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Abstract: Three hair dyes of Arianor madder red 306003 (R), Arian or Straw Yellow 306005 (Y), and
Arianor ebony 306020 (E) were removed from an aqueous solution in a batch mode using a powder
of oak cupules coated with ZnO (COZ). The COZ-adsorbent material was characterized in terms
of XRD, FT-IR, and SEM analysis. The best conditions for the uptake of hair dyes by COZ were
investigated. For Y dye, the best uptake was estimated on 0.06 g of COZ at 7.0 pH for 150 min. The
E dye uptake requires 120 min on 0.05 g of COZ at 9.0 pH. For E hair dye, kinetic data revealed a
pseudo-first-order model for E hair dye and a pseudo-second-order model for R and Y. Equilibrium
data exhibited consistency with the Langmuir isotherm model for the adsorption of E dye onto COZ,
and the Freundlich isotherm model for the adsorption of R and Y hair dyes onto COZ. Isotherms models
of D-R and Temkin were also examined. The thermodynamic parameters (−ve ∆G and +ve ∆H and
∆S) demonstrated that the removal of hair dyes by COZ is spontaneous, endothermic, and feasible.
The adsorption capacity of COZ for R, Y, and E uptake was found to be 55.5, 52.6, and 135.1 mg·g−1,
respectively. Furthermore, COZ reusability was demonstrated after five cycles of regeneration, with a
negligible decline in adsorption extent (13.08%, 13.85, and 10.20% for R, Y, and E, respectively) in
comparison to its initial capacity.

Keywords: adsorption; hair dyes; ZnO; oak; kinetics; thermodynamic

1. Introduction

Monitoring pollution is now one of society’s top priorities. The environment is listed
as being threatened by organic dyes. Organic dyes are introduced to aquatic systems by the
effluents of several sectors, including paint, textile, medicinal, and biotechnology. These
colors do not naturally degrade and persist in aquatic systems [1]. The production of
aromatic molecular dyes from hydrocarbons such as benzene, toluene, etc. raises unique
environmental challenges [2]. Per the characteristics they give water solutions, dyes are
categorized as cationic, anionic, or nonionic. The inclusion of amine groups in the structure
makes azo dyes particularly poisonous. Before releasing these azo dyes into water effluents,
their levels should be as low as feasible because they may cause harm to both the environ-
ment and human health [1]. Chemical precipitation, membrane filtration, ion exchange,
electrolysis, coagulation, solvent extraction, reverse osmosis, and electrocoagulation are ex-
amples of methods and processes utilized to remove contaminants [3]. It was reported that
the adsorption methods are more efficacious than other physical and chemical remedies [4].
Among various purifying methods, adsorption is versatile, ubiquitous, inexpensive, afford-
able, safe for human health, ecologically friendly, and effective. For removing dyes from an
aqueous solution, numerous studies relying on the adsorption approach employing natural
surfaces were conducted. Zinc oxide nanoparticles are promising adsorption materials for
removing hazardous contaminants such as dyes. The reasons are related to ZnO nanoparti-
cles’ appealing properties such as low cost, non-toxicity, chemical stability, thermal stability,
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photo-stability, and high UV absorption [5]. The high isoelectric point of ZnO (9.5) im-
proves its surface positive (+ve) charge. ZnO nanoparticles have recently been used to coat
various adsorbents, such as zeolite [6]. Under convenient conditions, ZnO nanoparticles
are highly effective at removing anionic azo-dyes such as amaranth and methyl orange
from aqueous systems [7]. The use of an assisted microwave technique to Coat chitosan
with ZnO nanoparticles results in a significant improvement in the removal of methylene
blue (MB) dye from an aqueous solution [8]. Under optimal conditions, nanostructured
ZnO material demonstrated remarkable efficiency in the removal of cationic and anionic
dyes such as malachite green, acid Fuchsin, and congo red [9].

In this study, an affordable adsorbent material for the uptake of hair dyes from an
aqueous solution was prepared from a powder of oak cupules coated with ZnO. The effec-
tiveness of the adsorption process was optimized by analyzing the parameters of adsorbent
dosage, initial concentration, contact time, temperature, and pH. Kinetic, isothermal, and
thermodynamic studies were carried out to deduce the equilibrium and mechanism of
the adsorption process. Scheme 1 shows the chemical structure of three colors of hair
dyes, Arianor madder red 306003 (R), Arianor Straw Yellow 306005 (Y), and Arianor ebony
306020 (E).
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the majority of the bands.  

Scheme 1. The chemical structure of (a) Arianor madder red 306003 (R), (b) Arianor Straw Yellow
306005 (Y), and (c) Arianor ebony 306020 (E).

2. Results and Discussion
2.1. Characterization of Adsorbent Material

Techniques of FT-IR, SEM, and XRD were employed to characterize the adsorption
process of the three hair dyes (R, Y, and E) onto COZ.

The FT-IR analysis was utilized to recognize and categorize functional groups that
serve as active sites on the surface of COZ. The FT-IR spectra of natural oak cupules powder
Figure 1a shows many bands at 3332.57, 3020, 2925.52, 2119.56, 1738.09, 1603.04, 1508.1,
1435.4, 1368.7, 1221.38, 902.42, 525.89, and 459.25 cm−1. The functional groups assigned
to these bands are detailed in Table 1 [10,11]. When comparing Figure 1b to the spectrum
of oak cupules powder (Figure 1a), there are significant shifts and changes in intensity for
all bands, particularly those at 525.89 cm−1, which shifts to 516.48 and at 459.69 shifts to
410.13. These changes in intensity and wavenumbers can be attributed to the interactions
between oak cupules and the ZnO. According to Figure 1c–e, loaded hair dyes on COZ
displayed fluctuation in intensity when compared to COZ, with a little shift in the majority
of the bands.



Int. J. Mol. Sci. 2022, 23, 11959 3 of 20
Int. J. Mol. Sci. 2022, 23, 11959 3 of 21 
 

 

 

 

 

 
Figure 1. Cont.



Int. J. Mol. Sci. 2022, 23, 11959 4 of 20Int. J. Mol. Sci. 2022, 23, 11959 4 of 21 
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Figure 1. FT-IR analysis of (a) raw oak cupules powder and (b) coated oak cupules powder with ZnO
[COZ]; (c) red hair dye onto COZ [COZR], (d) Yellow hair dye onto COZ [COZY], and (e) Ebony dye
onto COZ [COZE].

Table 1 FT-IR results for all samples of O, COZ, COZR, COZY, and COZE:

Table 1. FTIR Results.

Wavenumber (cm−1)

O COZ COZR COZY COZE

O–H stretching
vibration 3332.57 3354.74 3307.87 3560.62 3332.60

aliphatic C–H
group stretching
vibrations of the
−CH3 and −CH2

groups

2925.52 2944.77 2967.64 2923.73 2878.23

stretching
vibration of C=O

of carboxylic
groups

1738.09 1740.43 1594.97 1730.56 1723.53

carboxylic/aromatic
hydroxyl (−OH)

stretching of
phenol group

1435.4 and 1221.38 1418.70
1116.59

1417.06
1260.86

1363.93
1113.43

1458.67
1108.81

C=C, the C–H
bond, and O–H in

the plane
deformation

902.42 1064.24 1024.78 1020.21 1029.60

C–H deformation
vibration and CH2
rocking vibration
−C–N– and−C–C–

stretching

(525.89–902.42) (516.48–1064.24) (600.88–1024.78) (600.78–1020.21) (672.06–1029.60)

Bond to Metal
oxide (ZnO) 459.25 410.13 412.86 450.60 519.92

The surface morphology of O, ZO, COZ, COZR, COZY, and COZE is portrayed by
SEM. The adsorption process of the three hair dyes R, Y, and E onto COZ are depicted in
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SEM images (Figure 2a–e), in which the accumulation of dye moieties on the COZ surface
is clearly evident.
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The adsorption of three hair dyes (R, Y, and E) onto COZ was discerned using XRD.
Figure 3 depicts the obtained spectra. The difference in intensity and broadening between
spectra before and after adsorption is striking.
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Figure 3. XRD analysis of (a) oak [O] before coated and after coated with ZnO [COZ], (b) COZ before
and after adsorption with red hair dye [COZR], (c) COZ before and after adsorption with yellow hair
dye [COZY], and (d) COZ before and after adsorption with Ebony hair dye [COZE].

2.2. Batch Adsorption
2.2.1. Adsorbent Dosage

The adsorption process is impacted by the variation in adsorbent dosage. The adsorp-
tion capacity was investigated using the following equation [9]:

qe =

(
Ci − Ceq

)
V

m
(1)

where qe (mg·g−1) is the equilibrium adsorbed amount, Ci and Ceq (mg·L−1) are the initial
and equilibrium concentrations, respectively. V (L) is the volume of solution.

The adsorbent dosage used in the experiment ranged from 0.01 to 0.1g. The optimal
conditions of the experiment were fixed at 150 rpm shaking for 60 min, at a concentration
of 50 mg·L−1, a temperature of 25 ± 1 ◦C, and a pH of 7.0. The results are emphasizedin
Figure 4a–c. The R, Y, and E all experienced an increase in hair dye uptake to 0.07 g,
0.06 g, and 0.05 g, respectively. As the dosage of COZ increases, the equilibrium adsorption
capacity begins to decline. This behavior could be explained by the prevalence of numerous
functioning sites on the COZ surface.
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Figure 4. Effect of adsorbent dosage on the adsorption of (a) red hair dye onto COZ (b) yellow hair
dye onto COZ, and (c) ebony hair dye onto COZ [adsorbent dosage = 0.01–0.1 g, Ci = 50 mg·L−1; pH
= 7.0, and contact time = 60 min, and T = 25 ± 1 ◦C, speed = 150 rpm].
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2.2.2. Contact Time

The performance of COZ adsorbent in removing R, Y, and E dyes was investigated
considering the impact of contact time. The results of the experiments under fixed con-
ditions were emphasized in Figure 5. The percentage removal of hair dyes will steadily
increase until an equilibrium is achieved. In the earliest stages, the removal percentages
sizably increased due to the abundant and sizeable accessible functioning sites on the COZ
surface. Results demonstrated that R and E dyes required 120 min to equilibrate, whereas
Y dye takes 150 min.
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Figure 5. Effect of contact time on the adsorption of hair dyes [dosage = 0.07 g R, 0.06 g Y, & 0.05 E,
time = 20–210 min, Ci = 50 mg·L−1; pH = 7.0, and T = 25 ± 1 ◦C, speed = 150 rpm].

2.2.3. Adsorbate Concentration

The impact of initial dye concentration variance (25–150 mg·L−1) on COZ performance
in removing R, Y, and E dyes was investigated. The results are emphasized in Figure 6. In
the earliest stages, the results revealed a considerable rise. The COZ adsorbent showed its
best performance at a concentration of 50 mg·L−1 for each of the three dyes (R, Y, and E).
The saturation of functioning sites on the COZ adsorbent increased substantially, resulting
in a slight decline in the adsorbent capacity [12,13].
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Figure 6. Effect of adsorbate initial concentration (25–150 mg·L−1) on the adsorption of red, yellow,
and ebony hair dyes; [dosage = 0.07 g R, 0.06 g Y, & 0.05 E, pH = 7.0, contact time = 120 min for R and
E, 150 min for Y, T = 25 ± 1 ◦C, speed = 150 rpm].

2.2.4. pH

The zero-charge point (pHpzc) was determined by shaking 50 mL of 0.1 M NaCl
solutions with 0.15 g COZ for 24 h. at various pH values (2, 4, 6, 8, 10, and 12). The
pHf vs pHi plot indicated a pHpzc value of 9.5. When the pH exceeds the pHpzc, the
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adsorbent surface charge is negative (−ve), and vice versa [14]. According to Figure 7, the
batch adsorption experiments were conducted under optimal conditions and at a pH range
between 3 and 10. R and E hair dyes’ adsorption functionality was remarked to modestly
rise when the pH value increased from 3.0 to 9.0. For Y dye, the adsorption capacity
increases to neutral before declining at basic. At low pH, the rather modest adsorption of
hair dyes onto COZ adsorbent is due to the significant amount of H+ that competes with
the dye cation in adsorption [15]. Further increases in pH result in more negatively charged
surfaces. Because of these negatively charged surfaces, the affinity between the positively
charged (+ve) dye molecule and the adsorbent is attenuated [16]. The optimal pH for R
and E dye adsorption by COZ was realized to be 9.0, and 7.0 for Y.
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Figure 7. Effect of pH on the adsorption of hair dyes (red, yellow, and ebony) onto COZ; [dosage = 0.07 g R,
0.06 g Y, & 0.05 E, Ci = 50 mg·L−1, contact time = 120 mint. For R and E, 150 mint. For Y, T = 25± 1 ◦C,
speed = 150 rpm].

2.2.5. Adsorption Kinetic Studies

Pseudo-first-order and pseudo-second-order kinetics were employed to investigate
the adsorption of hair dyes (R, Y, and E) onto COZ.

The following pseudo-first-order kinetic linear equation was employed [17]:

log(qe − qt) = log (qe)−
(

k1

2.303

)
t (2)

where, k1 expresses the rate constant (min−1), qe is the equilibrium adsorbed amount of
material per unit mass of adsorbent (mg·g−1), and qt is the equilibrium adsorbed amount
of material per unit mass of adsorbent at time t (mg·g−1).

The following pseudo-second-order kinetic linear equation was employed [18]:

t
qt

=
1

k2q2
e
− 1

qe
t (3)

where, k2 is the rate constant (g·mg−1 min−1), qe is the equilibrium adsorbed amount of
material per unit mass of adsorbent (mg·g−1), and qt is the equilibrium adsorbed amount
of material adsorbed per unit mass of at time t (mg·g−1). The value of k2 was obtained
using the slope and intercept from the plot of t/qt versus t.

Rate constants for the three hair dye were obtained from the plots in Figures 8–10 and
then compiled in Table 2. The kinetic model that best fits the adsorption of hair dyes onto
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COZ was determined based on R2 values. R2 values were employed to identify the kinetic
model that best fits the adsorption of hair dyes onto COZ. Thus, according to Figures 8 and 9,
the pseudo-second-order is adequate to describe the adsorption of R and Y hair dyes onto
COZ. However, as demonstrated in Figure 10, the pseudo-first-order is adequate to describe
the adsorption of E hair dye onto COZ.
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Figure 8. Kinetic studies of the adsorption of red hair dye onto COZ, [dosage = 0.07 g R, 0.06 g Y,
& 0.05 E, Ci = 50 mg·L−1, pH = 7.0, contact time = 120 min for R and E, 150 min for Y, T = 25 ± 1 ◦C,
speed = 150 rpm].
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Figure 9. Kinetic studies of the adsorption of yellow hair dye onto COZ, [dosage = 0.07 g R, 0.06 g Y,
& 0.05 E, Ci = 50 mg·L−1, pH = 7.0, contact time = 120 min for R and E, 150 min for Y, T = 25 ± 1 ◦C,
speed = 150 rpm].
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Figure 10. Kinetic studies of the adsorption of ebony hair dye onto COZ, [dosage = 0.07 g R, 0.06 g Y,
& 0.05 E, Ci = 50 mg·L−1, pH = 7.0, contact time = 120 mint. for R and E, 150 mint. for Y, T = 25 ± 1 ◦C,
speed = 150 rpm].

Table 2. Kinetics constants.

First Order Kinetics Second Order Kinetics

R2 K1 (min−1) R2 K1
(g·mg−1min−1)

R hair dye 0.7344 −5.508 × 10−3 0.9992 1.88 × 10−2

Y hair dye 0.4312 −8.40 × 10−3 0.9373 −6.7 × 10−3

E hair dye 0.9964 +1.7764 0.4077 0.0269

The following three sequent steps could be employed to demonstrate the dynamic
mechanism of the adsorption process: (i) film diffusion, in which the adsorbate moieties
transmit from the bulk solution to the exterior surface of the adsorbent; (ii) particle diffusion,
in which adsorbate moieties diffusion into the pore of adsorbent; and (iii) adhering of
adsorbate moieties onto the pores interior surfaces [19]. Intra-particle diffusion (Equation (4))
and Boyd (Equations (5) and (6)) models were employed to investigate the rate-limiting
step that controlled the adsorption of hair dyes (R, Y, and E) onto COZ [20].

qt = Kidt
1
2 + C (4)

where qt is the adsorbed amount of the hair dye in mg·g−1, kid is the rate constant in mg/g
min1/2, and t1/2 is the square root of time in min1/2.

Bt = −0.4977− ln(1− F) (5)

F =
qt

qo
(6)

where Bt is a mathematical function of F that expresses the fraction of adsorbate moieties
that are adsorbed at any time t, qo is the amount of hair dye adsorbed at the infinite time
(mg·g−1), and qt expresses the amount of hair dye adsorbed at any time t (min).

The nonlinearity emphasized in a plot of qt versus t1/2 (Figure 11) indicates adsorption
cruised into two steps for the three hair dyes (R, Y, and E). The first straight line for each
of the three hair dyes is explained by chemisorption, and the second is controlled by an
intra-particle diffusion mechanism.
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Figure 11. Intra-Particle Diffusion Plot for R, Y, and E hair dyes uptake onto COZ adsorbent.

The nonlinear plot of Bt versus time in the Boyd model (Figure 12) confirms the intra-
particle model results. Boyd’s model implies that external mass transfer mainly governs
the rate of the adsorption process.
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2.2.6. Adsorption Isotherms

Isotherms of the Langmuir, Freundlich, Dubinin—Radushkevich (D-R), and Temkin
models were applied to comprehend the mechanism of the adsorption of hair dyes onto
adsorbent material. The Langmuir isotherm model’s linear equation is represented by the
following equation [18]:

Ce

qe
=

1
kLqm

+
Ce

qm
(7)

where qe is the equilibrium adsorbed amount of the material (mg·g−1), qe is the equilibrium
adsorbed amount of the material (mg·g−1), KL is the Langmuir isotherm constant related to
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the energy of adsorption and used to determine the affinity of the adsorbate to the adsorbent
surface, and Ce is the equilibrium concentration of material in the solution (mg·L−1).

The slope and intercept of the linear plot of Ce/qe vs. Ce were employed to figure out
the values of the KL and qm constants. The parameter RL was estimated using Equation (8)
and thus, could be used to anticipate the adsorbent efficacy. The process is considered to
be irreversible if RL is just zero, favorable if RL is below one, linear if RL is just one, and
unfavorable if RL is higher than unity:

RL =
1

1 + kLCi
(8)

where, KL is the Langmuir isotherm constant determined in Equation (7), and Ci is the
initial concentration of the adsorbate.

The Freundlich isotherm model linear equation is represented by the following:

log qe = log K f +
1
n

log Ce (9a)

where qe is the equilibrium concentration of the solid phase material per gram of adsorbent
(mg·g−1), Ce is the equilibrium concentration of the material in the bulk phase (mg·L−1),
Kf is the Freundlich isotherm constant (mg·g−1), and n is the intensity of adsorption.

The slope and intercept of the linear plot of log qe vs. Ce were employed to figure out
the values of the Kf and n constants.

The Langmuir and Freundlich isotherms for hair dyes onto COZ were emphasized in
Figures 13–15. All isotherms constants for the adsorption of hair dyes (R, Y, and E) onto
COZ were calculated (Table 3). According to the dimensional parameters for the Langmuir
isotherm (RL), the adsorption of the three hair dyes (R, Y, and E) onto COZ is a favorable
process. In accordance with the correlation coefficients (R2), the adsorption of R and Y hair
dyes onto COZ is adequate to the Freundlich isotherm, as emphasized in Figures 13 and 14.
On the other hand, the adsorption of E is supposed to follow the Langmuir isotherm, as
emphasized in Figure 15. Thus, according to Table 3, the Freundlich constant (n) value
is significantly higher than one, implying that R and Y hair dyes preferentially bind to
heterogeneous COZ surface [20].
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Figure 13. (a) Langmuir isotherm of red hair dye onto COZ, and (b) Freundlich isotherm of red hair
dye onto COZ.
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Figure 14. (a) Langmuir isotherm of yellow hair dye onto COZ, and (b) Freundlich isotherm of yellow
hair dye onto COZ.
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Figure 15. (a) Langmuir isotherm of ebony hair dye onto COZ, and (b) Freundlich isotherm of ebony
hair dye onto COZ.

For the Dubinin—Radushkevich (D-R) isotherm model, the equation used was as
follows [19]:

ln qe = ln QD − BDε2 (9b)

where QD is the maximum capacity in mol/g (theoretical), and BD is a constant of the D-R
model in mol2/KJ2.

E is Polanyi potential and it is expressed by:

ε = RT ln
(

1 +
1

Ce

)
(10)

The mean energy of the adsorption process in KJ/mol is calculated by:

E =
1√
2BD

(11)

For the Temkin isotherm model, the equation used was as follows [18]:

qe = B ln A + B ln Ce (12)

where A is the equilibrium binding constant in g−1, and B is the constant related to the heat
of adsorption.
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The D-R and Temkin isotherms are presented in Figures 16 and 17. According to
Figure 16, E dye data is more D-R isotherm-adequate than R and Y hair dyes. Following the
D-R isotherm, the estimated energy values (less than 8.0 KJ/mol) imply that the adsorption
of E dye onto COZ is physisorption in nature [21].
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Figure 16. D-R isotherm of (a) R, (b) Y, and (c) E hair dyes onto COZ.

The values of Temkin constant B (Table 3) reveal that the adsorption of hair dyes onto
COZ adsorbent is endothermic. The plot demonstrated the endothermic nature of the
adsorption process. Interestingly, a robust interaction between the hair dyes (R, Y, and E)
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and COZ adsorbent is revealed by the linear adequate of the acquired data to the Temkin
isotherm [21].
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Figure 17. Temkin isotherm of R, Y, and E hair dyes onto COZ.

Table 3. Isotherms model constants.

Langmuir Freundlich D-R Temkin

Hair
Dye R2

L RL KL
qm

mg/g
R2

F
KF

mg/g
n R2 BD

mol2/KJ2
E

KJ/mol R2 B A

Red 0.9239 0.1823 0.3310 55.2 0.9905 13.72 3.15 0.8614 3 × 10−5 0.13 0.9697 11.5 1.3
Yellow 0.9748 0.5250 0.01673 52.6 0.9942 1.70 1.53 0.8885 2 × 10−4 0.05 0.9315 13.5 0.12
Ebony 0.9827 0.3989 0.03345 135.1 0.9494 11.97 2.57 0.9498 2 × 10−5 0.16 0.9483 24.7 0.42

2.2.7. Thermodynamics

The thermodynamic parameters (Gibbs Free Energy ∆G◦, enthalpy change ∆H◦, and
entropy change ∆S◦) were computed for the adsorption processes onto COZ. ∆H◦ (kJ mol−1)
and ∆S◦ (J/mol−1 K−1) of hair dyes adsorption were computed based on the slope and
intercept of the plot of ln (KL) versus 1/T (K−1).

Thermodynamic experiments were performed under the temperature of 25 ◦C, 35 ◦C,
and 45 ◦C. The fundamental thermodynamic parameters of the adsorption (∆H◦, and ∆S◦)
were calculated from Van’t Hoff’s equation:

ln(KL) =
∆So

R
− ∆Ho

T

(
1
T

)
(13)

The value of Gibbs Free Energy (∆G◦) can be obtained by:

∆Go = −RT ln(KL) (14)

where T is the temperature in Kelvin (K), KL is the adsorption equilibrium constant related
to the best-fitted model, and R is the universal ideal gas constant (8.314 J·K−1 mol−1).

Negative values of ∆G◦ for the three hair dyes (Table 4) describe the process as
favorable and spontaneous. Positive values of ∆H◦ 4.89, 5.06, and 5.92 kJ mol−1 for R, Y,
and E hair dyes, respectively, confirm the endothermic of the adsorption process. These
acquired results are consistent with the Temkin isotherm results. The positive ∆So values
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19.89, 17.01, and 21.25 KJ/mol−1K−1 predict the randomness at the solid-solution interface
during the adsorption process. According to results, the physical and chemical detachments
were both concerned with the adsorption of hair dyes onto COZ.

Table 4. Thermodynamic parameters of adsorption of hair dyes (R, Y, and E) onto COZ.

Hair
Dye T (K)

qm
(mg·g−1)

Thermodynamic Parameters

∆G◦ (KJ mol−1) ∆H◦ (KJ mol−1) ∆S◦ (KJ K−1mol−1)

Red 298 35.10 −3.61 4.89 19.89
Yellow 308 43.39 −3.78
Ebony 318 52.47 −4.65

Red 298 24.00 −0.24 5.06 17.01
Yellow 308 32.21 −0.73
Ebony 318 50.60 −1.31

Red 298 39.66 −1.32 5.92 21.25
Yellow 308 42.43 −2.17
Ebony 318 51.68 −2.57

2.3. Re-Generation of Adsorbent

Adsorption/desorption experiments were conducted in an attempt to predict the
regeneration of the COZ adsorbent. A 1.0 M of the acetic acid solution was used for R
and Y dyes, whereas a 1.0 M NaOH solution was used for the E dye [22]. The adsorption
percentage removal after five cycles of re-generation is presented in Figure 18.
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Figure 18. Removal Percentage of R, Y, and E in Regeneration process of COZ adsorbent.

The desorption of R and Y is related to the established weak electrostatic attraction
between the carboxyl group in acetic acid and cationic dyes, which was beneficial for
reducing the interaction between dyes (R and Y) and ZnO. The same justification applies to
the reaction of acidic E dye with NaOH base. The pH of the solution is another feature that
promotes dye desorption processes. The adsorbent surface turns positive (ZnOH2+) when
pH < pHpzc and negative (ZnO−) when pH > pHpzc.
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After the five COZ re-generation cycles, the dye uptake declined for R, Y, and E by
13.08%, 13.85%, and 10.20%, respectively. This gradual decrease in removal percentage
might well be ascribed to a change in COZ surface physicochemical characteristics. As
aforementioned, both physical and chemical adsorption onto COZ were involved. Thus,
the chemisorption processes and the very modest dissolution of ZnO at pH = 2 might
explain the changes in COZ surface characteristics [23].

The number of cycles that lead to zero uptakes of the three hair dyes (R, Y, and E)
onto COZ adsorbent (zero capacity of COZ) might reasonably be predicted based on the
results in Figure 18. For R, Y, and E hair colors, respectively, it is expected that zero capacity
of COZ adsorbent would be achieved after about 33, 29, and 44 cycles (Figure 19). For
example, the R dye uptake declined by 13.08% per five cycles, and it was anticipated to
decline by 26.16%, 39.24%, 52.32%, 78.48%, 91.56%, 99.408% per 10, 15, 20, 25, 30, and 33
cycles, respectively.
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3. Material and Methods
3.1. Chemicals and Instruments

Three hair dyes; Arianor Madder red 306003 (R), Arianor Straw Yellow 306005 (Y), Ar-
ianor Ebony 306020 (E), and ZnSO4.7H2O were purchased from Sigma Aldrich (Darmstadt,
Germany) and used without further purification. Three stock solutions of 1000 mg·L−1

concentrations were prepared and then diluted to the required working concentrations
(25–150 mg·L−1). The pH of solutions was adjusted using 0.1 M NaOH and 0.1 M HCl solu-
tions. The functional groups on the oak cupule powder, O, and oak coated with ZnO, COZ,
before and after the adsorption processes were characterized utilizing a TENSOR FTIR
instrument from BRUKER. The FT-IR measurements were taken within the wavenumber
region of 500–4000 cm−1. Adsorbent material was portrayed utilizing scanning electron
microscopy (SEM; Model: A Phenom XL G2 scanning electron microscope from Thermo
Fisher Scientific, Waltham, MA, USA). With the use of the PANalytical B. V. Lelyweg 17602
EA ALMELO instrument, X-ray diffraction (XRD) investigations were conducted.

3.2. Adsorbent Preparation and Characterization

The following methodology was employed to prepare the targeted coated oak cupules
(COZ). The oak cupules were collected from the province of Jerash. The cupules were rinsed,
dried at 70 ◦C for about 48 h, powdered, sieved to a size of 125 µm, and stored to be coated
with ZnO. A mixture of 5.0 g of oak cupules powder and 60 mL of 0.2 M ZnSO4.7H2O
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solution (0.012 moles) was vigorously stirred for about 18 h during the addition of 30 mL
0.8 M NaOH solution (0.024 moles). The coated oak cupules with ZnO (COZ) were filtered,
rinsed with distilled water, dried at 100 ◦C for 2–3 h, and then stored to be used for the
removal of hair dyes (R, Y, and E) from aqueous solution. An X-ray diffractometer (XRD,
PANalytical B. V. Lelyweg 17602 EA, (Almelo Netherlands) was utilized to get the XRD
patterns of the COZ structure. The surface morphology images were depicted using the
SEM instrument (A Phenom XL G2 scanning electron microscope from Thermo Fisher
Scientific). SEM images assisted in showing the surface morphological changes experienced
by the formation of adsorbents or by the adsorption process. BRUKER FT-IR spectrometer
(Darmstadt, Germany) was utilized to determine the functional groups presence on the oak
cupules powder, COZ, and their significance in the adsorption process. Thermo Scientific
pH-meter was utilized for pH measurements.

3.3. Bach Adsorption Experiment

Batch adsorption experiments of the three hair dyes (R, Y, and E) were conducted
using COZ. The dye solution was delivered in 50 mL increments at various concentrations
to a flask with a known mass of adsorbent. The flask contents were shaken for a certain time
at a speed of 150 rpm. The solution was then filtered from the adsorbent and subjected to
absorbance measurements to estimate concentration. Contact time (30–210 min), initial dye
concentration (25–150 mg·L−1), adsorbent dose (0.01–0.1 g), and solution pH (3–10) were
all investigated. The concentrations of the residual dye in the solutions were ascertained
using a UV-6100 Double beam spectrophotometer at wavelengths 500, 402, and 617 nm
for R, Y, and E dyes, respectively. The adsorbed amount of the hair dye, qe (mg·g−1), was
computed using Equation (1).

4. Conclusions

Three hair dyes (R, Y, and E) were examined for their capability to adsorb onto COZ
adsorbent. The results obtained from the characterization techniques (FT-IR, XRD, and SEM)
confirm the coating process of the oak cupules powder by ZnO particles. The following
conditions were found to be optimal for the uptake of the three hair dyes: adsorbent mass
of 0.07 g, 0.06 g, and 0.05 g for R, Y, and E dyes, respectively, and contact time of 120 min
for R and E, and 150 min for Y, with an initial concentration of 50 mg·L−1 for the three
hair dyes, pH = 9 for R and E, and 7.0 for Y. Adsorption isotherm data for R and Y hair
dyes were derived using the Freundlich model, whereas the E hair dye isotherm data
fit the Langmuir model. The spontaneity and the endothermic nature of the adsorption
process were confirmed by the thermodynamic results. The kinetic data of the R and Y hair
dyes were modeled by the pseudo-second-order, revealing that the nature of the kinetic
adsorption is chemical. On the other hand, the kinetic data of the E hair dye was modeled
by the pseudo-first-order. The rapid adsorption kinetics and high uptake values indicated
that COZ is a highly competitive adsorbent for the removal of R, Y, and E hair dyes from
solutions. Experiments proved that COZ adsorbent could be re-generated using acetic acid
for R and Y recovery, and NaOH for E.
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