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Abstract: Forkhead box O transcription factors (FoxOs) play an important role in maintaining normal
cell physiology by regulating survival, apoptosis, autophagy, oxidative stress, the development and
maturation of T and B lymphocytes, and the secretion of inflammatory cytokines. Cell types whose
functions are regulated by FoxOs include keratinocytes, mucosal dermis, neutrophils, macrophages,
dendritic cells, tumor-infiltrating activated regulatory T (Tregs) cells, B cells, and natural killer (NK)
cells. FoxOs plays a crucial role in physiological and pathological immune responses. FoxOs control
the development and function of Foxp3+ Tregs. Treg cells and Th17 cells are subsets of CD4+ T cells,
which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg
cell balance has been implicated in the development and progression of several disorders, such as
autoimmune diseases, inflammatory diseases, and cancer. In addition, FoxOs are stimulated by the
mitogen-activated protein (MAP) kinase pathway and inhibited by the PI3 kinase/AKT pathway.
Downstream target genes of FoxOs include pro-inflammatory signaling molecules (toll-like receptor
(TLR) 2, TLR4, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α), chemokine receptors (CCR7
and CXCR2), B-cell regulators (APRIL and BLYS), T-regulatory modulators (Foxp3 and CTLA-4),
and DNA repair enzymes (GADD45α). Here, we review the recent progress in our understanding
of FoxOs as the key molecules involved in immune cell differentiation and its role in the initiation
of autoimmune diseases caused by dysregulation of immune cell balance. Additionally, in various
diseases, FoxOs act as a cancer repressor, and reviving the activity of FoxOs forces Tregs to egress
from various tissues. However, FoxOs regulate the cytotoxicity of both CD8+ T and NK cells against
tumor cells, aiding in the restoration of redox and inflammatory homeostasis, repair of the damaged
tissue, and activation of immune cells. A better understanding of FoxOs regulation may help develop
novel potential therapeutics for treating immune/oxidative stress-related diseases.
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1. Introduction

Forkhead box O transcription factors (FoxOs) are known to play an important role in
regulating the immune and inflammatory responses of the human body against various
infections [1,2], neurodegenerative diseases [3,4], and metabolic disorders and diseases,
such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD) [5].
The evolutionally conserved FoxO family consists of FoxO1, FoxO3, FoxO4, and FoxO6 in
mammals [6]. These FoxOs are characterized by a highly conserved DNA binding motif,
known as a forkhead box O or a winged helix domain, and it regulates various down-
stream target genes involved in the cell cycle, cell death, and oxidative stress response [7,8].
FoxOs are expressed in the ovaries, prostate, skeletal muscle, brain, heart, lung, liver,
pancreas, spleen, thymus, and testes [9,10]. One of the key regulatory mechanisms of

Int. J. Mol. Sci. 2022, 23, 11877. https://doi.org/10.3390/ijms231911877 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231911877
https://doi.org/10.3390/ijms231911877
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1051-581X
https://doi.org/10.3390/ijms231911877
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231911877?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 11877 2 of 14

FoxO factors involves the phosphorylation reaction. Phosphorylated FoxOs by protein
kinase B in response to insulin or several growth factors (PKB, also known as Akt), are
allowed to translocate from the nucleus to the cytoplasm [7,8]. Another regulatory step
involves the acetylation of FoxO as a posttranslational modification. The cAMP-response
element-binding protein (CREB)-binding protein (CBP) triggers the transactivation function
of FoxOs, whereas it leads to the attenuation of their transcriptional activity following
the acetylation [11,12]. Normally, FoxOs upregulate various pro-inflammatory cytokines,
such as interleukin (IL)-1β, IL-9, toll-like receptor (TLR)1, and TLR4, which not only mod-
ulate the host inflammatory reaction, but also alter the innate immune response [13,14].
Moreover, FoxOs are essential for adaptive immune functions, including maturation and
differentiation of B and T lymphocytes [15,16]. Thus, the interplay of FoxOs with immune
cells presents a possible vital coalition that can be targeted to tackle detrimental inflam-
mation. The FoxO family of transcription factors plays a profound role in regulating the
development and functioning of immune cells [17–19]. Additionally, it exerts immunoregu-
latory effects by modulating non-malignant cells and non-immune cells. FoxOs are also
rendered inactive in diseased tissue relative to its normal counterpart, such as idiopathic
pulmonary fibrosis (IPF) [20,21]. FoxOs play an important role in regulating several aspects
of mucosal immunity by affecting dendritic cells (DCs) [22], recruiting and activating
macrophages and neutrophils [23–25], and aiding in the development and functioning of
T helper (Th) cells and B-lymphocytes [26–28]. In the case of FoxO1, it affects immune
responses by controlling cytokine production [29] and protecting hematopoietic stem cells
(HSCs) from oxidative stress [30]. FoxO1 is activated by bacteria in DCs and promotes DC
phagocytosis, migration, homing to lymph nodes, stimulation of T cells, B cell activation,
and antibody production [31]. Phagocytosis by hemocytes is an important mechanism
for cellular immunity against pathogenic infection [32]. FoxO1-mediated autophagy is
required for natural killer (NK) cell development [33]. FoxO is also involved in promoting
bacterial phagocytosis by neutrophils [25]. In addition, FoxO1 regulates important aspects
of keratinocyte function and potentially plays a role in maintaining or repairing the epithe-
lial barrier [34,35]. Moreover, FoxO3 is known to control the magnitude of T cell immune
responses by modulating dendritic cell functions [36]. FoxO3-deficient DCs sustain T cell
viability by producing increased levels of IL-6. In addition, CTLA-4-Ig-mediated stimu-
lation of DCs induces the nuclear localization of FoxO3, which in turn inhibits IL-6 and
tumor necrosis factor (TNF) production. Based on these results, it has been concluded that
FoxO3 is important for regulation of immune cells [36].

Several studies have reported that kaempferol caused a translocation of the C. elegans
FoxO1 factor [37], and epigallocatechin gallate (EGCG) prevented the development of
cardiac hypertrophy through reactive oxygen (RS)-dependent and -independent mech-
anisms [38]. Further, the antiangiogenic effects of EGCG arose through the activation
of FoxO by inhibiting PI3K/Akt [39]. However, baicalin treatment suppressed systemic
inflammatory stress by reducing serum TNFα levels, and a significant reduction in serum
insulin and glucose levels resulted in ameliorated insulin resistance [40]. Therefore, this
review underscores the importance of FoxO proteins in the mechanistic regulation of host
inflammatory and immunological responses.

2. Roles of the FoxO Family

FoxO proteins are expressed in nearly all tissues. They act as regulators of pleiotropic
functions within cells, which have considerable consequences for host health and dis-
ease [41]. FoxOs transcriptionally modulate the expression of a multitude of downstream
effector genes involved in cellular proliferation, cell cycle arrest, apoptosis, genomic repair,
metabolic balance, redox homeostasis, and resistance to oxidative stress [42]. Sequential
phosphorylation of FoxOs by the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt)
pathway [43] in the presence of growth factors results in cytoplasmic sequestration or
ubiquitination, thus rendering them inactive. In the absence of growth factors, phosphatase
and tensin homologue (PTEN) abolishes PI3K/Akt-mediated phosphorylation of FoxOs,
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thus leading to their dephosphorylation and subsequent nuclear shuttling. Once in the
nucleus, FoxO factors are involved in transcriptional regulation of several downstream
target genes [44,45]. However, disruption of FoxOs results in involution of the IGF1R
pathway, which prolongs communication between macrophages and B cells and, under
the condition of insufficient T cell feedback, permits the production of IgM that targets the
canonical auto-antigens dsDNA, Fc-portion of IgG, and cyclic citrullinated peptides [46].

FoxO proteins are primary regulators of the innate immune system [2]. This is exem-
plified by the management of inflammation by FoxOs through escalated TLR3/4- mediated
signaling and IL-1β expression in human macrophages [1]. FoxO1 stimulates the transcrip-
tional expression of pro-inflammatory molecules such as TLR1 and 4, IL-1β, and TNF-α;
chemokine receptors such as C–C chemokine receptor type 7 (CCR7) and C-X-C chemokine
receptor type 2 (CXCR2); B cell modulators such as APRIL (a proliferation inducing ligand)
and BLYS (B lymphocyte stimulator); and T cell regulators such as CTLA-4 (cytotoxic
T-lymphocyte-associated protein 4), in addition to stimulating antioxidants. FoxO1 is also
essential for T-cell tolerance and naive T-cell homeostasis, homing of DCs and B cells, and
initiation of an adaptive immune response to bacterial challenges [14,41]. Furthermore,
FoxO1 is involved in transcriptional modulation of IL-9-generating Th 9 cells, which par-
ticipate in inducing immunity against extracellular pathogens. Intriguingly, pulmonary
overexpression of IL-9 has been shown to play a role in lymphocytic and eosinophilic
inflammatory infiltration, mast cell hyperplasia, and mucus secretion [47]. Notably, FoxO3
is expressed within the airway epithelium in addition to macrophages and other cell types
in the lungs [48,49]. FoxO3 plays an extremely important role in overseeing innate immune
responses to infections in the airway epithelium. In response to bacterial challenges in
bronchial epithelial cells, FoxO3 induces the expression of antimicrobial factors, such as
human β-defensin 2, and various cytokines, including IL-6, IL-8, TNF-α, and C-X-C motif
chemokine ligand 10 (CXCL10) [1]. Moreover, FoxO3 is expressed in immune cells. Hence,
interest in investigating the importance of FoxO3 in lymphoid homeostasis has surged
recently [27,36,50]. Upregulation of FoxO3 has been observed in polymorphonuclear cells
and peripheral blood mononuclear cells in patients with rheumatoid arthritis (RA) [51].
Overexpression of FoxO3 is mediated by T cell receptor stimulation [52]. Consequently,
FoxO3 promotes the polarization of CD4+ T cells towards pathogenic Th cells, producing
interferon γ and granulocyte monocyte colony-stimulating factors. FoxO3−/− mice exhibit
reduced susceptibility to experimental autoimmune encephalomyelitis [52]. Both FoxO1
and FoxO3 have largely redundant but complex roles in maintaining T-cell quiescence and
in controlling the response to growth factors and inflammatory stress [53,54]. Loss of FoxO1
in T cells results in the development of a mild lymphoproliferative and autoimmune phe-
notype [27,55]. This phenotype is distinct from that of mice with regulatory Treg-specific
deletion of FoxO1, in which lethal inflammation is observed after the loss of dominant
tolerance without compromising conventional T-cell function [56].

3. Function of the FoxO Transcription Factors in Immune Cells
3.1. Hematopoietic Stem Cells (HSCs)

FoxO proteins are essential for proper functioning and regulation of stem cells in
multiple adult tissues [57]. These include hematopoietic, neural, and muscle stem cell
pools [58–61]. In this review, we have focused on the role of FoxOs in HSCs. FoxO proteins
are essential for maintaining the HSC pool and activity [59,62,63]. Conditional deletion
of FoxO1/3/4 or deletion of FoxO3 alone compromised the HSC pool and long-term
repopulation capacity of HSCs in mice [59,62–65]. In addition, FoxO1 and FoxO3 are
the main FoxO factors expressed in HSCs, and the regulation of subcellular localization
and activity of FoxO1 and FoxO3 is relatively distinct [66,67]; FoxO1 has a more cytosolic
localization, and FoxO3 is almost entirely localized to the nucleus in HSCs with long-term
repopulation ability [62,66–68]. Taken together, these results suggest that FoxO3 is the main
active FoxO protein in HSCs. In addition to compromised HSC function, loss of FoxO3
leads to increased myeloproliferation, anemia, and immune deficiencies similar to those
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observed in triple FoxO-deleted mice [59,62,63,69–71]. As such, among the FoxO family
members, FoxO1 and FoxO3 play an important role in HSCs in addition to playing an
important role in immune functions.

3.2. Dendritic Cells

FoxO1 is generally found in its phosphorylated, inactive form in DCs, which ensures
their survival and normal proliferation, especially when DCs are stimulated by CCR7 lig-
ands or immunological synapse formation with T cells [72,73]. Knockdown of FoxO1 under
serum-free conditions leads to a significantly lower percentage of apoptotic DCs [73]. The
transcriptional activity of FoxO also plays a fundamental role in maintaining normal hom-
ing of DCs to lymph nodes. In particular, FoxO1 promotes the transcription of CCR7 and
intercellular adhesion molecule-1 (ICAM-1), both of which are critical for the DC-mediated
stimulation of T and B lymphocytes in response to bacterial infection [22,74,75]. In con-
trast, FoxO3 suppresses DC production of key inflammatory cytokines, such as IL-6 and
TNF, and constrains CD4+ and CD8+ T-cell population expansion after viral infection [36].
FoxO3-deficient dendritic cells produce high levels of IL-6, which sustains T-cell viability
and expansion in response to lymphocytic choriomeningitis virus (LCMV) infection [36].
Therefore, FoxOs may be different or opposite among different cell types (immune vs.
non-immune cells).

3.3. Macrophages

The role of the FoxO pathway in the immune system, particularly with regard to
macrophages, remains controversial. Some researchers have reported that FoxO3 is pre-
dominantly expressed in myeloid cells, including macrophages, whereas others have not
detected the expression of either FoxO1 or FoxO3 [76,77]. Interestingly, in macrophages,
FoxO1 has been found to stimulate both pro- and anti-inflammatory pathways by up-
regulating the TLR4 and IL-10 promoters, respectively [23,24]. Simultaneous deletion of
FoxO1/3/4 induces monocytosis, increased NOS2 (iNOS) expression, and oxidative stress
in mice [78].

During classical activation following lipopolysaccharide (LPS) treatment, M2-like
macrophages showed increased expression of FoxO1 compared with M1-like macrophages.
Furthermore, FoxO1 tends to bind to the IL-10 promoter in M2-like macrophages but not
in M1-like macrophages. After a challenge with LPS, lysozyme 2 (LysM)-Cre mice, with
macrophage-specific deletion of FoxO1, showed a reduction in M2-like cells and an increase
in M1-like cells. This could be deduced to be due to a significant reduction in the expression
of M2-like macrophage markers (IL-10, Arg1, Fizz1, and IL-13 receptor alpha 1 (IL-13Rα1)),
and increased expression of M1-like macrophage markers (inducible iNOS, IL-12α, IL-12β,
and CCR2) compared with that of the wild-type [23].

3.4. T Cells and B Cells

T and B cells express FoxO1 and FoxO3, respectively. FoxOs are critical for T cell
homeostasis [18]. T-cells homeostasis is an important cellular process defined by the ability
of the immune system to maintain normal T-cell counts and, at the same time, replenish
the T-cell counts following T-cell depletion or expansion [79]. Although FoxOs have been
shown to promote apoptosis in response to nutrient or cytokine withdrawal in lymphocytes,
their exact role in T cells remains complex. Kerdiles et al. showed that the conditional
deletion of FoxO1 alters T-cell homeostasis [53]. FoxO1 is essential for the regulation of
several genes involved in T-cell trafficking and survival. Furthermore, FoxO1 is involved in
the negative feedback regulation of growth factor signaling, coupled with homing of naive
T cells and their subsequent survival [53,80]. Another study showed that the expression
of constitutively active FoxO1 in Jurkat cells led to the transcriptional activation of genes
involved in lymphocyte recruitment into secondary lymphoid organs [81]. FoxO1 also
plays a critical role in the differentiation of memory CD8+ T cells. A diverse array of studies
have highlighted the essential role of FoxO in regulating specialized lymphocyte functions.
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FoxO1 inactivation directs the homeostasis of CD4+ conventional and Treg cells, whereas
enforced expression of FoxO1 inadvertently hampers this balance [82]. The abrogation of
FoxO expression was also linked to a progressive decrease in the frequency of Tregs in
peripheral tissues, and their immune-suppressive capacity was found to be significantly
hampered, thus emphasizing the importance of FoxO proteins in maintaining immuno-
logical tolerance [83]. Tregs specifically depleted of FoxO1 produce more IFN-γ than the
wild-type cells do [84]. This is in agreement with previous observations of IFN suppres-
sion by FoxO proteins. Utzschneider et al. found that the continued expression of FoxO1
is indispensable for preserving longevity, self-renewal, and the ability to shift between
quiescence and cell division of the CD8+ memory T-cell population [15]. Inactivation of
FoxO1 leads to the reversion of memory T cells to a state of terminal differentiation, which
prevents a secondary memory response in multiple cases of infection [85]. Deletion of
FoxO1 after the clearance of an infection resulted in a rapid loss of typical gene expression
patterns in memory T cells. Even during a persistent viral infection, the depletion of FoxO1
activity caused a dramatic decline in T-cell expansion, while giving rise to T cells deficient
in effector cytokines and exhibiting features of anergy [15,84,86]. This underscored the
broad importance of FoxO1 for manifesting the post-effector immune program, a prereq-
uisite for forming the long-lived memory of T cells. Despite the increased expansion of
Foxo3-deficient effector T cells, precursors of memory T cells also accumulate, resulting in
an increased quantity of CD8+ memory T cells. However, this increase in CD8+ memory
T cells does not trigger a stronger recall response, suggesting that FoxO3 may also function
in regulating the recall responses of memory T cells [50].

FoxO1 is also important for the proliferation, differentiation, survival, and class switch-
ing of B cells. FoxO1 has been shown to direct the development of germinal centers, which
are necessary for the development of clonal variants of B cells. The depletion of FoxO1
in germinal center B cells led to diminished somatic hypermutation and dwindled class
switching, which significantly hampered a robust antibody response to infections [87]. The
loss of FoxO1 in DCs results in the reduction in occurrences of multiple phenomena, such as
cytokine production, homing of DCs to the lymph nodes, activation of CD4+ T and B cells,
and antibody generation, thereby enhancing the sensitivity to pathogenic challenges [31].
FoxO3 was also identified as a prime modulator of CD8 T-cell memory, and FoxO3 ther-
apeutic modifications have been proposed to convalesce protective immunity against
intracellular pathogens [50]. A deficiency in FoxO3 following a viral infection has been
shown to facilitate considerably exaggerated expansion of T-cell populations. This is due to
the DC-specific increase in the production of IL-6. This causes variations in the stimulatory
capacity of FoxO3-deficient DCs to sustain T-cell viability. The use of CTLA-4-Ig-mediated
stimulation led to FoxO3 nuclear localization, which consequently suppressed the height-
ened release of IL-6 and TNF. These data suggest that FoxO3 contributes to the production
of key inflammatory cytokines and controls T-cell viability [36]. FoxO1 is critical for class
switch recombination, which mediates antibody diversity in B cells. Loss of FoxO1 leads to
decreased immunoglobulin heavy chain production, concomitant with decreased expres-
sion of B-cell-specific activation-induced cytidine deaminase, which initiates class switch
recombination [26,88]. These studies demonstrate the importance of FoxO1 and FoxO3 in
T and B cell biology.

3.5. Natural Killer (NK) Cells

NK cells, a major component of innate immunity, serve as the first line of defense
against transformed tumors and virus-infected cells [89,90]. NK cells were recently defined
as part of group 1 innate lymphoid cells, according to their cytokine secretion patterns [91].
Cytokine secretion and granule-mediated cytotoxicity are the two major effector functions
of NK cells that are critical for early immune responses [90,92]. Similarly to leukocyte
populations, NK cells are also derived from HSCs in the bone marrow (BM). Each step in
NK cell development is finely regulated via signaling by various cytokines and transcrip-
tion factors. A recent study showed that FoxO3a triggers autophagy, which is essential
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for lifelong maintenance of HSCs [93]. FoxO1-induced autophagy was shown to be in-
dispensable for NK cell development and murine cytomegalovirus (MCMV) clearance
using an NKp46-Cre mouse model [33]. Deng et al. reported that FoxO1 is dispensable for
NK cell development and that inactivation of FoxO1 is required for T-bet expression [94].
Furthermore, Luu et al. reported that the combined loss of FoxO1 and FoxO3 caused
specific changes in the composition of noncytotoxic innate lymphoid cell subsets in the
BM, thymus, and spleen [95]. They also revealed that FoxO transcription factors ensure
proper NK cell development at various lineage commitment stages by orchestrating distinct
molecular mechanisms. Combined FoxO1 and FoxO3 deficiency in common and innate
lymphoid cell progenitors results in reduced expression of genes associated with NK cell
development [96].

3.6. Potential Considerations for FoxO Proteins in Various Diseases

The FoxO family members, in addition to acting as sensors for oxidative stress sig-
nals, also act as regulators of subsequent cellular responses. The transcriptional network
downstream of these redox-sensitive proteins is at least partially dependent on oxidative
status. Kops et al. demonstrated that FoxO facilitates the synthesis of reactive oxygen
species (ROS)-scavenging enzymes, such as manganese superoxide dismutase (MnSOD)
and catalase, in response to intercellular oxidative stress [97]. Activation of FoxO3 results in
the destabilization of hypoxia-inducible factor (HIF)-1α and suppresses hypoxia-mediated
increases in ROS [98]. A plethora of evidence points to the fact that insufficient FoxO
activity may cause elevated cellular damage in the presence of high concentrations of ROS.

3.6.1. Role of FoxOs in Autoimmune and Inflammation

Excessive oxidative stress is known to reduce type I and type III IFN responses to viral
infection in airway epithelial cells [99]. In addition, strong nuclear staining for FoxO3 is
found in the lungs of patients with a variety of infection-related lung disorders, includ-
ing cystic fibrosis, chronic obstructive pulmonary disease, and severe pneumonia with
acute respiratory distress. In such individuals, FoxO3 levels are negatively correlated with
IL-8 production in airway epithelial cells [48]. In addition, FoxO3 blocks oxidative stress,
thereby suppressing lung inflammation in mice exposed to cigarette smoke [49]. These
results underscore the contribution of FoxO3 to both the regulation of antiviral responses
and inhibition of pro-inflammatory chemokine expression. By potentially reducing the
expression of inflammatory cytokines in response to viral infections, FoxO3 activation
provides protection against lung inflammation. Lin et al. showed that ablation of FoxO3
may lead to spontaneous lympho-proliferation, T-cell hyperactivation, and escalated in-
flammation with a pronounced increase in the levels of inflammation-favoring molecules,
such as NF-κB, IL-2, and IFN-γ [100]. FoxO proteins participate in the antibacterial and
antiviral innate immune responses of invertebrates [101,102]. Chronic activation of FoxO
in aged Drosophila suppresses the expression of the peptidoglycan recognition protein SC2
(a negative regulator of the immune deficiency (IMD) pathway) and disrupts intestinal
immune homeostasis [103]. FoxO3 plays an important role in improving symptoms of
glucocorticoid-mediated systemic lupus erythematosus (SLE) by inhibiting NF-κB activ-
ity [104]. Accumulating evidence indicates that FoxO may play an important role in the
regulation of viral infections. For example, FoxO1 contributes to the transcription and
replication of the hepatitis B virus (HBV) through the activation of the HBV core pro-
moter [105,106]. FoxO3 acts as a negative regulator of virus-specific CD8+ T-cell responses
in the chronic lymphocytic choriomeningitis virus infection, and has been proposed as a
potential therapeutic target for chronic viral infections [107]. FoxO4 may also inhibit HIV-1
replication by acting as a transcriptional repressor. Oteiza et al. demonstrated that over-
expression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription
reactivation in response to T-cell activators, such as PMA or TNF-α [108]. Hence, FoxO
factors can control HIV-1 transcription and provide new insights into their important role
during the establishment of HIV-1 latency [108].
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The production of a large amount of IL-9 is vital for allergic inflammatory response,
autoimmune syndrome, and immunity to pathogenic invasion in Th2, Th9, and Th17
cells [56]. FoxO1 is a critical transcription factor necessary for IL-9 induction in these
immune cells. Mechanistic insights indicated that FoxO1 transactivated IL-9 in these T cells.
This is the primary mechanism deployed by FoxO1 to ameliorate allergic inflammation,
as observed in asthma [13]. However, much less is known about the role of FoxO1 in
Th17 generation. Deficiency of FoxO1 regulates Th17 differentiation by the defective Treg
cell levels [109]. FoxO1 is considered as an anti-inflammatory control switch directly
acting on the Th17 program [110]. Thus, FoxO1 regulates the expression and function of
PD-1, and leads to therapeutic options for chronic viral infection or cancer [111]. FoxO1
regulates memory T cell differentiation and maintenance through mammalian target of the
rapamycin complex 2 (mTORC2) pathway [112]. N-Acetyl Cysteine (NAC), antioxidant
capacity reduces FoxO1 through Akt activation, and leads to improved tumor control. This
also extends to transduced murine T cells [113].

3.6.2. Regulation of FoxOs in Inflammation-Induced Diseases

FoxO1 drives the production of IL-10 by transcriptionally monitoring its expres-
sion [114]. IL-10 is upregulated in SARS-CoV-2 patients to an appreciable extent. Consider-
ing the vital contribution of FoxO factors in maintaining a check on excessive inflammation,
its clinical significance in fighting the cytokine storm induced in patients with COVID-19
is logically implied. However, FoxO1 induces transcription of the memory transcription
factor EOMES and inhibits the effector transcription factor T-bet [86]. Continuous expres-
sion of FoxO1 is required to maintain the survival, renewal, and gene expression profiles of
the memory subset [15]. FoxO1 stimulates the transcription of memory markers IL-7R and
CD62L, which are involved in homing and long-term survival, but negatively regulates
effector functions, including the production of interferon-γ and granzyme B [115,116].
The strong association between smoking and RA led us to speculate that smoking-related
changes in the immune cell phenotype could contribute to the development of RA. The
transcription levels of FoxO1 in peripheral blood monocytes reported lower levels of FoxO1
mRNA in RA patients than in healthy controls [117]. This result was consistent with
lower FoxO1 expression observed in nicotine-stimulated cells, but not with an increased
abundance of cells with naive or memory phenotypes [118]. Overexpression of FoxO3 in
various diseases, such as type 1 diabetes mellitus, suggests a potential role of this gene in
the development of autoimmune diseases. FoxO3 contributes to dysregulation of immune
tolerance [119]. FoxO1 plays an important role in maintaining homeostasis in periodontal
tissues and in response to bacterial challenges. Alterations in FoxO1 function have a signifi-
cant effect on periodontal disease susceptibility because FoxO1 is involved in the regulation
of leukocyte function [14]. Collectively, FoxO transcription factors regulate various immune
cell diseases (Figure 1).

Glucosamine suppress lung cancer cell proliferation by affecting the transcriptional
activity of FoxOs through inhibition of p27kip1 and p21cip1, which are involved in cell
cycle arrest, and Bim and FasL, which are involved in apoptosis [120]. In addition, MPSSS,
a novel polysaccharide purified from Lentinus edodes, has been reported to have anti-tumor
activity [121]. M. scabra flavonoids (MSF), in which the major active compounds were lute-
olin, apigenin, kaempferol, and moslosooflavone, decreased protein expressions of phos-
phating Akt/FoxO1 in both the lung tissues of IAV-infected mice as well as IAV-infected
macrophages [122]. FoxO3a played an important role in glucocorticoids treatment of SLE
by suppressing pro-inflammatory response. Targeting FOXO3a might provide a novel
therapeutic strategy against SLE [104]. β-catenin/FoxOs axis serves as a bridge between
environmental factors and autoimmune disease by modulating Treg properties [123]. The
collective evidence strongly supports the theory that the effects of pharmacological com-
pounds on various diseases are achieved as summarized in Table 1.
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Figure 1. FoxO-mediated cytokine production regulates diseases. FoxO, Forkhead transcription
factor O; MnSOD, manganese superoxide dismutase; ROS, reactive oxygen species; NF-κB, nuclear
factor kappa B; SLE, systemic lupus erythematosus; TNFα, tumor necrosis factor alpha; HIV, human
immunodeficiency virus; SARS, severe acute respiratory syndrome.

Table 1. Effect of pharmacological compounds in various diseases.

Pharmacological Compounds Target Genes Diseases References

Glucosamine p27, p21, Bim, FasL Cancer [120]

MPSSS p21 Tumor [121]

MSF Cytokines (TNFα, IL-6) IAV-induced lung injury [122]

Glucocorticoids Interaction of NF-κB (TNFα,
IL-6, mcp-1) SLE [104]

β-catenin IFN-È, IL-10 Autoimmune [123]

4. Conclusions

In the past decade, it has become clear that the FoxO transcription factors are key
regulators of homeostatic hematopoiesis and are implicated in many fundamental processes.
Future studies may reveal the conditions under which deregulated FoxO function leads
to hematological disorders. These studies may particularly illuminate the influence of
FoxO on haem malignancies. Identifying FoxO-regulated programs that protect HSCs
from damage caused by various diseases may provide important information related to
FoxO alterations that could lead to blood disorders in the elderly. FoxO transcription
factors play a role in almost every aspect of T-cell biology examined so far. They respond
to a wide range of extrinsic signals to fundamentally alter the trajectory of the T cell-
dependent immune response. Programmed gene expression includes cell type-specific
genes involved in differentiated functions, as well as genes that control the essential aspects
of general cellular physiology, such as cell division, survival, and metabolism (Figure 2).
The challenge is to isolate the direct effects of FoxO transcriptional regulation from the
indirect effects that ripple and echo throughout the cellular signaling network. In-depth
study of FoxO transcription factors in the immune system would illuminate and eventually
resolve issues of medical significance. It is expected that better understanding of the
modulatory mechanisms of FoxOs will provide a basis for the discovery of molecular
targets that can therapeutically modulate inflammatory conditions and various diseases,
and also enable the development of potential effective interventions to delay diseases.
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