism of antimicrobial action and application of surfactin. World J. Microb. Biot. 2022, 38, 143. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar]
- Ikebukuro, K.; Adachi, Y.; Yamada, Y.; Fujimoto, S.; Seino, Y.; Oyaizu, H.; Ikehara, S. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation 2002, 73, 512–518. [Google Scholar] [CrossRef]
- Abunasef, S.K.; Amin, H.A.; Abdel-Hamid, G.A. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia. Histochem. Cytobiol. 2014, 52, 42–50. [Google Scholar] [CrossRef]
- Kaur, G.; Padiya, R.; Adela, R.; Putcha, U.K.; Reddy, G.S.; Reddy, B.R.; Banerjee, S.K. Garlic and resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats. Front. Pharmacol. 2016, 7, 360. [Google Scholar] [CrossRef]
- Donath, M.Y.; Böni-Schnetzler, M.; Ellingsgaard, H.; Ehses, J.A. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology 2009, 24, 325–331. [Google Scholar] [CrossRef]
- Kumar, K.H.; Manrai, M.; Sood, A.K.; Sharma, R. A clinical study of insulin resistance in patients with chronic pancreatitis. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S283–S286. [Google Scholar] [CrossRef]
- Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; O’neill, L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 2010, 11, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Yuan, F.; Wang, S.; Liu, Y.; Fan, T.; Wang, F. Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed. Pharmacother. 2018, 105, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014, 13, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11, 136–140. [Google Scholar] [CrossRef]
- Oslowski, C.M.; Hara, T.; O’Sullivan-Murphy, B.; Kanekura, K.; Lu, S.; Hara, M.; Urano, F. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 2012, 16, 265–273. [Google Scholar] [CrossRef]
- Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013, 62, 194–204. [Google Scholar] [CrossRef]
- Tabatabaie, P.S.; Yazdanparast, R. Teucrium polium extract reverses symptoms of streptozotocin-induced diabetes in rats via rebalancing the Pdx1 and FoxO1 expressions. Biomed. Pharmacother. 2017, 93, 1033–1039. [Google Scholar] [CrossRef]
- Bouzakri, K.; Zierath, J.R. MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-α-induced insulin resistance. J. Biol. Chem. 2007, 282, 7783–7789. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, L.; Yan, Z.; Shen, J.; Chang, Y.; Wang, J. ι-Carrageenan tetrasaccharide from ι-carrageenan inhibits islet β cell apoptosis via the upregulation of GLP-1 to inhibit the mitochondrial apoptosis pathway. J. Agric. Food Chem. 2021, 69, 212–222. [Google Scholar] [CrossRef]
- Lanuza-Masdeu, J.; Arévalo, M.I.; Vila, C.; Barberà, A.; Gomis, R.; Caelles, C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 2013, 62, 2308–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S.; Morinaga, H.; Kim, J.J.; Lagakos, W.; Taylor, S.; Keshwani, M.; Olefsky, J. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion. Cell 2013, 153, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yu, S.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Mezzenga, R. Amyloid–polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis. ACS Nano 2020, 14, 2760–2776. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Kim, N.; Shim, Y.K.; Choi, Y.J.; Nam, R.H.; Choi, Y.J.; Lee, D.H. Adequate dextran sodium sulfate-induced colitis model in mice and effective outcome measurement method. J. Cancer Prev. 2015, 20, 260. [Google Scholar] [CrossRef]
- Zhang, D.K.; Cheng, L.N.; Huang, X.L.; Shi, W.; Xiang, J.Y.; Gan, H.T. Tetrandrine ameliorates dextran-sulfate-sodium-induced colitis in mice through inhibition of nuclear factor-κB activation. Int. J. Colorectal. Dis. 2009, 24, 5–12. [Google Scholar] [CrossRef]
- Willis, C.L.; Meske, D.S.; Davis, T.P. Protein kinase C activation modulates reversible increase in cortical blood–brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J. Cerebr. Blood Flow Metab. 2010, 30, 1847–1859. [Google Scholar] [CrossRef]
- Kurashima, Y.; Kigoshi, T.; Murasaki, S.; Arai, F.; Shimada, K.; Seki, N.; Kiyono, H. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat. Commun. 2021, 12, 1067. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Miller, G. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression Microbiome Influences Pancreatic Oncogenesis. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Rescigno, M. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015, 350, 830–834. [Google Scholar] [CrossRef]
- Zhang, Z.; Tanaka, I.; Pan, Z.; Ernst, P.B.; Kiyono, H.; Kurashima, Y. Intestinal homeostasis and inflammation: Gut microbiota at the crossroads of pancreas–intestinal barrier axis. Eur. J. Immunol. 2022, 52, 1035–1046. [Google Scholar] [CrossRef]
- Sun, J.N.; Yu, X.Y.; Hou, B.; Ai, M.; Qi, M.T.; Ma, X.Y.; Qiu, L.Y. Vaccarin enhances intestinal barrier function in type 2 diabetic mice. Eur. J. Pharm. 2021, 908, 174375. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Zhao, H.Y.; Meng, F.Q.; Zhou, L.B.; Lu, Z.X.; Lu, Y.J. Surfactin Alleviated Hyperglycaemia in Mice with Type 2 Diabetes Induced by a High-Fat Diet and Streptozotocin. Food Sci. Hum. Wellness 2022, 13, 1–25. Available online: http://kns.cnki.net/kcms/detail/10.1750.TS.20220727.0919.006.html (accessed on 8 August 2022).
- Larsen, I.S.; Jensen, B.A.; Bonazzi, E.; Choi, B.S.; Kristensen, N.N.; Schmidt, E.G.W.; Marette, A. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes 2021, 13, 1988836. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef]
- Roy, U.; Gálvez, E.J.; Iljazovic, A.; Lesker, T.R.; Błażejewski, A.J.; Pils, M.C.; Strowig, T. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep. 2017, 21, 994–1008. [Google Scholar] [CrossRef]
- Frost, F.; Kacprowski, T.; Rühlemann, M.; Bülow, R.; Kühn, J.P.; Franke, A.; Lerch, M.M. Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity. Gastroenterology 2019, 156, 1010–1015. [Google Scholar] [CrossRef]
- Li, X.; He, C.; Li, N.; Ding, L.; Chen, H.; Wan, J.; Lu, N. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut Microbes 2020, 11, 1774–1789. [Google Scholar] [CrossRef]
- Garber, A.J. Novel GLP-1 receptor agonists for diabetes. Expert Opin. Investig. Drugs 2012, 21, 45–57. [Google Scholar] [CrossRef]
- Tang, C.; Meng, F.Q.; Pang, X.Y.; Chen, M.R.; Zhou, L.B.; Lu, Z.X.; Lu, Y.J. Protective effects of Lactobacillus acidophilus NX2-6 against oleic acid-induced steatosis, mitochondrial dysfunction, endoplasmic reticulum stress and inflammatory responses. J. Funct. Foods 2022, 74, 104206. [Google Scholar] [CrossRef]
- Lv, X.Y.; Li, J.; Zhang, M.; Wang, C.M.; Fan, Z.; Wang, C.Y.; Chen, L. Enhancement of sodium caprate on intestine absorption and antidiabetic action of berberine. Aaps Pharmscitech 2010, 11, 372–382. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhao, H.; Lu, Y.; Liu, H.; Meng, F.; Lu, Z.; Lu, Y. Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response. Int. J. Mol. Sci. 2022, 23, 11086. https://doi.org/10.3390/ijms231911086
Chen X, Zhao H, Lu Y, Liu H, Meng F, Lu Z, Lu Y. Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response. International Journal of Molecular Sciences. 2022; 23(19):11086. https://doi.org/10.3390/ijms231911086
Chicago/Turabian StyleChen, Xiaoyu, Hongyuan Zhao, Yajun Lu, Huawei Liu, Fanqiang Meng, Zhaoxin Lu, and Yingjian Lu. 2022. "Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response" International Journal of Molecular Sciences 23, no. 19: 11086. https://doi.org/10.3390/ijms231911086
APA StyleChen, X., Zhao, H., Lu, Y., Liu, H., Meng, F., Lu, Z., & Lu, Y. (2022). Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response. International Journal of Molecular Sciences, 23(19), 11086. https://doi.org/10.3390/ijms231911086