The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection and Description
3.2. Risk of Bias Assessment
3.3. VFs in GNB Isolates and Neonatal Mortality
3.4. VFs Associated with Invasiveness/Pathogenic Potential
- Comparison of virulence determinants between strains from neonatal sepsis and strains causing non-invasive disease, commensal strains, and environmental isolates (Table 2);
- VFs in invasive strains causing bacteraemia in neonates vs. children/adults (Table 3);
- VFs in strains isolated from EOS vs. LOS (Table 4);
- Assessment of virulence determinants in isolates from neonatal sepsis depending on the portal of entry (Table 5);
- VFs in strains from sepsis in term vs. preterm neonates.
3.4.1. Invasive and Non-Invasive Strains
3.4.2. VFs Associated with Invasive Infection in Neonates and Infants <90 Days vs. Older Children/Adult Bacteraemia
3.4.3. VFs in EOS vs. LOS
3.4.4. VFs Distribution in Neonatal Sepsis Due to Different Portal of Entry
3.4.5. VFs in Strains from Sepsis in Term vs. Preterm Neonates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of paediatric and neonatal sepsis: A systematic review. Lancet Respir. Med. 2018, 6, 223–230. Available online: http://www.thelancet.com/article/S2213260018300638/fulltext (accessed on 16 June 2022). [CrossRef]
- Hornik, C.P.; Fort, P.; Clark, R.H.; Watt, K.; Benjamin, D.K., Jr.; Smith, P.B.; Manzoni, P.; Jacqz-Aigrain, E.; Kaguelidou, F.; Cohen-Wolkowiez, M. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 2012, 88 (Suppl. S2), S69–S74. [Google Scholar] [CrossRef] [Green Version]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L615612881&from=export (accessed on 16 June 2022). [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med19&NEWS=N&AN=33782558 (accessed on 17 June 2022). [CrossRef]
- Birchenough, G.M.; Johansson, M.E.; Stabler, R.A.; Dalgakiran, F.; Hansson, G.C.; Wren, B.W.; Luzio, J.P.; Taylor, P.W. Altered Innate Defenses in the Neonatal Gastrointestinal Tract in Response to Colonization by Neuropathogenic Escherichia coli. Infect. Immun. 2013, 81, 3264–3275. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.L.; Griffith, A.; Barry, J.J.; Jonas, M.; Chi, E.Y. Transcytosis of Gastrointestinal Epithelial Cells by Escherichia coli K1. Pediatr. Res. 2001, 49, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickey, S.W.; Cheung, G.Y.C.; Otto, M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 2017, 16, 457–471. [Google Scholar] [CrossRef]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis Without Meta-analysis (SWiM) reporting items. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, E.J.A.; Seale, A.C.; Vergnano, S.; Sharland, M.; Heath, P.T.; Saha, S.K.; Agarwal, R.; Ayede, A.I.; Bhutta, Z.A.; Black, R.; et al. Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): An extension of the STROBE statement for neonatal infection research. Lancet Infect. Dis. 2016, 16, e202–e213. Available online: http://www.thelancet.com/article/S1473309916300822/fulltext (accessed on 17 July 2022). [CrossRef]
- Cole, B.K.; Ilikj, M.; McCloskey, C.B.; Chavez-Bueno, S. Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. PLoS ONE 2019, 14, e0219352. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med16&NEWS=N&AN=31276562 (accessed on 16 June 2022). [CrossRef] [PubMed]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.; Dunachie, S.; Farzana, R.; et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect. Dis. 2021, 21, 1677–1688. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L2015715280&from=export (accessed on 16 June 2022). [CrossRef]
- Folgori, L.; Di Carlo, D.; Comandatore, F.; Piazza, A.; Witney, A.; Bresesti, I.; Hsia, Y.; Laing, K.; Monahan, I.; Bielicki, J.; et al. Antibiotic susceptibility, virulome, and clinical outcomes in european infants with bloodstream infections caused by enterobacterales. Antibiotics 2021, 10, 706. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L2007601246&from=export (accessed on 16 June 2022). [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, T.K.; Valtonen, M.V.; Parkkinen, J.; Väisänen-Rhen, V.; Finne, J.; Orskov, F.; Orskov, I.; Svenson, S.B.; Mäkelä, P.H. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect. Immun. 1985, 48, 486–491. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med2&NEWS=N&AN=2580792 (accessed on 17 June 2022). [CrossRef] [Green Version]
- Bonacorsi, S.; Houdouin, V.; Mariani-Kurkdjian, P.; Mahjoub-Messai, F.; Bingen, E. Comparative prevalence of virulence factors in Escherichia coli causing urinary tract infection in male infants with and without bacteremia. J. Clin. Microbiol. 2006, 44, 1156–1158. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=16517919 (accessed on 16 June 2022). [CrossRef] [Green Version]
- Sáez-López, E.; Bosch, J.; Salvia, M.D.; Orth, D.F.; Cepas, V.; Ferrer-Navarro, M.; Figueras-Aloy, J.; Vila, J.; Soto, S.M. Outbreak Caused by Escherichia coli O18:K1:H7 Sequence Type 95 in a Neonatal Intensive Care Unit in Barcelona, Spain. Pediatr. Infect. Dis. J. 2017, 36, 1079–1086. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L616990558&from=export (accessed on 16 June 2022). [CrossRef] [Green Version]
- Siitonen, A.; Takala, A.; Ratiner, Y.A.; Pere, A.; Makela, P.H. Invasive Escherichia coli infections in children: Bacterial characteristics in different age groups and clinical entities. Pediatr. Infect. Dis. J. 1993, 12, 606–612. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=8102199 (accessed on 16 June 2022). [CrossRef]
- Watt, S.; Lanotte, P.; Mereghetti, L.; Moulin-Schouleur, M.; Picard, B.; Quentin, R. Escherichia coli strains from pregnant women and neonates: Intraspecies genetic distribution and prevalence of virulence factors. J. Clin. Microbiol. 2003, 41, 1929–1935. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=12734229 (accessed on 17 June 2022). [CrossRef] [Green Version]
- Tapader, R.; Chatterjee, S.; Singh, A.K.; Dayma, P.; Haldar, S.; Pal, A.; Basu, S. The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2015–2024. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=24924922 (accessed on 17 June 2022). [CrossRef]
- Chmielarczyk, A.; Pobiega, M.; Romaniszyn, D.; Wojkowska-Mach, J.; Heczko, P. Analysis of resistance, virulence, and phylogenetic groups of Escherichia coli strains isolated from very-low birth weight infants in Poland. Antimicrob. Resist. Infect. Control 2013, 2, P76. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L72036316&from=export (accessed on 16 June 2022). [CrossRef] [Green Version]
- Huik, K.; Parm, Ü.; Denks, K.; Pauskar, M.; Avi, R.; Metsvaht, T.; Ilmoja, M.; Lutsar, I. Development of neonatal sepsis is not dependent on the presence of magA, k2A, rmpA and kfu genes in Klebsiella pneumoniae. Clin. Microbiol. Infect. 2010, 16, S589. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L70196586&from=export (accessed on 16 June 2022).
- Cook, S.W.; Hammill, H.A.; Hull, R.A. Virulence factors of Escherichia coli isolated from female reproductive tract infections and neonatal sepsis. Infect. Dis. Obstet. Gynecol. 2001, 9, 203–207. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=11916176 (accessed on 16 June 2022). [CrossRef] [PubMed] [Green Version]
- Roy, S.; Singh, A.K.; Viswanathan, R.; Nandy, R.K.; Basu, S. Transmission of imipenem resistance determinants during the course of an outbreak of NDM-1 Escherichia coli in a sick newborn care unit. J. Antimicrob. Chemother. 2011, 66, 2773–2780. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=21930573 (accessed on 18 June 2022). [CrossRef] [Green Version]
- Burdet, C.; Clermont, O.; Bonacorsi, S.; Laouénan, C.; Bingen, E.; Aujard, Y.; Mentré, F.; Lefort, A.; Denamur, E.; COLIBAFI Group. Escherichia coli bacteremia in children: Age and portal of entry are the main predictors of severity. Pediatr. Infect. Dis. J. 2014, 33, 872–879. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med11&NEWS=N&AN=25222308 (accessed on 17 June 2022). [CrossRef] [Green Version]
- Palma, N.; Gomes, C.; Riveros, M.; García, W.; Martinez-Puchol, S.; Ruiz-Roldán, L.; Mateu, J.; Garcia, C.; Jacobs, J.; Ochoa, T.; et al. Virulence factors profiles and ESBL production in Escherichia coli causing bacteremia in Peruvian children. Diagn. Microbiol. Infect. Dis. 2016, 86, 70–75. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=27345125 (accessed on 17 June 2022). [CrossRef]
- McCabe, W.R.; Kaijser, B.; Olling, S. Escherichia coli in bacteremia: K and O antigens and serum sensitivity of strains from adults and neonates. J. Infect. Dis. 1978, 138, 33–41. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L8399825&from=export (accessed on 16 June 2022). [CrossRef]
- Soto, S.M.; Bosch, J.; Jimenez de Anta, M.T.; Vila, J. Comparative study of virulence traits of Escherichia coli clinical isolates causing early and late neonatal sepsis. J. Clin. Microbiol. 2008, 46, 1123–1125. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN=18160454 (accessed on 16 June 2022). [CrossRef] [Green Version]
- Mahjoub-Messai, F.; Bidet, P.; Caro, V.; Diancourt, L.; Biran, V.; Aujard, Y.; Bingen, E.; Bonacorsi, S. Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes. J. Infect. Dis. 2011, 203, 1844–1849. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=21550999 (accessed on 16 June 2022). [CrossRef] [Green Version]
- Weissman, S.J.; Hansen, N.I.; Zaterka-Baxter, K.; Higgins, R.D.; Stoll, B.J. Emergence of Antibiotic Resistance-Associated Clones Among Escherichia coli Recovered From Newborns With Early-Onset Sepsis and Meningitis in the United States, 2008–2009. J. Pediatr. Infect. Dis. Soc. 2016, 5, 269–276. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=26407251 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Tullus, K.; Brauner, A.; Fryklund, B.; Munkhammar, T.; Rabsch, W.; Reissbrodt, R.; Burman, L.G. Host factors versus virulence-associated bacterial characteristics in neonatal and infantile bacteraemia and meningitis caused by Escherichia coli. J. Med. Microbiol. 1992, 36, 203–208. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=1372362 (accessed on 18 June 2022). [CrossRef] [PubMed]
- Johnson, J.R.; Moseley, S.L.; Roberts, P.L.; Stamm, W.E. Aerobactin and Other Virulence Factor Genes among Strains of Escherichia coli Causing Urosepsis: Association with Patient Characteristics. Infect. Immun. 1988, 56, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Sarff, L.; Mccracken, G.; Schiffer, M.; Glode, M.; Robbins, J.; Rskov, I.O.; Rskov, F.O. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1975, 305, 1099–1104. Available online: http://www.thelancet.com/article/S0140673675924964/fulltext (accessed on 13 July 2022). [CrossRef]
- Cole, B.K.; Scott, E.; Ilikj, M.; Bard, D.; Akins, D.R.; Dyer, D.W.; Chavez-Bueno, S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS ONE 2017, 12, e0189032. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med14&NEWS=N&AN=29236742 (accessed on 17 June 2022). [CrossRef] [PubMed] [Green Version]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. BMJ 2019, 364, k5314. Available online: http://www.bmj.com/content/364/bmj.k5314.abstract (accessed on 19 June 2022). [CrossRef] [Green Version]
- Bunduki, G.K.; Heinz, E.; Phiri, V.S.; Noah, P.; Feasey, N.; Musaya, J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 753. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Secher, T.; Brehin, C.; Oswald, E. Early settlers: Which E. coli strains do you not want at birth? Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G123–G129. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med13&NEWS=N&AN=27288422 (accessed on 16 June 2022). [CrossRef] [Green Version]
- Secher, T.; Payros, D.; Brehin, C.; Boury, M.; Watrin, C.; Gillet, M.; Bernard-Cadenat, I.; Menard, S.; Theodorou, V.; Saoudi, A.; et al. Oral Tolerance Failure upon Neonatal Gut Colonization with Escherichia coli Producing the Genotoxin Colibactin. Infect. Immun. 2015, 83, 2420–2429. [Google Scholar] [CrossRef] [Green Version]
- Payros, D.; Secher, T.; Boury, M.; Brehin, C.; Ménard, S.; Salvador-Cartier, C.; Cuevas-Ramos, G.; Watrin, C.; Marcq, I.; Nougayrède, J.-P.; et al. Maternally acquired genotoxic Escherichia coli alters offspring’s intestinal homeostasis. Gut Microbes 2014, 5, 313–512. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.J.; Martin, P.; Cloup, E.; Stabler, R.A.; Oswald, E.; Taylor, P.W. The genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection. Infect. Immun. 2015, 83, 3704–3711. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L605707107&from=export (accessed on 17 June 2022). [CrossRef] [PubMed]
- Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. Available online: https://www.nature.com/articles/nrd3013 (accessed on 18 July 2022). [CrossRef] [PubMed]
- Theuretzbacher, U.; Piddock, L.J.V. Non-traditional Antibacterial Therapeutic Options and Challenges. Cell Host Microbe 2019, 26, 61–72. Available online: http://www.cell.com/article/S1931312819302938/fulltext (accessed on 18 July 2022). [CrossRef]
Study | Pathogen/s | Microbiological Method | VFs/VGs | Mortality Rate | Clinical Characteristic | Findings: VF-Outcome | Other Findings |
---|---|---|---|---|---|---|---|
Bryan K. Cole 2019 [10] | Escherichia coli | PCR | cnf1; fimH; hek/hra; hlyC; ibeA; iucC; iro; kpsMT II; nlpI; ompA; papGII-III; sfa/foc | 12/43 (28%) | - Median age at the onset 7 days (IQR 0–10) - Mean gestational age (GA): 32.3 weeks (SD ± 5.4). - 53% history of chorioamnionitis - 40% ET intubated - 42% central venous catheter - 25% Congenital anomalies - 33% developed NEC - 1 meningitis over 14 CFS tested | hek/hra more prevalent in isolates from newborns who died compared to those from survivors (p < 0.02) | - cnf1, hek/hra, hlyC, iroN, sfa/focDE more prevalent in isolates carrying ≥10 VFs - n° of VFs in EOS > LOS (mean ± SD: 8.1 ± 2.4 and 6.8 ± 1.9, p < 0.04). - inverse correlation between the total n° of VFs and the n° of non -susceptible antibiotics (p < 0.002) |
Folgori L. 2021 [12] | Enterobacterales | WGS | WGS | 18/87 (21%) | - Median age at the onset 15.2 days (IQR 6.7–31) - Median GA of 33 weeks (IQR 28–37) - 56% central venous catheter | N° of classes of VGs per isolates correlated with mortality at 28 days (p = 0.002), not significant in Cox multivariate regression | - Positive correlation between the number of resistance and virulence gene per isolate (Spearman’s rank correlation Rho = 0.79; p = 0.001) |
Kathryn M Thomson, 2021 [11] | Klebsiella pneumoniae, E. coli | WGS | WGS | - | Not available for sub-group | - Lower virulence factor scores for E coli were associated with reported mortality (U = 12.50, p = 0.042) - No associations between virulence factor score and mortality for K. pneumoniae (U = 188.0, p = 0.66) | - No correlations between pathogenicity Indexing * (PI) and virulence factors scores - No association between PI and outcome for E. coli and K. pneumonie (U = 33.00, p = 0.84 and U = 178.50, p = 0.52) |
Kirsty Sands, 2021 [5] | K. pneumoniae | WGS | WGS | - Untraceable 43; Dead 58; Alive 157 - Mortality rate 27% (untraceable excluded) | 125 EOS 118 LOS 15 ND | OR = 13.77 for mortality following sepsis (p < 0.001) among Kleborate virulence score = 3 and 4 ° vs. a virulence score of 0 or 1 # | OR = 0.113 for LOS ( p = 0.040) among Kleborate virulence score = 3 or 4 ° vs. virulence score of 0 § |
Study | Pathogen/s | Microbiological Method | VFs/VGs | Analysis | Findings |
---|---|---|---|---|---|
Timo K Korhonen, 1985 [15] | E. coli | - Serotyping - Fimbriae analysis: agglutination assays/S fimbriae by colony blotting with anti-S antiserum - Hemolytic activity: sheep blood agar plates | Capsular types, O antigen, Hemolysin, Type 1 fimbriae P fimbriae, S fimbriae, non-P/non -S mannose resistant (MR) adhesins | Comparison VFs in isolates from: - neonatal sepsis in <22 d (10/45 also having meningitis) - infants (22 d-5 m) with BSI (4/18 with meningitis, 2/18 with pneumonia; 2/18 with UTI) - children <14 y with pyelonephritis - feces from healthy donors < 8 | - K1 antigen more frequent in neonatal sepsis (67%) than in fecal isolates (22%) and children UTI (31%) - Hemolysin more common in strains from children UTI (60%) than in neonates (18%), and fecal strains (10%) - P fimbriae more frequent in children UTI (76%) vs. neonatal sepsis (38%) - S fimbriae more frequent among neonatal strains (29%) compared with 7% in strains from children UTI and 4% in fecal strains. |
Stéphane Bonacorsi, 2005 [16] | E. coli | PCR | Antigen K1, cnf1, hly, papC, papGII, papGIII, sfa/foc, iutA, iroN, fyuA | Comparison of VFs between infants with bacteraemic and non-bacteraemic UTI (patients with UT abnormalities excluded) | - VFs more frequent in bacteraemic than non-bacteraemic strains but none of the differences for a single factor was statistically significant - The pair hylC and/or K1 and hlyC and/or iroN were more frequent in bacteraeminc strains (p = 0.005 and p = 0.03) - Only hlyC and/or antigen K1 remained significantly frequent in after adjustment for multiple comparisons (p = 0.015) |
Emma Saez-Lòpez, BS, 2017 [17] | E. coli (k1 positive outbreak strain) | RNA-seq | hlyA, cnf1, sat1, P-fimbriae (papA, −EF, −C), fimH, focG, S-fimbriae (sfa/foc and sfaS), fyuA, iutA, iroN, iucC, ibeA, ibeC, aslA, traJ, hra | Comparison of the gene expression profile btw K1 positive outbreak strain (N38) and non-outbreak strains | - The outbreak strain carried s-fimbriae (sfa/foc and sfaS) and PAI-II like domain not present in other K1 strains - rfaI and rfaL (LPS biosynthesis) and papI1 were overexpressed in the outbreak strain |
Anja Siitonen, 1993 [18] | E. coli | - Serotyping:
- Hemolytic activity: sheep blood agar plates | O antigens, K antigens, H antigens, P fimbriae, S fimbriae, type IC frimbriae, non-P/non -S mannose resistant (MR) adhesins, hemolysins production | -Characterization of O:k:H phenotype, adhesins and hemolytic activity among E.coli strain from - neonatal invasive infection(79% non-focal sepsis; 14% meningitis, 7% UTI) - infants’ invasive infection (24% non-focal sepsis; 8% meningitis, 68% UTI - children invasive infection (80% non-focal sepsis, meningitis 5%, UTI, 15%) - faeces | - Strains expressing ≥2 VFs more common among neonatal infection compared to faecal strain (p < 0.001) - More frequent in neonatal sepsis compared to facal strains:
|
Stephane Watt 2003 [19] | E. coli | PCR | neuC (K1 capsule antigen), hly, papC, sfa/foc, fimH, afa, iucC; ibeA | Comparison VFs in E.coli strains from different anatomical sites: - faecal flora of asymptomatic pregnant women - vaginal flora of asymptomatic pregnant women - amniotic fluid (AF) of asymptomatic neonates born in a chorioamnionitis context - neonates’ blood culture - CSF of neonatal sepsis | - Median N° of VF:
- Only fimH was more frequent in AF strains (96%) than in vaginal strains (76%) and intestinal flora (58%) (p = 0.03) - CSF strains compared to fecal strain more likely harbour:
|
R. Tapader, 2014 [20] | E. coli | PCR | - hly, cnf, papC, sfa, iroNEC, iucC, ibeA - SPATEs: spate, vat, sat, pet, pic, espP, sepA, sigA | Presence of different VFs and subtypes of SPATEs in neonatal septicemia compared to faecal and environmental isolates | - VFs ≥2 in 39% of isolates from neonatal sepsis vs. 10% in fecal strains and 0% in environmental strain - “SPATE sequence” more frequent in neonatal sepsis strain (89%) in comparison to 7.5% in the faecal isolates (p < 0.0001; OR 95% CI = 95.58 (21.03–510.09) and 3% in the environmental isolates [p < 0.0001; OR 95% CI = 263.50 (30.42–5926.55)] |
A Chmielarczyk, 2013 [21] | E. coli | PCR | 16 selected VF genes associated with extraintestinal infections (list not available) | VFs in strains from different anatomical sites: - isolates from BSI - isolates from respiratory tract infections (RT) - 8 UTIs | - BSI isolates more frequently carried ibeA than isolates from urine and RT (37.5%, 0%, 16% respectively) - UTI isolates carried more frequently iha (75% vs. 24% RT vs. 8.3% BSI). |
K. Huik, 2010 [22] | K. pneumoniae | PCR | magA (specific to K1 capsule serotype), k2A (specific to K2 capsule serotype), rmpA (regulator of mucoid phenotype) and kfu (iron uptake system) | VFs in K.pneumoniae isolates from neonatal sepsis vs. isolates from surveillance swab (nasopharyngeal -NP and rectal swabs) | - Hypermucoviscosity strains were detected only among mucosal isolates; in 16/30 isolates in pts with and in 0/118 without BSI (p < 0.001). - No magA and rmpA genes were detected. - k2A and kfu genes were rare and present in 7/143 and 4/143 mucosal isolates, respectively but only in pts without BSI |
Susan W. Cook, 2001 [23] | E. coli | PCR | fim, dra, pap, sfa, foc, uca, papG1, papG3, papG2, hly | VFs in E.coli isolates from women genital tract infections (vaginitis, tubo ovarian abscess) neonatal sepsis and faecal flora | - MRHA+ phenotype (mannose resistant hemagglutination) more frequent in infections isolates than fecal flora (p < 0.01) - Hly+ more prevalent among tubo-ovarian abscess and neonatal sepsis isolates then faecal isolates (p < 0.08) - Pap genes were more prevalent among isolates from all three infection sites than fecal flora (p < 0.01) - No significant differences in frequency of fim, sfa, uca (gaf) or dra genes in infection isolates compared with faecal isolates |
Subhasree Roy, 2011 [24] | NDM-1 E. coli | PCR | Hly, papaC, sfa, iroN, cnf1, iucC, ibeA | VFs among NDM-1 E. coli isolated from body sites (rectum, groin, mouth) of neonates and blood | - BSI were caused by E. coli of phylogroup D - Most VGs (hly, sfa, iroN, cnf1, iucC, ibeA) were not found - PapC carried in all the bacteraemic strains (4/4) and in 5/16 strains from other body sites |
Study | Pathogen/s | Microbiological Method | VFs/VGs | Analyses | Findings |
---|---|---|---|---|---|
Charles Burdet, 2014 [25] | E. coli | PCR | neuC (K1), iroN, iucC, iha, papC, papGII, papGIII, hlyC, cnf1, hra, sat, ire, usp, ompT ibeA, fyuA, irp2, traT, clbA, clbQ, PAI, PAI ICFT073, PAI IIJ96, PAI III536, PAI IV536, PAIgimA, PAIUSP, PAIpks | Bacterial characteristics in infants ≤ 3 m vs. > 3 m | - N° of VFs higher in ≤3 m of age [median (min-max) = 15 (5–18) vs. 10 (1–19), p = 0.02] - VFs more frequent in ≤3 m vs. >3 m:
- Antimicrobial resistance scores lower in ≤3 m [median (min-max) = 1 (0–4) vs. 1 (0–5), p = 0.01] |
Noemí Palma, 2016 [26] | E. coli | PCR | sepA, sigA, pet, pic, espC, hly, cnf1, sat, set1A, set1B, sen, astA, fimA, papC, papGIII, aafC, agg3C, agg4C, iucD, iutA, fyuA shf, agn43, aap, aatA | Characterization of virulence profile of isolates from infants ≤3 months vs. >3 months | - N° of VGs slightly higher in infants <3 m (5.6 vs. 4.7) * not significant - ESBL more frequent among infants <3 m (p = 0.0776) * not significant |
Anja Siitonen, 1993 [18] | E. coli | - Serotyping:
- Hemolytic activity: sheep blood agar plates | O antigens, K antigens, H antigens, P fimbriae, S fimbriae, type IC fimbriae, non-P/non -S mannose resistant (MR) adhesins, hemolysins production | Characterization of O:k:H phenotype, adhesins and hemolytic activity among E.coli strain from: - neonatal invasive infections (79% non-focal sepsis; 14% meningitis, 7% UTI) - infants’ invasive infection (24% non-focal sepsis; 8% meningitis, 68% UTI - children invasive infection (80% non-focal sepsis, meningitis 5%, UTI, 15%) - faeces | - Strains expressing ≥2 VFs more common among neonatal infection vs. infants with urinary bacteraemia (p < 0.05) - K1 more frequently found among neonatal sepsis (49%) compared to infants with UT bacteremia and all invasive strains from children (p < 0.05) - P-fimbriae more frequent in infants with UT bacteremia compared to infants with meningitis and nn sepsis (p < 0.001) - S-fimbriae more frequent in neonatal strains compared to infants with meningitis and infants with UT bacteremia (p < 0.05 and p < 0.01) |
Timo K Korhonen, 1985 [15] | E. coli | - Serotyping - Fimbriae analysis: agglutination assays/S fimbriae by colony blotting with anti-S antiserum - Hemolytic activity: sheep blood agar plates | Capsular types, O antigen, Hemolysin, Type 1 fimbriae, P fimbriae, S fimbriae, non-P/non -S mannose resistant (MR) adhesins | Comparison VFs in isolates from: - neonatal sepsis in <22 d (10/45 also having meningitis) - infants (22 d-5 m) with BSI (4/18 with meningitis, 2/18 with pneumonia; 2/18 with UTI) - children <14 y with pyelonephritis - faeces from healthy donors <8 y | - K1 antigen more frequent in neonatal infection (67%) vs. older infants with invasive infection (22%) p < 0.001) - K1 prevalence among meningitis 78% - Hemolysin more common in infants vs. neonates (44% vs. 18%) - No differences in type 1 fimbria distribution according to age or disease |
McCabe W.R., 1978 [27] | E. coli | Determination of O and K antigen | O antigen, K capsular antigen | Comparison of O and K antigens among E. Coli strains from adults and neonatal bacteraemia | KI antigen was significantly greater in neonatal strains compared to adult bacteraemia (p < 0.05) |
Study | Pathogen/s | Microbiological Method | VFs/VGs | Analyses | Findings: VF-Outcome |
---|---|---|---|---|---|
S. M. Soto, 2008 [28] | E. coli | PCR | hlyA, cnf1, sat1, papA, papC, papEF, papGII, papGIII, prs 2, fimA, Type 1 fimbria, foc, sfa, fyuA, aer, iucC, iroN, iha, malX ibeA, hra | Comparative analysis of the prevalence of virulence factors in E. coli clinical isolates causing EOS vs. LOS | - No differences in phylogenetic groups between EOS and LOS - ibeA more prevalent in the strains causing EOS. (86% versus 52%, p = 0.01) - papGIII more prevalent in the strains involved in LOS (28% versus 5%, p = 0.03) - hlyA more frequent in the strains causing EOS (41% vs. 20%, p = 0.11- not significant) |
Bryan K. Cole 2019 [11] | E. coli | PCR | cnf1; fimH; hek/hra; hlyC; ibeA; iucC; iro; kpsMT II; nlpI; ompA; papGII-III; sfa/foc, S | Comparative analysis of number of virulence factors in E. coli clinical isolates causing EOS vs. LOS | - N° of VFs greater in isolates from EOS (mean ± SD: 8.1 ± 2.4 and 6.8 ± 1.9, respectively; p < 0.04) - ST95 and ST131 more frequent in EOS vs. LOS but not significant |
Farah Mahjoub-Messai, 2011 [29] | E. coli | PCR | Antigen K1, tcpC, papGII, papGIII, sfa/foc, hek/hra, ibeA, cnf1, hlyC, sat, clbN/clbB, vat, cdt, iroN, fyuA, iucC, sitA, cvaA, etsC, iss, ompTp, hlyF, CVP region | Comparison of VFs in isolates from EOS vs. LOS in bacteremia due to gut translocation | - hlyC more common in LOS (46% vs. 0%; p = 0.01) - iroN was more prevalent in EOS (84% vs. 38%; p = 0.02). - Plasmidic traits (cvaA, etsC, iss, ompTp, and hlyF) more frequent in EOS (p = 0.01; = 0.02; = 0.04; = 0.04; = 0.04 resp) - CVP region more frequent in EOS (61.5% vs. 15.3%; p = 0.01). |
Noemí Palma, 2016 [26] | E. coli | PCR | sepA, sigA, pet, pic, espC, hly, cnf1, sat, set1A, set1B, sen, astA, fimA, papC, papGIII, aafC, agg3C, agg4C, iucD, iutA, fyuA, shf, agn43, aap, aatA | Sub-analysis of VFs in isolates causing EOS vs. LOS | Average number of VGs greater in neonates with sepsis onset in the first 24 h (5.9) than in EOS (5.2) and LOS (4.7) |
Kirsty Sands, 2021 [5] | K. pneumoniae | WGS | WGS | Sub-analysis of VFs in isolates causing EOS vs. LOS | OR = 0.113 of LOS (p = 0.040) among Kleborate virulence score = 3 or 4 (presence of aerobactin and/or salmochelin with/without yersiniabactin (without colibactin)) vs. virulence score of 0 = none of the acquired virulence |
Study | Pathogen/s | Microbiological Method | VFs/VGs | Analysis | Findings |
---|---|---|---|---|---|
Farah Mahjoub-Messai, 2011 [29] | E. coli | PCR | Antigen K, tcpC, papGII, papGIII, sfa/foc, hek/hra, beA, cnf1, hlyC, sat, clbN/clbB, vat, cdt, iroN, fyuA, iucC, sitA, cvaA, etsC, iss, ompTp, hlyF, CVP region | Comparison of VFs from young infants with bacteremia due either to UT or to GT | - Virulence score was nearly identical in UTI and GT isolates (UT 9.7 vs. GT 9.4) - PapGII and tcpC less frequent in GT than UT isolates (56% vs. 78% p = 0.16 and 7.6% vs. 28%, p = 0.03) - ibeA more prevalent in GT vs. UT (27% vs. 2.7%, p = 0.002) |
Charles Burdet 2014 [25] | E. coli | PCR | neuC (K1), iroN, iucC, iha, papC, papGII, papGIII, hlyC, cnf1, hra, sat, ire, usp, ompT ibeA, fyuA, irp2, traT, clbA, clbQ, PAI, PAI ICFT073, PAI IIJ96, PAI III536, PAI IV536, PAIgimA, PAIUSP, PAIpks | Bacterial characteristics in bacteremic isolates from urinary vs. digestive origin(GT, gut traslocation) | - No difference found in portals of entry (Urinary vs. GT) - Infants ≤ 3 months with severe bacteraemia had a more frequently non-urinary (92.9% vs. 17.2%, p < 0.001) but digestive 50.0% vs. 10.3%, p < 0.01) portal of entry than those without - A non-urinary source of bacteraemia was the only risk factor associated with severity (OR = 72.0, 95% CI = 7.2–796.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barcellini, L.; Ricci, G.; Bresesti, I.; Piazza, A.; Comandatore, F.; Sharland, M.; Zuccotti, G.V.; Folgori, L. The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 11930. https://doi.org/10.3390/ijms231911930
Barcellini L, Ricci G, Bresesti I, Piazza A, Comandatore F, Sharland M, Zuccotti GV, Folgori L. The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(19):11930. https://doi.org/10.3390/ijms231911930
Chicago/Turabian StyleBarcellini, Lucia, Giulia Ricci, Ilia Bresesti, Aurora Piazza, Francesco Comandatore, Mike Sharland, Gian Vincenzo Zuccotti, and Laura Folgori. 2022. "The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review" International Journal of Molecular Sciences 23, no. 19: 11930. https://doi.org/10.3390/ijms231911930
APA StyleBarcellini, L., Ricci, G., Bresesti, I., Piazza, A., Comandatore, F., Sharland, M., Zuccotti, G. V., & Folgori, L. (2022). The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review. International Journal of Molecular Sciences, 23(19), 11930. https://doi.org/10.3390/ijms231911930