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Abstract: Osteosarcoma is amongst the most prevalent bone sarcomas and majorly afflicts children
and adolescents. Therapeutic regimens based on the triad of doxorubicin, cisplatin and methotrexate
have been used as the state-of-the-art approach to clinical treatment and management, with no
significant improvements in the general outcomes since their inception in the early 1970s. This fact
raises the following problematic questions: Why do some patients still relapse despite an initial good
response to therapy? Why do nearly 30% of patients not respond to neoadjuvant therapies? Does
residual persistent disease contribute to relapses and possible metastatic dissemination? Accumulat-
ing evidence suggests that chemoresistant cancer stem cells may be the major culprits contributing to
those challenging clinical outcomes. Herein, we revisit the maneuvers that cancer stem cells devise
for eluding cell killing by the classic cytotoxic therapies used in osteosarcoma, highlighting studies
that demonstrate the complex crosstalk of signaling pathways that cancer stem cells can recruit to
become chemoresistant.

Keywords: osteosarcoma; cancer stem cell; chemoresistance; drug efflux; apoptosis; cell cycle;
hypoxia; inflammation; metabolism

1. Introduction

Osteosarcoma is very aggressive bone tumor with a dismal prognosis for poor respon-
ders to therapy and for metastasis-presenting patients [1]. Considering the histological
observations of the existence of undifferentiated cellular subsets alongside with cells re-
sembling more differentiated phenotypes, some studies propose a stem cell origin for
osteosarcoma, including the possibility of tumor-promoting genetic hints that provide a
hurdle to mesenchymal stem cells (MSCs) [2]. In fact, regardless of its origin, a plethora of
evidence demonstrates that cancer stem cells (CSCs) exist within osteosarcomas and have a
role as promising therapeutic targets [3].

Despite the difficulties in the identification of a consistent molecular phenotype for
osteosarcoma CSCs, knowing the mechanisms by which stemness networks persist among
tumor cells is particularly important for the recognition of new therapeutic targets [4].
Unpuzzling the signaling pathway players that determine chemoresistance and how they
are molecularly intertwined with stemness signaling offers the possibility of effectively
enhancing chemosensitivity for osteosarcoma. Therefore, in this review, we focus on the
key mechanisms involved in resistance to chemotherapy in osteosarcoma CSCs, namely,
detoxification systems (drug efflux transport and ALDH), survival-related pathways (ERK,
AKT), adaptive metabolic routes, altered cell cycle and DNA repair, enhanced apoptosis
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and modulation of the tumor microenvironment (hypoxia, inflammation), by giving appro-
priate examples. We also discuss a few points regarding some of the immunotherapeutic
options explored for osteosarcoma treatment, with a tentative focus on the few studies that
specifically regard CSCs.

2. Epidemiology of Osteosarcoma and Rationale to Maintain the Discussion about Its
Resistance to Chemotherapy

Osteosarcoma is the commonest type of bone cancer and a highly aggressive osteoid-
depositing tumor affecting mainly children and adolescents [5]. Nearly 20% of patients
have metastatic disease at presentation, mostly located in the lungs [6]. The treatment for
osteosarcoma follows a multidisciplinary approach (Figure 1), with the essential standard
therapy including (a) pre-operative or neoadjuvant chemotherapy, consisting of high-dose
methotrexate (MTX), doxorubicin (DOX) and cisplatin (CIS); (b) local surgical resection; and
(c) post-operative or adjuvant chemotherapy, administered when the degree of tumor necro-
sis after pre-operative chemotherapy is superior to 90% [7]. This chemotherapeutic regimen
has improved the cure rate and long-term disease-free survival percentage for osteosarcoma
patients, with localized lesions ranging from 5% to 20% in the pre-chemotherapy era to
the 65% to 75% range observed nowadays [7–9]. Unfortunately, survival for patients with
metastasis at initial diagnosis is still only 17–34% [10].
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Figure 1. Osteosarcoma therapeutic management. Doxorubicin (DOX), cisplatin (CIS) and methotrex-
ate (MTX) are the first-line and the main chemotherapeutic drugs used in the treatment of osteosar-
coma (diagram compiled from [6,11,12].

Pre-operative chemotherapy enables the early treatment of micrometastatic disease
and facilitates the surgical resection by shrinking the tumor mass and decreasing vascular-
ity. Limb-salvage surgery should occur after a defined time interval, with no advantage
being observed with immediate surgery [13], aiming to preserve a functioning limb without
increasing the risk of post-operative complications to the patient. Post-operative chemother-
apy after surgical resection is normally performed in order to minimize the likelihood of
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local recurrence. It is clinically well-established that complete surgical resection of both the
primary tumor and metastatic nodules is essential for survival [6,10].

Despite a good response to pre-operative therapy, local recurrence and metastatic
disease occurs in 25–50% of surgically-treated patients without evidence of metastasis at
diagnosis. This is most probably attributable to poor response to standard therapy and
constitutes the major clinical problem: preventing the curing of high-grade osteosarcoma pa-
tients. Patients who develop metastatic disease after surgical resection have limited options;
however, they frequently receive additional cytotoxic drugs to the standard drug regimen,
such as zoledronate [14], gemcitabine and docetaxel [15], ifosfamide [16], regorafenib [17]
or lenvatinib [18]. Nevertheless, in general, in these patients, neither the intensification
of dose regimens [19–22] nor the addition of new drugs [23,24] has significantly modified
their clinical outcomes.

Notwithstanding the exhaustive and incredible progress in the clinical research of new
therapeutic targets and compounds in recent years, the attempts to increase the proportion
of tumor necrosis by means of dosage intensification of pre-operative chemotherapy and
the addition of new compounds to the classical triplet drug regimen (MTX, DOX and CIS),
the cure rate and long-term disease-free survival percentage of osteosarcoma patients with
localized disease has stagnated since the 1970s, in the 60% to 70% range, as previously
indicated [25,26]. The cases of disease recurrence and the development of drug resistance
in osteosarcoma provide a rationale for the exploration of both old and new insights that
might contribute to a better identification of the precise mechanisms of resistance operating
in this tumor and the pathways responsible for recurrence after a favorable response to
therapy (Figure 2).
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coma, derived from the plateaued outcomes and lack of benefits from the therapeutic interventions
attempted in the modern clinical era (new drugs’ addition and dose intensification).

3. Cancer Stem Cells Contribute to Intra-Tumor Cellular Heterogeneity

Tumor cell heterogeneity is a well-recognized characteristic of osteosarcoma, consti-
tuting one of the main causes of treatment failure and may have at least two underlying
causative tumor development models—the stochastic clonal evolution and the hierarchical
cancer stem cell (CSC). The existence of different osteosarcoma clones is linked to dynamic
genetic and epigenetic events, which subsequently determines differential patterns of cellu-
lar tumorigenicity [27,28]. However, analysis of histopathological specimens reveals that, in
some cases, the tumors are organized in a hierarchical manner, with a leading CSC being the
generator of phenotypic and functional heterogeneity. In fact, cells with stemness-related
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features have been found in several tumor types, including bone sarcomas [29,30], and are
associated with treatment resistance, tumor relapses and recurrences, and disseminated
metastatic disease [31]. In recent years, several studies suggest that the principles of both
the clonal and the CSC models can be conciliated to better describe tumor heterogeneity,
since virtually every cell within the tumor may convert from a non-tumorigenic to a tu-
morigenic state and is able to switch phenotypically into a stem-like cell. These transitions
are sustained by the appropriate oncogenic insults or other microenvironmental stimuli,
demonstrating the CSC’s intrinsic cell plasticity [32–35].

General Overview about the Identification of CSCs in Osteosarcoma

The identification of osteosarcoma CSCs has gained increasing attention over the last
three decades. Owing to CSCs’ rarity and the absence of established specific markers for
osteosarcoma, the characterization of CSCs has been done mostly based on functional
criteria (Table 1), namely, with sphere-formation, Aldefluor™, side-population and surface
marker flow cytometry-based assays. These methods do not mandatorily recognize a
unique, exclusive set of CSCs, but do uncover the heterogeneous nature and phenotypic
plasticity of osteosarcoma CSC sub-populations, with no methodology being better or
more adequate than the other to identify those CSC subsets. In fact, based on our own
previous experience with these techniques, when possible, combining, e.g., two of these
functional assays may contribute to refine more bona-fide CSC subsets within the cell
samples analyzed.

Table 1. Overview of the functional experimental techniques used to isolate CSCs in osteosarcoma,
their technical principles, possible drawbacks and stem cell-related characteristics they have identified
in the mentioned studies.

Method Technical Principle Expert Opinion Stem Cell Features Found [References]

Sphere-forming
assays

- most primitive and re-
silient cells survive the
single-cell plating con-
ditions in serum starva-
tion culture systems;

- suspended-growing
conditions in non-
adherent surfaces

- experimental variability intro-
duced over the years hampers
data comparison, because of the
diversity of cell density plating,
use of mitogens and media
supplements;

- sphere-formation does not neces-
sarily correlate to enhanced tu-
morigenic ability;

- sphere assay mainly enriches for a
population of stem and progenitor
cells, together with more differen-
tiated cells

- expression of pluripotency-related mark-
ers [36–40];

- Wnt/β-catenin activation [41];
- resistance to chemotherapies [40,42–46]

Aldefluor™
flow cytometry analysis of the

intracellular enzymatic
activity of aldehyde

dehydrogenases

- simple experimental kit, techni-
cally well-controlled;

- needs specific flow cytometer fil-
ters which may not be available to
all researchers;

- some studies suggest that
ALDH1A1 isoform is the major
contributor of the positive pheno-
type, leaving the activity of other
ALDH isoforms undetected;

- can be difficult to separate a suf-
ficient number of cells to conduct
further biochemical experimental
characterization

- sphere-forming MG-63 cells resistant to
doxorubicin, cisplatin [47];

- stem cell marker expression and high tu-
morigenicity [48];

- DKK-1 expression [49];
- increased SOX2 expression [41];
- expression of ALDH isozymes, such as

ALDH1A1 [50];
- metastatic dissemination [51,52]
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Table 1. Cont.

Method Technical Principle Expert Opinion Stem Cell Features Found [References]

Side-population
flow cytometry analysis of
cellular extrusion of a vital
dye (e.g., Hoechst-33342)

Critical parameters:

- preparation of a single-cell suspen-
sion;

- concentration and possible toxic-
ity of the vital dye used;

- incubation method namely tem-
perature and duration;

- type and concentration of the ABC
transporters’ inhibitor used to es-
tablish the negative controls;

- accuracy of the discrimination of
debris, dead and single cells;

- quality of flow cytometry filters;
- can be difficult to separate a suf-

ficient number of cells to conduct
further biochemical experimental
characterization

- tumorigenic capacity, expression of
stemness-related markers [53];

- Wnt activation [54];
- CD44/Oct4 expression [55];
- sphere-formation, drug resistance, clono-

genicity [56], correlation with ABCG2 ex-
pression [41];

- EIF4E/mTOR signaling and other
genes involved in developmental
processes [57]

Expression of
specific surface

markers (involved
in e.g., cellular

invasion, adhesion,
and metastasis)

sorting of phenotypically
dissimilar cancer cell subsets
based on the expression of a

membrane protein using flow
cytometry;

- CSCs markers identified are based
on those expressed by normal
stem cells;

- consider the possibility that sorted
cancer cells reacquire their origi-
nal markers;

- inaccuracies in the sorting process
itself;

- CSC sorting in mesenchymal tu-
mors based on surface marker ex-
pression has been more elusive
than in other tumors and less con-
sistent between research groups

- CD133 associated with poor prognosis
and chemoresistance [36,58–63];

- CD29, CD90, CD105, CD44, ICAM-1,
CD56 (mesenchymal signature) [64];

- CD117 [44,65,66];
- CBX3/ABCA5 [39];
- CD248 [67,68];
- CD271 [69–71];
- osteoblastic differentiation markers

CD49b [72], CD24 [73]

Cancer stem cell markers are used as permanent labels of stemness during self-renewal.
Virtually every protein can serve as CSC biomarkers; however, not all are able to specifically
identify a CSC population, as they might differ according to the source of CSCs and might
change as the tumor evolves. Moreover, stem cells of different tissues are not all identical
and the dissimilarities concerning, e.g., location, self-renewal and differentiation capabilities
are often reflected by specific combinations of phenotypic markers.

Different combinations of markers constitute the basis for distinguishing a certain stem
cell type from another one. Moreover, CSCs’ markers expression might be influenced by
intrinsic tumor microenvironmental stimuli or modulated by therapeutics, as we previously
discussed [74]. There is consensus that CSCs express many of the markers commonly used
to identify normal stem cells (either embryonic or adult somatic stem cells) [75]. In general,
these cell surface markers are very advantageous to identify and isolate CSC populations
using the appropriate cell-sorting technologies and protocols.

Some markers are inclusive—that is, expressed by diverse types of CSCs—or exclu-
sive, with the potential to be exploited for therapeutic targeting or as biomarkers. The
first specific CSC markers were identified in hematological tumors, CD34+/CD38- in
acute myeloid leukemia [76], while breast cancer was the first solid tumor for which a
CD44+/CD133+/ALDH1+ phenotype was pointed as specific for breast CSCs [77,78].

Comprehensible descriptions of osteosarcoma CSC markers have been revised pre-
viously [79,80]. Notably, none of the herein- and therein-mentioned markers are unique
to osteosarcoma CSCs. Indeed, CD surface markers presented in Table 1 either require
a broader validation in osteosarcoma tissue cohorts or they have been detected also in
other CSC types; for example, CD44/CD271 in melanoma [81] and CD117 in ovarian
cancer [82]. Moreover, the identification of CSC surface markers has been more elusive in
mesenchymal tumors than in tumors originating from other tissue types, in part due to
the lack of agreement on the markers that unequivocally identify mesenchymal progenitor
cells [83], the plausible osteosarcoma cells of origin [84]. Nevertheless, research towards
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specific molecular markers for osteosarcoma CSCs that may be therapeutically targeted is
ongoing and justifies further investigation.

4. Mechanisms of CSC Resistance to Conventional Therapies

Several studies using cancer cell lines and pathological tissue specimens indicate that
a complex network of mechanisms play a determinant role in cancer cell resistance to
chemotherapeutics. The knowledge of the different chemoresistance-related pathways in
osteosarcoma CSCs is then vital for the development of novel molecular targets that may
enhance their chemosensitivity. Some of the mechanisms explored in this review seem
exacerbated in osteosarcoma CSCs, which can undertake a quiescent state and activate
signaling cascades, such as drug efflux transport or aldehyde dehydrogenase activity, and
that may accompany apoptosis evasion, enhanced survival and DNA repair activation.
Moreover, hypoxic and pro-inflammatory microenvironments surrounding CSCs also
constitute facilitators of resistance to conventional therapies that target rapidly proliferating
cells and induce DNA damage (Figure 3).

Int. J. Mol. Sci. 2022, 23, 11416 6 of 29 
 

 

4. Mechanisms of CSC Resistance to Conventional Therapies 
Several studies using cancer cell lines and pathological tissue specimens indicate that 

a complex network of mechanisms play a determinant role in cancer cell resistance to 
chemotherapeutics. The knowledge of the different chemoresistance-related pathways in 
osteosarcoma CSCs is then vital for the development of novel molecular targets that may 
enhance their chemosensitivity. Some of the mechanisms explored in this review seem 
exacerbated in osteosarcoma CSCs, which can undertake a quiescent state and activate 
signaling cascades, such as drug efflux transport or aldehyde dehydrogenase activity, and 
that may accompany apoptosis evasion, enhanced survival and DNA repair activation. 
Moreover, hypoxic and pro-inflammatory microenvironments surrounding CSCs also 
constitute facilitators of resistance to conventional therapies that target rapidly proliferat-
ing cells and induce DNA damage (Figure 3). 

 
Figure 3. Overview of the mechanisms of chemoresistance in osteosarcoma CSCs highlighted in this 
review. Supportive tumor microenvironmental conditions, modulated by hypoxia and inflamma-
tion, cooperate with detoxifying mechanisms, survival pathways activation and altered metabolism 
to induce a quiescent state, allowing DNA repair activation and culminating in evasion from apop-
totic cell death. 

4.1. Chemoresistance Due to Detoxifying Mechanisms—Drug Efflux Transporters and Aldehyde 
Dehydrogenase Activity 
4.1.1. Drug Efflux Transporters 

Cancer cells can become resistant to multiple cytotoxic drugs through increased ef-
flux of the drug from the cell, via the so-called ABC transporters. Overexpression of these 
molecular membrane pumps contributes to multidrug resistance, as they export a wide 
variety of drugs, including doxorubicin, cisplatin and methotrexate, which are clinically 
used in osteosarcoma. Multidrug resistance (MDR) may cause relapses to therapy, which 
together with metastatic dissemination is still a major contributor to death by cancer [85]. 
High expression of ABC transporters has been detected in several CSC types and corre-
lated with resistance to diverse chemotherapeutics [86]. The study of the impact of ABC 

Figure 3. Overview of the mechanisms of chemoresistance in osteosarcoma CSCs highlighted in this
review. Supportive tumor microenvironmental conditions, modulated by hypoxia and inflammation,
cooperate with detoxifying mechanisms, survival pathways activation and altered metabolism to
induce a quiescent state, allowing DNA repair activation and culminating in evasion from apoptotic
cell death.

4.1. Chemoresistance Due to Detoxifying Mechanisms—Drug Efflux Transporters and Aldehyde
Dehydrogenase Activity
4.1.1. Drug Efflux Transporters

Cancer cells can become resistant to multiple cytotoxic drugs through increased
efflux of the drug from the cell, via the so-called ABC transporters. Overexpression of
these molecular membrane pumps contributes to multidrug resistance, as they export
a wide variety of drugs, including doxorubicin, cisplatin and methotrexate, which are
clinically used in osteosarcoma. Multidrug resistance (MDR) may cause relapses to therapy,
which together with metastatic dissemination is still a major contributor to death by
cancer [85]. High expression of ABC transporters has been detected in several CSC types
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and correlated with resistance to diverse chemotherapeutics [86]. The study of the impact
of ABC transporters in bone tumors has regained attention in recent years, since they
are expressed by both normal tumor cells and CSCs, with ABCB1 and ABCG2 being of
special interest. In fact, particularly ABCB1 expression has been positively correlated to
the existence of metachronous lung metastases and a propensity to metastatic formation in
non-responsive patients, as previously reviewed [87].

The expression and function of several ABC transporters seems to be exacerbated
in osteosarcoma CSCs and linked to chemoresistance. ABGC2-high CSCs selected with
3-aminobenzamide had increased drug efflux ability [36]. We showed that the ABC in-
hibitor verapamil enhanced the cellular uptake of doxorubicin by P-glycoprotein- and
BCRP-overexpressing CSCs [40]. This was encompassed by Bak upregulation and Bcl-2
suppression favoring CSC apoptosis [88]. We also found a positive correlation between
ABCG2 expression and a side-population cell subset in nine cell lines [41]. Moreover,
doxorubicin induced ABCG2 and ABCB1 expression paralleled by the activation of pluripo-
tency markers and Wnt/β-catenin in bulk cells [50], while the inhibition of tankyrase with
IWR-1 in CSC-enriched spheres led to downregulation of BCRP and P-glycoprotein, accom-
panied by a sensitization to doxorubicin-induced apoptosis [89]. Other studies showed
that cisplatin-resistant CD133+ MG-63 cells express high levels of P-glycoprotein [90], and
the same was observed in doxorubicin-resistant U2OS and MG-63 spheres [91]. Moreover,
elevated ABCG1 and P-glycoprotein expression was found in doxorubicin-selected CSCs
and in progeny derived from a single HOS cell, mediating resistance to doxorubicin and
other drugs [92]. In 3D cultures of ABCB1-high/ABCA1-low chemo-immune-resistant cells,
expression of the doxorubicin effluxer ABCB1 was upregulated by the Ras/ERK1/2/HIF-
1α signaling axis, which suggests the existence of pathway crosstalk to reinforce an already
chemoresistant phenotype in osteosarcoma cells [93]. ABCG2 transcriptional activity was
also suppressed by the transcriptional regulator SMAR1, which increased the ABCG2
deacetylation level via HDAC2 and also decreased the ALDH activity [94]. miRNA-221
also seems to increase P-glycoprotein expression via the Stat3 pathway and promoting
doxorubicin-resistance [95].

The modulation of ABC transporters activity to circumvent chemoresistance in os-
teosarcoma has been difficult to translate into successful clinical achievements, with contro-
versial data being reported regarding ABCs as prognostic factors or significantly related
to outcomes, as reviewed before [96]. However, considering that the first-line chemother-
apeutics that are still indispensably used in osteosarcoma (doxorubicin and cisplatin)
are substrates of several drug efflux pumps, revisiting their role as major contributors
to MDR [97], exploring their pharmacogenetic and pharmacogenomic association with
osteosarcoma survival and response to therapy [98] and admitting that ABCs may also
be detrimental to osteosarcoma CSC survival, may altogether refine and renovate their
clinical applications.

4.1.2. Aldehyde Dehydrogenase Activity

A plethora of studies have investigated the role of ALDH expression and activity
in diverse tumor types and revealed that expression of ALDHs is involved in disease
progression and metastatic dissemination [99], including osteosarcoma. ALDHs are ac-
tively involved in the chemoresistance of CSCs and their expression generally correlates
with a poor prognosis [100]. ALDH enzymes mediate the conversion of xenobiotic and
intracellular aldehydes, such as drugs, ethanol and vitamins, into their less harmful cor-
responding carboxylic acids, thereby acting as important mediators of defense against
cytotoxic compounds that can induce DNA damage, inactivation of enzymes and even cell
death. ALDHs are responsible for the metabolic regulation of retinoic acid and ROS, and
this seems to underlie the functional roles of ALDHs in CSCs [101].

ALDH1 activity may be modulated by DKK-1, a Wnt antagonist, and ALDH1 can
be involved in osteosarcoma cancer cell survival and resistance to chemotherapy. In this
study, transcriptional activation of ALDH1 was dependent on the activation of the non-
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canonical Jun-mediated Wnt pathway, suggesting that signaling pathways other than
those controlling self-renewal (e.g., Wnt/β-catenin signaling) can also participate in the
modulation of ALDH activity [49]. Another study associated the resistance of Saos-2
and U2OS osteosarcoma cells to doxorubicin with activation of ALDH1/CD133-positive
cells. This resistance phenotype was inhibited by forced expression of miR-143, which
suggests that it may play a role in tumor suppression in osteosarcoma by counteracting
stemness properties such as ALDH expression [61]. Retinal treatment preferentially affected
ALDH-high cells by decreasing their proliferation, invasion capacity, and resistance to
oxidative stress. These effects were more pronounced in highly metastatic osteosarcoma
cells, accompanied by altered expression of metastasis-related genes and downregulation
of Notch signaling markers [51].

Our previous experimental studies indicate that established osteosarcoma cell lines
possess an Aldefluor-positive cell fraction that are SOX2-positive but KLF4-negative, and
further enriched in CSCs isolated from spherical colonies [41]. Exposure of therapy-naïve
cell lines to conventional drugs increased ALDH signaling as assessed by Aldefluor activ-
ity and ALDH1A1, ALDH2 and ALDH7A1 mRNA expression [50], while Wnt/β-catenin
inhibition with the tankyrase inhibitor IWR-1 diminished the percentage of ALDH-positive
cells and the previously mentioned ALDH isozymes [89]. Other authors have shown that
miR-26a is downregulated in ALDH-positive ZOS and 143B cells, while its overexpression
reduced ALDH activity via inhibition of another stem cell pathway, Jagged1/Notch [102].

Activity of ALDH can be inhibited with the FDA-approved drug disulfiram, which was
used by the Weiss group to show its inhibitory effects in pulmonary metastasis formation
in an immunocompetent Balb/c orthotopic mouse model, a result that was statistically
equivalent to doxorubicin treatment [103]. This offers an alternative treatment route for
osteosarcoma, in line with recent attempts of drug repurposing strategies based on gene
expression signatures [104] and other in vitro modeling [105]. This was endeavored also
for other drugs and tumor types [106], including the specific targeting of CSCs [107], and
substantiates the possibility to refine the doses for the state-of-the-art approved drugs for
osteosarcoma while decreasing their side-effects.

More recently, an elegant study using patient-derived xenograft models demonstrated
that ALDH1-high xenografts with enhanced metastatic potential in vivo were sensitive
to the β-catenin/transducin β-like protein 1 inhibitor tegavivint [52]. Moreover, it has
been shown that ALDH activity was increased by the lncRNA THOR through enhanced
SOX9 expression [108]. ALDH-positive cells were also sensitive to the apoptotic effects
induced by the cell death ligand TRAIL and by leptomycin B [109]. Other studies also
suggest that microRNAs may negatively regulate the expression of ALDH family members,
such as miR-487b-3p and ALDH1A3, in vitro and in clinical samples [110], and miR-761
and ALDH1B1, in vitro and in vivo [111], which altogether substantiates the complex
participation of ALDHs in the phenotypic behavior of osteosarcoma cells.

4.2. Chemoresistance Due to Enhanced Activity of ERK and AKT Survival-Related
Signaling Pathways

The EGFR-Ras-Raf-MEK-ERK signaling network and the PI3K/PTEN/AKT signaling
pathway controls cell growth and regulates cell survival, cell differentiation and apoptosis,
thus being considered important targets for cancer therapy. Deregulation and oncogenic
activation of these survival-related pathways is thus of utmost importance for CSCs and has
been linked to stem cell features in other tumors [112]. Therefore, it is not surprising that
the ERK and AKT pathways are upregulated in osteosarcoma and involved in tumorigenic
features such as apoptosis resistance, in vivo tumorigenicity and EMT [113,114]. Some
previous studies also pinpoint these two pathways as therapeutic targets [115,116]. Molec-
ularly, the ERK pathway also seems to be involved in EMT and metastasis formation [117]
and activated by the downregulation of p16 protein [118].

Several recent studies linked the activation of ERK and AKT pathways to stemness
features in osteosarcoma. It is noteworthy that activation and modulation of these survival-
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related pathways strongly correlates with pluripotency-related transcriptional activity,
depending also on the signaling cascades involved in cellular self-renewal, such as Wnt and
Hedgehog, and correlates of EMT; they are also regulated by diverse types of microRNAs.

ERK is involved in the regulation of the Warburg effect via the physiological pathway
regulator SLIT2/ROBO1 axis [119] and in cell proliferation and migration induced by the
Wnt ligand WNT5A [120] and through Notch-induced ERK phosphorylation [121]. Other
reports indicate that EMT in osteosarcoma is also regulated by ERK signaling [117,122]. ERK
signaling also seems to participate in the acquisition of stemness features in osteosarcoma
(expression of CD24, CD90, CD133, Nanog, SOX2, Oct4) mediated by miR-155; moreover,
ERK inhibition with U0126 repressed expression of those markers [123]. Recently, Shimizu
et al. reported that MEK inhibition with trametinib inhibited the cell cycle and induced
apoptosis in non-adherent-growing U2OS cells. Moreover, trametinib decreased the size of
primary tumors and circulating tumor cells in an in vivo mouse model [124].

The oncogenic long-non-coding MALAT1 was shown to activate the PI3K/Akt path-
way via sponging miR-129-5p and promoted metastasis formation [125]. Activity of this
pathway was also inhibited by the natural compound glaucocalyxin A, through the re-
duction in GLI1 activation and induction of apoptosis [126]. In the MNNG/HOS cell line,
inhibition of the osteoblast regulator P2X7 hampered PI3K/Akt/GSK3β/β-catenin signal-
ing and thereby inhibited stemness features and cell migration [127]. Moreover, PI3K/AKT
also seems to be regulated by the lncRNA RNA FER1L4, via promoting apoptosis and
suppressing EMT [128,129]. Recently, also TGF-β knockdown was associated to PI3K/Akt
downregulation, suppressing viability and aggressiveness in osteosarcoma CSCs [130,131].

4.3. Chemoresistance Due to Altered Metabolism

Metabolic alterations occurring in cancer cells have been ascribed as an important
hallmark of cancer [132]. In fact, despite that the specific characterization of metabolomics
in CSCs has been scarce compared to regular cancer cells, diverse studies suggest that
CSCs preferentially use glycolysis and have a declined oxidative phosphorylation activity.
However, the location in which CSCs reside at the tumors (e.g., in normoxic vs. hypoxic
regions) seems to be detrimental to the type of energy source that CSCs allocate to sustain
their proliferative capacity and survival skills [133], which clearly suggests their intrinsic
reprogramming capacity to adapt their bioenergetics response depending on the tumor
microenvironment. Some studies specifically focused on the metabolic features of osteosar-
coma CSCs are summarized below. For instance, Mizushima et al. suggest that indeed
osteosarcoma CSCs follow the trend to be more aerobic glycolytic than to use oxidative
phosphorylation, partly dependent on the antigen LIN28 [134].

Different types of mass spectrometry-based techniques have been used to explore
the nature of osteosarcoma CSC metabolism. Zhong and colleagues used an ultra-high-
performance liquid chromatography coupled with tandem Q-Exactive Orbitrap mass
spectrometer to characterize the HOS-CSC isolated with the sphere-forming assay [135].
They found a significant upregulation of the metabolomics of several amino acids (ala-
nine, aspartate, glutamate, arginine, proline, glutathione, cysteine and methionine) and
a declined mitochondrial function and TCA cycle. Other authors used untargeted liquid
chromatography with tandem mass spectrometry (LC–MS/MS) analysis to explore the
metabolomics features of the osteosarcoma 143B and MG-63 spheres’ response to MTX [45].
They found that CSCs had alterations in the metabolomics of amino acid, fatty acid, energy
and nucleic acid after treatment with MTX and emphasized the utility of mass spectrometry
techniques to study the metabolomics features of CSCs. However, these authors did not
specifically analyze whether the modulation of those metabolites upon MTX treatment had
a pro- or anti-survival advantage to CSCs in that context.

3AB-OS-MG-63 has been used as an in vitro model to study osteosarcoma CSC
metabolism. Palorini et al. analyzed the metabolic features of the 3AB-OS-selected CSCs
and their parental MG-63 cells and extensively characterized the bioenergetics of CSCs.
Compared to parental cells, it was demonstrated that 3AB-OS-CSC depend more on gly-
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colytic metabolism, proliferate less when cultured in glucose-starvation conditions and
have increased expression of lactate dehydrogenase A (LDHA). Moreover, their reduced
mitochondrial respiration and fragmented mitochondria led the authors to suggest that
CSCs possess metabolic similarities to normal stem cells [136]. Subsequent studies using
this cell model substantiated the assumption that 3AB-OS-CSC rely more on glycolysis
and MG-63 cells rely on glutamine oxidation. Moreover, cisplatin treatment in glutamine-
depleted MG-63 resulted in additive inhibitory effects on cell survival, while promoting a
pro-survival S-phase arrest in glucose-starved 3AB-OS-CSC. Of special note is the fact that
when exposed to cisplatin in glucose-deprived conditions, CSCs switched their metabolic
status, reprogramming to be more oxidative than glycolytic and to increase their mitochon-
drial functions [137]. These results demonstrate the plasticity of metabolic networks in
CSCs and that contribute to circumvent cisplatin cytotoxicity.

Osteosarcoma, as a relatively undifferentiated bone sarcoma, retains some mesenchy-
mal features, such as the capacity to respond to adipogenic stimuli. In this context, some
authors explored the fatty acid metabolism of osteosarcoma CSCs using the anti-diabetic
thiazolidinedione. This PPARγ agonist induced growth arrest and adipogenic differen-
tiation in Sox2-high CSCs, via a mechanism involving cytoplasmic sequestration of the
transcription factors SOX2 and YAP [138]. Other authors showed that the inhibition of
TNIK (an essential factor for the transactivation of Wnt signal target genes) with NCB-0846
decreased the expression of stem cell genes (SOX2, NANOG, OCT4, MYC) and ALDH
activity and also favored lipid biosynthesis, driving osteosarcoma cells’ differentiation into
adipocyte-like cells, via induction of PPARγ [139]. These studies unveil the potential to
modulate adipogenesis in osteosarcoma cells in order to affect their cell fate determination
and promote their vulnerability to previously unexpected drugs that may be repurposed
and used as new treatment strategies.

Accumulating evidence suggests that the anti-diabetic drug metformin may be specifi-
cally used to target osteosarcoma CSCs and to modulate their metabolic profile. Shang et al.
found that metformin inhibited glucose uptake, lactate production and ATP production in
HOS CSCs. Resistance of those cells to cisplatin was correlated to overexpression of the
pyruvate kinase isoenzyme M2, with its downregulation reversing cisplatin resistance po-
tentiated by metformin treatment [140]. Our own previous studies showed that metformin
has deleterious effects in MNNG-HOS CSCs, potentiating low-dose DOX-induced cytotoxi-
city. Moreover, metformin induced mitochondrial stress by activating the energetic sensor
AMPK and increasing [18F]-FDG uptake and lactate production in parental cells but not in
quiescent CSCs [141]. Interestingly, Zhao et al. also observed activation of AMPK, which
led to the reversal of the mTOR pathway and triggered autophagy. Metformin induced
apoptosis in osteosarcoma CSCs through the collapse of the mitochondrial transmembrane
potential, decreased ATP synthesis and increased ROS production [142]. Altogether, these
studies suggest that osteosarcoma CSCs rely also on mitochondrial respiration for energy
production and, when exposed to metformin, are captured in an energetic crisis. These
metabolic alterations disturbed the homeostasis of stemness and pluripotency in the os-
teosarcoma CSCs both in vitro and in vivo, and corroborate an important role for metabolic
modulators to chemosensitize this resistant cell subset within the tumors. Actually, more
recently, a pre-clinical test using canine osteosarcoma CSCs also showed the capacity of
metformin to inhibit mitochondrial function, by decreasing oxygen consumption and ATP
production, while sensitizing canine CSCs to irradiation therapy [143]. Further studies are
required for a better elucidation of the therapeutic potential of metabolic modulators and
the mechanisms involved in the interference with stemness features leading to sensitivity
to drugs in osteosarcoma CSCs.

4.4. Chemoresistance Due to Cell Cycle Arrest and Cellular Quiescence

Dormancy or quiescence in tumors may be derived from a defective angiogenic pro-
cess, in which the expansion of tumor mass is limited due to the inability of recruitment of
new and functional blood vessels, generating tumor masses poorly vascularized. This pro-
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cess associates with cell cycle arrest in which the blockade of tumor mass expansion results
from the quiescent state of tumor cells. Microenvironmental stimuli or intracellular hits
leading to increased cell proliferation may result in escape from dormancy and expansion
of the tumor mass, leading to the emergence of clinically relevant disease [144]. Quiescence
is molecularly regulated by cell cycle-related signaling [145], and by the tumor suppressors
p53 and RB proteins, whose genetic alterations are detrimental in osteosarcomagenesis.

Quiescence is also a common characteristic of drug-resistant cells and has been linked
with stem cell traits, since, like normal stem cells, CSCs are quiescent, slow-cycling cells and
therefore circumvent the effects of high levels of intracellular reactive ROS, which accounts
for their self-renewal capacity and drug resistance [146]. When entering a quiescent, cell
cycle-arrested state, CSCs allocate themselves a period of time that may be used to activate
and implement one or more of the survival signaling pathways mentioned in this review.

Quiescent cell populations found in osteosarcoma are dependent on angiogenic
switches. Almog et al. identified a set of dormancy-associated microRNAs that regu-
lated the phenotypic switch of dormant to fast-proliferating cells, specially miR-190 and
miR-580. Moreover, a KHOS-24OS-based mouse model with angiogenic cells overexpress-
ing miR190 remained quiescent during at least 120 days [147]. IGF2 or insulin exposure
created an autophagic state of cellular dormancy in highly tumorigenic osteosarcoma cells
cultured under serum-free conditions, which then conferred resistance to doxorubicin,
cisplatin and methotrexate [148].

We observed that osteosarcoma CSC-enriched spheres were in a slow-proliferative
state, being Ki-67-negative [41], along with a low uptake of the glucose analogue [18F]-
FDG and accumulation of cells in the G0/G1 phase [40]. Avril et al. also identified
OCT4/SOX2/NANOG-positive MNNG-HOS 3D spheres, which were arrested in the
G0/G1 phase. Interestingly, the non-diving state of the spheres was not changed by
MSC-conditioned media [149]. MiR-329 induced G0/G1 cell cycle arrest and inhibited
cell proliferation and tumorigenicity in vivo, effects that seem to be mediated by the DNA
repair protein Rad10 [150]. Other authors identified miR-34a, miR-93 and miR-200c as regu-
lators of osteosarcoma dormancy, which could be delivered to fast proliferating Saos-2 and
MG-63 cells with the nanocarrier dPG-NH2 to reduce their aggressiveness and migration
abilities [151].

More recently, quantitative imaging techniques, such as holographic imaging cytome-
try, time-lapse microscopy and a contrast-based segmentation algorithm, were fine-tuned
and used to monitor the transitions between angiogenic/non-angiogenic tumor states [152]
and between diving/non-dividing cells, showing that non-dividing MG-63 cells did not
constitute the CSC pool [153]. These techniques allow the observation of key cellular mor-
phological behaviors that cancer cells reshuffle during their dormant and metastatic states,
namely, altered cell motility speeds and cell cycle lengths, demonstrating that quiescent
cells do not mandatorily represent stem cell subsets.

4.5. Chemoresistance Due to Enhanced DNA Repair

DNA-damaging agents, such as most conventional chemotherapeutics used in os-
teosarcoma treatment, elicit diverse types of lesions in the DNA molecules (e.g., single-
and double-strand breaks). Cancer cells recognize those lesions and bypass the cytotoxic
stress induced by anticancer agents, by activating various DNA repair pathways, such
as nucleotide excision repair, base excision repair, homologous recombination repair and
non-homologous end joining [154]. Several studies unraveled the molecular basis of these
DNA repair pathways and provided a rationale for the development of DNA repair in-
hibitors, which have been demonstrating therapeutic benefits and synergizing with those
DNA-damaging drugs [155,156]. The PARP inhibitor olaparib, for treating BRCA1 or
BRCA2 mutated tumors, represents the first drug based on this principle [157]. Some
studies suggest that a prompt activation of DNA damage response and enhanced DNA
repair capacity are key contributors to CSCs’ increased resistance to therapy, due to their
extraordinary ability to repair the genetic code compared with their offspring [158].
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In osteosarcoma, suppression of Rad51, the key protein of DNA homologous recom-
bination repair, correlated with cell cycle arrest and limited in vivo tumor growth, while
also sensitizing osteosarcoma HOS cells to ionizing radiation and chemotherapy [159]. The
nucleotide excision repair variants XPD rs13181 and rs1799793 are also related to higher
event-free survival in osteosarcoma patients receiving neoadjuvant chemotherapy, and
their expression provided a therapeutic advantage from cisplatin chemotherapy, probably
by reducing DNA repair activity [160]. Other studies suggest that homologous recombi-
nation deficiency associates with MG-63 and ZK-58 cells sensitivity to the PARP inhibitor
talazoparib alone or in combination with chemotherapeutics [161].

More recently, expression of the DNA damage repair inducer SIRT6 was associated
with shorter overall survival in patients who received adjuvant chemotherapy. In vitro,
SIRT6 overexpression contributed to doxorubicin resistance, but was blocked by the PARP
inhibitor olaparib [162]. TH1579, an inhibitor of the MTH1 enzyme, which prevents the
integration of oxidized nucleotides into DNA, decreased viability, cell cycle progression
and induced apoptosis in osteosarcoma cells in vitro and in vivo [163]. Resistance to
cisplatin was counteracted by downregulation of the DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) in PI3K/Akt/CD133+ cells, via a reduction in MARK2 [164],
and also in combination with the checkpoint kinase 1 inhibitor AZD7762 [165] and the
nucleotide excision repair pathway inhibitors NSC130813 and triptolide [166]. The role of
small nucleolar RNAs has gained attention in recent years. Some of these RNAs (SNORD3A,
SNORA13 and SNORA28) induce resistance to doxorubicin by modulating the expression
of genes involved in DNA-damage sensing (GADD45A) and DNA repair (MYC) [167].
Other reports suggest that SNORA7A, modulated by the lncRNA H19, is oncogenic in
osteosarcoma and correlates with poor patient survival [168].

Despite more studies being required to provide a more convincing understand-
ing of the DNA repair pathways in osteosarcoma, promising pre-clinical results testing
chemotherapy-potentiating DNA repair inhibitors in osteosarcoma and other tumors seems
to hold potential for targeting both CSCs and their offspring. Moreover, considering that
the DNA-damaging drugs doxorubicin and cisplatin are the most effective elected therapy
for osteosarcoma [169], understanding their pharmacogenetic mechanisms may help to
counteract their associated secondary side-effects and hold potential to development more
tailored combinatorial therapies.

4.6. Enhanced Anti-Apoptotic Mechanisms

Programmed cell death or apoptosis occurs in diverse cellular phases, such as normal
development, organogenesis, ageing or inflammatory response, and serves as a natural
barrier to cancer. Apoptotic mechanisms involve a complex signaling cascade and are com-
posed of both upstream regulators and downstream effector components [170]. Currently,
two distinct, although tightly interconnected, signaling pathways control apoptotic cell
death. In the intrinsic or mitochondrial pathway, the counterbalance between anti- (e.g.,
Bcl-2, Bcl-xL, Mcl-1) and pro-apoptotic (e.g., Bax, Bak) proteins of the Bcl-2 family deter-
mines the trigger to mitochondrial apoptosis [171,172]. Another distinct way of controlling
apoptosis occurs due to the activation of cell-surface death receptors (e.g., DR3, DR5,
TRAIL, TNF receptors), which are responsive to a diversity of death ligands (e.g., TRAIL,
TNF, FAS) expressed by immunocompetent cells [172,173]. In case that the net chief signal
is pro-apoptotic, the apoptotic program then culminates in the activation of normally latent
proteases (effector caspases-3, -6 and -7), which will be responsible for the execution phase
of apoptosis, in which the cell is progressively disassembled and its contents, so-called
apoptotic bodies, engulfed by neighboring and phagocytic cells [174,175].

Osteosarcoma cells are no exception in what concerns evasion from apoptosis. Ex-
pression of key anti-apoptotic proteins, such as Bcl-2 [176], Bcl-xL [177] and survivin [178],
was detected in cell lines and patient samples and correlated with enhanced cell survival
and proliferation in vitro and also associated with poor prognosis and metastatic dissemi-
nation [179]. Conversely, activation of pro-apoptotic proteins, even if mediated by other
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survival-related molecules [180,181], promotes apoptosis in osteosarcoma cells. In fact, a
plethora of studies reporting effects on proteins of the apoptotic signaling cascades is de-
rived from the genetic or pharmacological modulation of several other signaling pathways,
including self-renewal-related pathways. Nevertheless, experimental data suggest that
direct inhibition of anti-apoptotic proteins may help to combat resistance to chemotherapy.

Despite that most chemotherapeutic drugs exert their biological effects through induc-
tion of apoptotic cell death, evasion from apoptosis seems exacerbated in CSCs [182,183]. In
this regard, attempts have been made to inhibit the relevant anti-apoptotic proteins, namely,
Bcl-2, Bcl-xL and Bcl-W, using the BH-3 mimetic ABT-737 [184–186]. These preliminary
data provide a rationale for a wider exploratory use of inhibitors of anti-apoptotic proteins
to target chemoresistance of tumor cells in osteosarcoma, as earlier suggested [187–189], as
well as CSCs as previously endeavored in other tumor types [184–186,190].

4.7. Chemoresistance Conveyed by the Tumor Microenvironment—Hypoxia and Inflammation

The tumor microenvironment surrounding CSCs is detrimental for the preserva-
tion of their stemness state in the niche. For example, it has been shown that tumor-
associated MSCs release extracellular vesicles containing pro-proliferative, anti-apoptotic
and metastatic supportive molecules involving microRNAs and growth factors [191]. MSCs
also revealed tropism towards osteosarcoma cells, favoring their aggressiveness, through
the expression of chemotactic factors, such as MCP-1, GRO-α and TGF-β1, and transdif-
ferentiation to cancer-associated fibroblasts (CAFs), which further increased the cytokine
levels in the tumor microenvironment and promoted transendothelial cell migration [192].
Conversely, osteosarcoma cells themselves are also capable of inducing MSC differentiation
into CAFs through Notch/Akt signaling [193]. Endothelial cells secreting exosomes are
also promoters of osteosarcoma stemness through Notch signaling [194].

4.7.1. Hypoxia

Poorly organized networks of vascularization among solid tumors may determine
the existence of hypoxic zones. The low oxygen tension present in these areas, despite
generating toxic ROS, provides selective pressure for tumor growth and survival advantage
for aggressive cells [195]. The central mediator of hypoxia, HIF-1, activates the transcription
of genes involved in key aspects of cancer biology, representing an important therapeutic
target. Moreover, hypoxia is considered an independent prognostic indicator of poor
outcome and risk for metastasis development in osteosarcoma [196,197].

Expression of key hypoxia-related markers has been observed in osteosarcoma and was
related to drug resistance [198], down-regulation of Wnt/β-catenin [199] and maintenance
of the CSC phenotype in three-dimensional conditions [200]. Osteosarcoma as a solid tumor
is highly susceptible to hypoxia activated pro-drugs such as TH-302, which has been shown
to cooperate with doxorubicin against osteosarcoma-induced bone destruction and limiting
the formation of pulmonary metastases [201]. The leading role of hypoxia in metastatic
osteosarcoma dissemination seems to be mediated by the HIF-1α-CXCR4 pathway axis,
which plays a crucial role during osteosarcoma cell migration [202,203]. Overexpression of
the long non-coding RNA (lncRNA) HIF-2α-promoter upstream transcript (HIF2PUT) has
gained attention as a regulatory marker of hypoxia in osteosarcoma. HIF2PUT inhibited
in vitro osteosarcoma CSC proliferation and migration, the sphere-forming ability of MG-63
cells and decreased the CD133-positive cells [62], while others observed that HIF2PUT
overexpression inhibited CSC migration and invasion through HIF2α downregulation [204].
Moreover, its expression levels were positively correlated with HIF-2α expression levels in
primary tumor samples, predicting poor prognosis [205].

More recently, it was demonstrated that microvesicles derived from MSCs contributed
to U2OS proliferation and migration under hypoxic conditions, which was associated with
AKT and HIF-1α expression [206]. Hypoxia was suggested to induce dedifferentiation of
MNNG/HOS cells, expression of Oct-4, Nanog and CD133, accelerated sphere formation
and tumorigenesis in vivo—effects that were counterbalanced by the mTOR inhibitor
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rapamycin, which also suppressed HIF-1α expression [207]. Further studies are required
concerning the role of hypoxia and oxidative stress in osteosarcoma CSCs’ biological
features, in particular those studies involving adequate in vivo models that may uncover
unanticipated markers of therapeutic resistance, such as HIF-2α previously reported in a
humanized orthotopic model [208].

4.7.2. Inflammatory Networks

Multiple studies have indicated that MSCs produce soluble factors closely involved in
cell proliferation. Consequently, these factors exert a proliferative and pro-inflammatory ef-
fect on cancer cells [209,210]. MSCs can also contribute to tumor progression by cooperating
with the tumor cells to develop a suitable microenvironment [211].

Further, the MSCs can also transdifferentiate into CAFs that are considered essential
stromal cells and crucial regulators for this favorable microenvironment creation and tumor
progression [193,212]. By themselves, stromal cells are not malignant and maintain the
tissue structure and function. However, when these cells acquire an active phenotype,
they sustain cancer cell growth and tumor progression [213]. CAFs have a significant role
in stimulating angiogenesis, cell proliferation, invasion and motility by releasing growth
factors and cytokines, deregulating Notch and p53 signaling pathways, and producing
matrix metalloproteinases [214]. Both MSCs and CAFs secrete several soluble factors,
extracellular vesicles, chemokines and cytokines that stimulate tumor sustenance, growth
and angiogenesis in osteosarcoma [215]. Within these factors, IL-6 plays a leading role in
the inflammatory profile of this microenvironment.

Indeed, IL-6 is increasingly recognized as the soluble mediator linking chronic in-
flammation to cancer development, and its protein and mRNA are often overexpressed
in serum and tumor samples from breast, bone, liver and colon cancers, both in humans
and mice [216–219]. This cytokine secretion is also augmented by an increase in NF-kB
expression and is described to have a paracrine effect on osteosarcoma cells via activation
of the STAT3 pathway, which is a well-known activator of cells’ proliferation, enhancing
tumor aggressiveness [215,220]. IL-6 is also described as responsible for the increased
chemoresistance of human osteosarcoma cells [221] and exacerbates the invasive capacity
of cells contributing to tumor development when secreted by CAFs. Furthermore, Cortini
et al. found that IL-6 is responsible for CSC sphere growth, suggesting that it could be
involved in the maintenance of the CSC population extremely involved in osteosarcoma
relapse [215].

Other inflammatory mediators, such as TNF-α, IL-8, COX-2, are also encoded by NF-
kB. In particular, when interacting with its receptors (TNFR1 and TNFR2), TNF-α induces
cell survival and proliferation, an inflammatory response and an anti-apoptotic signal by
NF-kB activation [214]. TNF-α is also an essential regulator of cancer-related inflamma-
tion by modulation of T cells, B cells and tumor-associated macrophages (TAMs) [222].
Specifically, several studies have reported TAMs as important immune cells implicated in
various tumor-promoting tasks, including pro-inflammatory signaling, enhancement of
angiogenesis, invasion, metastasis and therapy resistance [223,224]. Notably, the crosstalk
between CAFs and T cells is reciprocal. Barnas et al. have described that activated T cells
secrete factors that enhance the production of IL-6 by lung CAFs. Then, these activated
fibroblasts induced the expression of IFN-γ and IL-17, both of which are known to impact
the progression as well as the inhibition of tumor growth and metastasis [225].

TGF-β1 has also emerged as one of the most relevant cytokines secreted by osteosar-
coma cells and a key player in self-renewal and maintenance of stemness features. It
is described that the tumor maintains the stemness of MSC through the TGF/Smad3
pathway and that osteosarcoma cells, via TGF-β1 secretion, enhance the production of
pro-tumorigenic cytokines, such as IL-6, in the nearby stroma [226]. Additionally, TGF-β
was shown to increase ROS’ production in CAFs by the impairment of the respiratory
transport chain, specifically acting on Complex IV via GS3K action. Furthermore, the Smad



Int. J. Mol. Sci. 2022, 23, 11416 15 of 28

signaling contributes to maintaining ROS accumulation contributing to the inflammatory
networks that sustain tumor progression [227].

Besides the normal functions of fibroblasts in matrix remodeling and secretion of
ECM components, accumulating evidence identify CAFs as modulators of a tumor’s
immune milieu. These activated fibroblasts operate towards a pro-inflammatory and
immunosuppressive microenvironment because of reciprocal interactions between immune
cells and CAFs mediated by the CAFs’ secretome. Despite many studies, the plasticity of
CAFs and their contribution to chemoresistance and stemness features within tumors are
still poorly understood. However, numerous lines of evidence imply CAFs as potential
targets to new therapeutic approaches to inhibit tumor progression and therefore also
warrant further investigation for osteosarcoma-directed targeting.

5. Immunotherapy in Osteosarcoma

Immunotherapy has been described as a promising strategy for advanced cancer
treatment [228]. New therapies involving the application of tumor vaccines, immune
modulators, genetically modified T cells, cytokines, immune checkpoint inhibitors or
combination therapy can be used to decrease treatment side reactions, increase therapeutic
effects and improve the quality of life of cancer patients [229,230].

Recently, multiple clinical trials have been conducted in various tumors to test the effi-
cacy of immunomodulators, and several preclinical studies have also supported the appli-
cation of immunotherapy in osteosarcoma, as previously reviewed [231]. Osteosarcoma is
characterized by poor immune responses, which include low densities of tumor-infiltrating
lymphocytes and increased anti-inflammatory responses within the tumor, leading to drug
resistance and diminished overall patient survival [232]. Monoclonal antibodies, such
as anti-cytotoxic T lymphocyte antigen-4 (CTLA-4), B7-H3, programmed cell receptor-1
(PD-1), and its ligand (PD-L1), have been developed to target immune checkpoints and
have garnered widespread attention due to their excellent therapeutic effects on malignant
tumors. However, most checkpoint inhibitors are less effective in treating solid tumors,
including osteosarcoma [230,233]. PDL-1 and PD-1 expression have been considered po-
tentially useful biomarkers for further studies [234]. However, anti-PD-1 antibodies, such
as pembrolizumab, nivolumab and atezolizumab, showed limited therapeutic efficacy in
osteosarcoma patients [234–237]. Lussier et al. revealed that T cells that infiltrated the
osteosarcoma microenvironment could downregulate additional inhibitory receptors such
as CTLA-4, which conspired to hinder tumor immunity [238]. They combined CTLA-4
with a PD-1 antibody in a K7M2 murine model of metastatic osteosarcoma, and the tumor
progression was under control. Additionally, Helm et al. found that osteosarcoma mouse
models treated with a combination of CTLA-4 and PD-1 immune checkpoint inhibitors
showed a rise in CD8+ T cells, increasing the cytotoxicity in the tumor microenvironment
and contributing to a better prognosis [239].

Recent research using chimeric antigen receptor (CAR) T cells has provided promising
outcomes [240,241]. Their target is the immune checkpoint molecule B7-H3 (CD276), a
tumor antigen that is significantly upregulated in osteosarcoma [242]. This molecule is
described to play a crucial role in T cell function inhibition [243]. Despite the advantages
of CAR T cell therapy and its increasing usage in clinical practice in lymphomas and
acute lymphocytic leukemia [244], its applicability in solid tumors presents multiple chal-
lenges [245]. In terms of production, the viral transduction variation efficiency, as well
as the high cost and time-consuming nature of the T cell-manufacturing procedure, is a
problem. Moreover, another factor in the failure to combat solid tumors with CAR T cells is
the restricted infiltration and poor persistence caused by a stiff osteoid bone tumor matrix
and immunosuppressive components in the tumor microenvironment [231,246].
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Increasing evidence suggests that CSCs play a critical role in innate and adaptive
immunity, influencing the effectiveness of immunotherapy. The activation of stemness
programs appears to limit antitumor immune responses by decreasing T cell infiltration and
increasing the expression of immunosuppressive checkpoints, resulting in immunologically
cold microenvironments [247,248]. Widespread negative associations between stemness
and anticancer immunity have been described for most cancers, suggesting that targeting
the stemness phenotype may render tumors more responsive to immune control [247,249].
Rainusso et al. identified a mechanism by which targeting HER2 with genetically modi-
fied T cells could eliminate osteosarcoma CSCs [250]. More recently, Shao et al. showed
evidence that all-trans retinoic acid could indirectly limit CSC occurrence in osteosarcoma
by the inhibition of the M2-like macrophages that activated the CSC phenotype [251]. Cur-
cumol seems to inhibit the polarization of M2-like macrophages synergizing with cisplatin
and reversing the drug-induced expression of ABCB1, ABCC1 and ABCG2 [252]. Guo
et al. also demonstrated that a low CSCs score is correlated with increased immunocyte
infiltration [249]. Overall, the tumor microenvironment is a problem in modern cancer
research, which has a decisive function in the occurrence and progression of tumors. Its
complete characterization, including extensive knowledge of the immune microenviron-
ment, is crucial for immunotherapy implementation. which can contribute to patients who
are refractory to therapy or who have relapsed, improving their prognosis.

6. Conclusions

The mechanisms of resistance explored in this revision confer resistance to doxoru-
bicin, cisplatin and methotrexate, which are the main therapies used in osteosarcoma
treatment. As mentioned before, this classic drug regimen still cannot be excluded from the
main frontline treatments, since basically all the efforts made towards the discovery and
development of alternative therapies have up to date failed in clinical trials. Moreover, as
Harris and Hawkins have recently reviewed in IJMS, a number of drugs tested in diverse
clinical trial phases have failed to significantly prolong the event-free survival or overall
survival rates of poor responders to pre-operative chemotherapy or metastasis-presenting
osteosarcoma patients (e.g., pirarubicin, pemetrexed, carboplatin, ifosfamide, etoposide,
topotecan, thiotpeta, gemcitabine, L-alanosine, zoledronic acid, and several drugs targeting
tyrosine kinases, among others) [253]. Nevertheless, a number of alternative drugs have
been tested in osteosarcoma to target the resistance signaling pathways herein mentioned,
as depicted in Figure 4, among many others. Fortunately, the rapid advances in the biologi-
cal understanding of osteosarcoma, based on increasingly more robust pre-clinical models
and access to rapid clinical testing, will certainly ameliorate the long-awaited outcomes of
osteosarcoma patients.

The signaling pathways herein revisited clearly display inter-crosstalk and also mod-
ulate the activity and expression of other pathways involved in pluripotency and cell
self-renewal. A precise detail of these latter pathways are a subject of discussion in another
review in progress, but it is worth mentioning the relevance of Sox2, Nanog, Wnt, Notch
and Stat3, along with diverse types of microRNAs. In general, the crosstalk with the
pathways is harmonized to promote CSCs’ survival and aggressiveness, reinforcing their
potential contribution to osteosarcoma resistance to chemotherapy and warranting further
pre-clinical investigations focused on these special cell subsets.
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