Genomic Landscape of Mixed-Phenotype Acute Leukemia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolach, O.; Stone, R.M. How I treat mixed-phenotype acute leukemia. Blood 2015, 125, 2477–2485. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, O.K.; Arber, D.A. Mixed-phenotype acute leukemia: Historical overview and a new definition. Leukemia 2010, 24, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405, Erratum in Blood 2016, 128, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: Integrating Morphological, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Di Giacomo, D.; la Starza, R.; Gorello, P.; Pellanera, F.; Atak, Z.K.; de Keersmaecker, K.; Pierini, V.; Harrison, C.J.; Arniani, S.; Moretti, M.; et al. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood 2021, 138, 773–784. [Google Scholar]
- Willis, T.G.; Zalcberg, I.R.; Coignet, L.J.A.; Wlodarska, I.; Stul, M.; Jadayel, D.M.; Bastard, C.; Treleaven, J.G.; Catovsky, D.; Silva, M.L.M.; et al. Molecular Cloning of Translocation t(1;14)(q21;q32) Defines a Novel Gene (BCL9)at Chromosome 1q21. Blood 1998, 91, 1873–1881. [Google Scholar] [CrossRef]
- Heesch, S.; Neumann, M.; Schwartz, S.; Bartram, I.; Schlee, C.; Burmeister, T.; Hänel, M.; Ganser, A.; Heuser, M.; Wendtner, C.-M.; et al. Acute leukemias of ambiguous lineage in adults: Molecular and clinical characterization. Ann. Hematol. 2013, 92, 747–758. [Google Scholar] [CrossRef]
- Eckstein, O.S.; Wang, L.; Punia, J.N.; Kornblau, S.M.; Andreeff, M.; Wheeler, D.A.; Goodell, M.A.; Rau, R.E. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Exp. Hematol. 2016, 44, 740–744. [Google Scholar] [CrossRef]
- Quesada, A.E.; Hu, Z.; Routbort, M.J.; Patel, K.P.; Luthra, R.; Loghavi, S.; Zuo, Z.; Yin, C.C.; Kanagal-Shamanna, R.; Wang, S.A.; et al. Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing. Oncotarget 2018, 9, 8441–8449. [Google Scholar] [CrossRef]
- Matutes, E.; Pickl, W.F.; Veer, M.V.; Morilla, R.; Swansbury, J.; Strobl, H.; Attarbaschi, A.; Hopfinger, G.; Ashley, S.; Bene, M.C.; et al. Mixed-phenotype acute leukemia: Clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 2011, 117, 3163–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Ping, N.; Zhu, M.; Sun, A.; Xue, Y.; Ruan, C.; Drexler, H.G.; MacLeod, R.A.F.; Wu, D.; Chen, S. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica 2012, 97, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Griffin, G.; Lee, W.; Patel, S.; Ohgami, R.; Ok, C.Y.; Wang, S.; Geyer, J.T.; Xiao, W.; Roshal, M.; et al. Genomic and clinical characterization of B/T mixed phenotype acute leukemia reveals recurrent features and T-ALL like mutations. Am. J. Hematol. 2018, 93, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Wang, F.; Morita, K.; Yan, Y.; Hu, P.; Zhao, P.; Zhar, A.A.; Wu, C.J.; Gumbs, C.; Little, L.; et al. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat. Commun. 2018, 9, 2670. [Google Scholar] [CrossRef]
- Alexander, T.B.; Gu, Z.; Iacobucci, I.; Dickerson, K.; Choi, J.K.; Xu, B.; Payne-Turner, D.; Yoshihara, H.; Loh, M.L.; Horan, J.; et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 2018, 562, 373–379. [Google Scholar] [CrossRef]
- Becker, M.W.; O’Dwyer, K.M. Comprehensive Genomic Classification of Pediatric Mixed-Phenotype Acute Leukemia. Hematologist 2019, 16. [Google Scholar] [CrossRef]
- Zhang, J.; Grubor, V.; Love, C.L.; Banerjee, A.; Richards, K.L.; Mieczkowski, P.A.; Dunphy, C.; Choi, W.; Au, W.Y.; Srivastava, G.; et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1398–1403. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Dinardo, C.D. The role of enasidenib in the treatment of mutant IDH2 acute myeloid leukemia. Ther. Adv. Hematol. 2018, 9, 163–173. [Google Scholar] [CrossRef]
- Davis, J.A.; Fiskus, W.C.; Daver, N.; Mill, C.P.; Birdwell, C.; Salazar, A.; Philip, K.; Kadia, T.M.; DiNardo, C.D.; Leoni, M.; et al. Clinical-Stage Menin Inhibitor KO-539 Is Synergistically Active with Multiple Classes of Targeted Agents in KMT2A-r and NPM1-Mutant AML Models. Blood 2021, 138 (Supp. S1), 3357. [Google Scholar] [CrossRef]
- Roloff, G.W.; Baron, J.I.; Neppalli, V.T.; Sait, S.; Griffiths, E.A. Next-Generation Sequencing Delineates Clonal Origins and Informs Therapeutic Strategies in Acute Lymphoblastic Leukemia and Histiocytic Sarcoma. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Frampton, G.M.; Fichtenholtz, A.; A Otto, G.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Au, C.H.; Wa, A.; Ho, D.N.; Chan, T.L.; Ma, E.S.K. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn. Pathol. 2016, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diagnosis | Clonality | Cytogenetics | FISH |
---|---|---|---|
B/myeloid | Biclonal | 47,XX,+6 [3]/46,XX [17] | BCR/ABL1-negative, MDS FISH-negative. |
T/B lymphoid | Biphenotypic | 65, XY, +X, +1, 1, add(1)(p33)x2, −2, +3, −4, +5, del(5q31q35)x2, +6, +6, +7, +8, −9, +11, +20, +20, −20, +21, +22, +mar [1]/46, XY [2] | |
T/myeloid | biphenotypic | 45,XY,t(2;14;5)(q23;q32;q13), der (12;16) (q10;p10), add (17)(q21) | Monosomy 16/16q, No rearrangement of CBFB, MLL, BCR/ABL, RUNX1T1/RUNX1, or PML/RARA. |
B/myeloid | Biphenotypic | 46,XY [20] | Normal for MLL, 5q and 7q. |
T/myeloid | Biphenotypic | 47,X,add(X)(p22.1),−5,add(6)(q13),−7,add(9)(p11),del(9)(q13q22),+21,+2mar [6]/ 46,XX [17] | No evidence of a BCR–ABL rearrangement. |
T/myeloid | Biphenotypic | 46,XX,t(2;14)(p13;q32)?c [20] | PML/RARα rearrangement is not detected. |
B/myeloid | Biclonal | t(9;22)(q34;q11.2);46, XY, der(16)t(1;16)(q12;q11.2),t(9;22)(q34;q11.2) [19]/46, XY [1]. | t(9,22) along with loss of CBFB/16q, and gain in RUNX1/21q. |
B/myeloid | Biphenotypic | No data available | |
B/myeloid | Biphenotypic | 47,XY,t(2;17;8)(p23;q25;q22),t(9;22)(q34;q11.2),del(13)(q22q32),+21 [cp20] | t(9;22)(q34;q11.2) translocation (97.5%) and gain of extra Ph chromosome. |
B/myeloid | Biclonal | 46,XX [20] | No evidence of a BCR/ABL1 gene rearrangement; deletion of 5q, 7q, 17q, and 20q not detected. Monosomy 7 and trisomy 8 not detected. |
B/myeloid | Biclonal | 46,XX,?ins(1;1)(p34;p32p36.1),t(9;22)(q34;q11.2) [18]/92,idem x2 [2] | A total of 5.5% of cells with tetrasomy 8 and tetrasomy 21. No evidence of RUNX1T1/RUNX1; No MLL gene rearrangement. The 4 MLL probe fusion signals (13.5%) indicate the presence of tetraploidy tumor clone in the specimen. |
B/myeloid | Biphenotypic | 46,XY,t(9;22)(q34;q11.2) [4] | Normal CDKN2A(P16), ETV6/RUNX1, TCF3; t(9;22)(q34;q11.2)(Normal). |
B/myeloid | Biclonal | 46,XX,t(4;11)(q21;q23) [10]/46,XX [1] | MLL rearrangement (12%). |
T/myeloid | Biphenotypic | 46,XY [20] | Deletion of 5q, 7q, 17p, and 20q not detected. Monosomy 7 and trisomy 8 not detected. |
B/myeloid | Biphenotypic | 45,XY,−7,t(9;22)(q34;q11.2) [15]/46,XY [5] | BCR/ABL1 rearrangement (92.5%). Positive for deletion of 7q or monosomy 7 (89%). |
B/myeloid | Biclonal | 46,XX [20] | No BCR/ABL1. |
B/myeloid | Biclonal | 93–108,XXYY,−2,−3,−6,−6,−7,−8,−8,−9,add(11)(q23)x2, −12,−12,+15,+10-25mar[cp3]/46,XY [19]; POSSIBLE KMT2A (MLL) ONCOGENE MEDIATED CLONE DETECTED | No BCR–ABL1, MLL or RUNX1/RUNXT1 rearrangements. Increased ABL1 and BCR signals, evidence of MLL gene amplification and increased RUNX1, RUNXT1 signals. |
B/myeloid | Biphenotypic | 46,XX [20] | Positive for del(17p/TP53), loss of ABL1 and BCL-6 genes, gain of BCR gene, and negative for BCR/ABL1 fusion, t(11;14), or BCL-2/BCL-6/MYC rearrangements. |
B/myeloid | Biphenotypic | 46,XY,+13,−21 [20] | Negative for PML–RARA, RUNX1–RUNXT1, CBFB–MYH11, BCR–ABL1, and MLL/KMT2A translocations. MDS FISH panel is normal. |
T/myeloid | Biphenotypic | 39–46,XX,-X,add(X)(p22.1),add(7)(q11.2),add(11)(p11.2),−14,−16,−17,−18,−20,del(20)(q11.2q13.3),add(21)(q22),−22,add(22)(q11.2)+r,+1-3mar[cp20] | Deletion 5q31-negative, deletion 7q31-positive, deletion 20q12-positive, deletion 17p13 (p53)-negative, Trisomy 8-positive. |
B/myeloid | Biphenotypic | 46,XX [20] | No RUNX1T1, RUNX1 (ETO/AML1), MLL GENE, BCR/ABL1-negative; Del 5q31 detected at relapse. |
T/myeloid | Biphenotypic | 46,XX,del(5)(q22:q35),del(11)(p11.2) with an abnormal BCR–ABL1 signal with only one ABL1 gene at 9q34 detected; First relapse: 48,XX,add(1)(p36.3),del(5)(q22),+6, del(11)(p11.2),+19[cp17]/46,XX [3] | FISH negative for BCR/ABL1; no AML OR ALL gene deletions or rearrangements. |
B/myeloid | Biphenotypic | 45,XX,der(3)t(1;3)(q21;p25), t(8;14)(q24;q32),der(14)t(8;14),−15, del(17)(p11.2),add(19)((q13.4)[cp20] | MLL deletion (63%); no BCR–ABL1 fusion. |
B/myeloid | Biclonal | 46,XY [20] | No t(8;21), t(9;22), 11q23, t(15;17) or inv16. |
T/myeloid | Biphenotypic | 46,XY,dup(1)(q23q32),del(3)(q21), +13,−21[cp10]/46,XY[4] | MDS FISH panel is normal; no t(9;22) translocation. |
T/myeloid | Biphenotypic | 46,XY [20] | No PML/RARA gene rearrangement. |
T/myeloid | Biclonal | 46, XX | Karyotypically occult translocation (5;14) resulting in the TLX3–BCL11b fusion (74%) with 60% heterozygous/hemizygous deletion of CDKN2a and with 8.5% of nuclei demonstrating a TRB rearrangement involving 7q34. |
B/myeloid | Biclonal | 46,XX,add(5)(q11.2),t(9;22)(q34.1;q11.2) [18]/47,idem,+der(22)t(9;22)[1]/46,XX [1]. | Positive for t(9;22), and negative for t(1;19), MYC, KMT2A or IGH gene rearrangements, negative for Trisomy 4, 6, 10 or 17. |
Heesch, S. et al. [8] | Eckstein, O.S. et al. [9] | Quesada, A.E. et al. [10] | Matutes, E. et al. [11] | Yan, L. et al. [12] | Mi, X. et al. [13] | Takahashi, K. et al. [14] | Alexander, T.B. et al. [15] | Becker, M. et al. [16] | ||
---|---|---|---|---|---|---|---|---|---|---|
Sex | ||||||||||
Female | 21 | 38 | 57 | 13 | ||||||
Male | 21 | 62 | 60 | 18 | ||||||
Age, years | ||||||||||
Median | 60 | 35 | 35 | 53 | 7 | |||||
Diagnosis | ||||||||||
AUL | 16 | 13 | 26 | 5 | ||||||
ALL | 39 | 51 | ||||||||
AML | 38 | 40 | ||||||||
MPAL (B/Myeloid) | 12 | 7 | 7 | 59 | 64 | 13 | 35 | 37 | ||
MPAL (T/Myeloid) | 12 | 15 | 6 | 35 | 38 | 18 | 49 | 52 | ||
MPAL (B/T-cell | 2 | 1 | 1 | 4 | 14 | |||||
MPAL (B/T/Myeloid) | 2 | 1 | ||||||||
Cytogenetics | ||||||||||
Normal Karyotype | 3 | 4 | 10 | 33 | 5 | |||||
Complex karyotype | 24 | 22 | 8 | |||||||
t(9;22)(q34;q11) | 7 | 1 | 1 | 15 | 14 | 4 | 2 | |||
Monosomy | 5 | 7 | ||||||||
Polysomy | 12 | |||||||||
t(v;11q23) | 6 | 4 | 1 | |||||||
t(10;11)(p15;q21) | 3 | |||||||||
MLL | 2 | 7 | 15 | |||||||
Other abnormalities | 11 | 21 | 21 | |||||||
Mutations | ||||||||||
WT1 | 4 | 3 | 3 | 0 | 1 | 28 | 24 | |||
FLT3 | 1 | 3 | 3 | 0 | 31 | 21 | ||||
DNMT3A | 6 | 1 | 0 | 7 | ||||||
MLL | 2 | 1 | ||||||||
RUNX1 | 4 | 2 | 8 | 1 | 8 | 15 | 13 | |||
IDH2 | 2 | 1 | 0 | |||||||
TP53 | 5 | 1 | 2 | |||||||
JAK2 | 1 | 1 | 1 | |||||||
NOTCH1 | 5 | 1 | 1 | 9 | ||||||
NRAS | 4 | 1 | 6 | 21 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennawi, M.; Pakasticali, N.; Tashkandi, H.; Hussaini, M. Genomic Landscape of Mixed-Phenotype Acute Leukemia. Int. J. Mol. Sci. 2022, 23, 11259. https://doi.org/10.3390/ijms231911259
Hennawi M, Pakasticali N, Tashkandi H, Hussaini M. Genomic Landscape of Mixed-Phenotype Acute Leukemia. International Journal of Molecular Sciences. 2022; 23(19):11259. https://doi.org/10.3390/ijms231911259
Chicago/Turabian StyleHennawi, Marah, Nagehan Pakasticali, Hammad Tashkandi, and Mohammad Hussaini. 2022. "Genomic Landscape of Mixed-Phenotype Acute Leukemia" International Journal of Molecular Sciences 23, no. 19: 11259. https://doi.org/10.3390/ijms231911259
APA StyleHennawi, M., Pakasticali, N., Tashkandi, H., & Hussaini, M. (2022). Genomic Landscape of Mixed-Phenotype Acute Leukemia. International Journal of Molecular Sciences, 23(19), 11259. https://doi.org/10.3390/ijms231911259