Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes
Abstract
:1. Introduction
1.1. Protein Abundance Prediction Tools
1.2. Codon Usage Bias Impacts Elongation Efficiency
1.3. Secondary Structures Impact Elongation Efficiency
1.4. Summary
2. Results
- Base EEI type, i.e., the mode of evolutionary optimization of translation exhibited by a particular genome;
- Taxonomical identity of an analyzed genome;
- Cell doubling time, i.e., microorganism’s reproduction rate;
- Mean (M) and standard deviation (R) of ranks of ribosomal protein genes measured on the base EEI scale.
2.1. Dependence of Correlation between Protein Abundance and the EEI from EEI Type
2.2. Dependence of Correlation between Protein Abundance and the EEI from Phylogeny
2.3. Dependence of Correlation between Protein Abundance and the EEI from Minimal Doubling Time
2.4. Dependence of Correlation between Protein Abundance and the EEI from Elongation Efficiency of Ribosomal Protein Genes
3. Discussion
4. Materials and Methods
4.1. Proteomic and Genomic Data
4.2. EloE Elongation Efficiency Indices (EEI)
4.3. Statistical Analysis and Regression Model
4.4. Minimal Doubling Time
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Codon Usage Calculation
Appendix A.2. Secondary Structures Calculation
Appendix A.3. Local Complementary Indices Calculation
- is a gene context from nucleotide k to nucleotide j, and is complementary gene context from nucleotide x to nucleotide y (x < y);
- s is the length of the = , which is the number of nucleotides in the considered reverted repeat; it is not less than = 3 nucleotides and not higher than = 6 nucleotides;
- l is the distance between such repeats, = 3, = 50 nucleotides;
- is the length of gene i without the last three nucleotides (stop codon);
- ζ(con1, con2) = 1 if the contexts are identical and ζ(con1, con2) = 0 in other cases;
- ψ(con1, con2) is the energy of a hairpin formed by con1, con2, calculated conventionally.
Appendix B
Organism | EEIType | r Base | Pval Base | r1 | Pval 1 | r2 | Pval 2 | r3 | Pval 3 | r4 | Pval 4 | r5 | Pval 5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteroides thetaiotaomicron | 1 | 0.57 | 2.52 × 10−67 | 0.57 | 2.52 × 10−67 | 0 | 9.07 × 10−1 | 0.08 | 2.95 × 10−2 | 0.45 | 2.49 × 10−39 | 0.21 | 2.58 × 10−9 |
Deinococcus deserti | 1 | 0.38 | 6.58 × 10−48 | 0.38 | 6.58 × 10−48 | 0.19 | 5.05 × 10−12 | 0.16 | 4.75 × 10−9 | 0.42 | 2.77 × 10−59 | 0.37 | 1.88 × 10−43 |
Escherichia coli | 1 | 0.57 | 0 | 0.57 | 0 | 0 | 7.71 × 10−1 | −0.04 | 4.66 × 10−3 | 0.5 | 1.37 × 10−252 | 0.38 | 6.89 × 10−142 |
Lactococcus lactis | 1 | 0.6 | 2.58 × 10−128 | 0.6 | 2.58 × 10−128 | 0.29 | 1.37 × 10−26 | −0.16 | 6.93 × 10−9 | 0.6 | 4.20 × 10−127 | 0.04 | 1.55 × 10−1 |
Listeria monocytogenes | 1 | 0.57 | 1.46 × 10−41 | 0.57 | 1.46 × 10−41 | 0.1 | 3.24 × 10−2 | −0.06 | 2.02 × 10−1 | 0.53 | 3.84 × 10−35 | 0.23 | 6.85 × 10−7 |
Salmonella typhimurium | 1 | 0.45 | 1.79 × 10−126 | 0.45 | 1.79 × 10−126 | 0.16 | 2.70 × 10−15 | 0.17 | 1.10 × 10−18 | 0.46 | 8.48 × 10−133 | 0.44 | 4.92 × 10−123 |
Shigella flexneri | 1 | 0.65 | 4.01 × 10−202 | 0.65 | 4.01 × 10−202 | 0.05 | 4.94 × 10−2 | 0.24 | 5.17 × 10−24 | 0.62 | 8.03 × 10−178 | 0.6 | 1.71 × 10−162 |
Staphylococcus aureus | 1 | 0.66 | 8.46 × 10−211 | 0.66 | 8.46 × 10−211 | 0.22 | 7.89 × 10−20 | −0.16 | 4.63 × 10−11 | 0.59 | 2.74 × 10−159 | 0.05 | 3.43 × 10−2 |
Streptococcus pyogenes | 1 | 0.63 | 3.60 × 10−141 | 0.63 | 3.60 × 10−141 | 0.08 | 6.81 × 10−3 | −0.12 | 2.22 × 10−05 | 0.59 | 3.28 × 10−121 | 0.2 | 2.36 × 10−13 |
Synechocystis sp. | 1 | 0.4 | 8.01 × 10−48 | 0.4 | 8.01 × 10−48 | 0.09 | 1.02 × 10−3 | −0.03 | 2.71 × 10−1 | 0.3 | 2.11 × 10−26 | 0.11 | 2.02 × 10−4 |
Thermococcus gammatolerans | 1 | 0.44 | 3.71 × 10−66 | 0.44 | 3.71 × 10−66 | −0.02 | 4.18 × 10−1 | −0.16 | 3.25 × 10−9 | 0.37 | 6.11 × 10−44 | 0.11 | 6.38 × 10−5 |
Yersinia pestis | 1 | 0.4 | 4.86 × 10−47 | 0.4 | 4.86 × 10−47 | 0.01 | 7.23 × 10−1 | 0.06 | 4.22 × 10−2 | 0.36 | 6.63 × 10−39 | 0.31 | 2.53 × 10−27 |
Acidithiobacillusferrooxidans | 2 | 0.12 | 1.73 × 10−5 | 0.22 | 6.07 × 10−16 | 0.12 | 1.73 × 10−5 | 0.15 | 7.05 × 10−8 | 0.35 | 7.86 × 10−39 | 0.34 | 2.38 × 10−36 |
Campylobacter jejuni | 2 | 0.46 | 6.48 × 10−42 | −0.15 | 3.25 × 10−5 | 0.46 | 6.48 × 10−42 | −0.21 | 8.67 × 10−9 | 0.34 | 5.60 × 10−22 | −0.24 | 1.93 × 10−11 |
Helicobacter pylori | 2 | 0.28 | 1.22 × 10−29 | 0.07 | 5.65 × 10−3 | 0.28 | 1.22 × 10−29 | −0.16 | 3.60 × 10−10 | 0.39 | 1.06 × 10−57 | −0.12 | 4.31 × 10−6 |
Leptospira interrogans | 2 | 0.35 | 6.06 × 10−66 | −0.28 | 2.65 × 10−40 | 0.35 | 6.06 × 10−66 | −0.16 | 6.61 × 10−15 | 0.46 | 8.46 × 10−117 | −0.25 | 2.45 × 10−34 |
Mycoplasma pneumoniae | 2 | 0.24 | 1.60 × 10−6 | 0.06 | 2.14 × 10−1 | 0.24 | 1.60 × 10−6 | 0.01 | 8.88 × 10−1 | 0.26 | 3.25 × 10−7 | 0.03 | 6.04 × 10−1 |
Pseudomonas aeruginosa | 3 | 0.27 | 1.37 × 10−42 | 0.09 | 1.76 × 10−5 | 0.25 | 2.09 × 10−36 | 0.27 | 1.37 × 10−42 | 0.28 | 1.24 × 10−44 | 0.3 | 6.09 × 10−53 |
Bacillus anthracis | 4 | 0.52 | 3.42 × 10−102 | 0.53 | 3.42 × 10−102 | 0.1 | 1.86 × 10−4 | −0.17 | 1.57 × 10−10 | 0.52 | 1.01 × 10−94 | −0.1 | 1.39 × 10−4 |
Bartonella henselae | 4 | 0.35 | 1.21 × 10−41 | 0.37 | 1.21 × 10−41 | 0.09 | 1.91 × 10−3 | −0.06 | 4.79 × 10−2 | 0.35 | 1.15 × 10−38 | 0.13 | 2.43 × 10−6 |
Desulfovibrio vulgaris | 4 | 0.39 | 3.87 × 10−37 | 0.4 | 3.87 × 10−37 | 0.13 | 5.22 × 10−5 | 0.18 | 3.23 × 10−8 | 0.39 | 5.07 × 10−36 | 0.36 | 8.71 × 10−31 |
Halobacterium salinarum | 4 | 0.33 | 2.00 × 10−2 | 0.08 | 2.00 × 10−2 | 0.17 | 1.00 × 10−5 | 0.15 | 1.00 × 10−7 | 0.33 | 1.00 × 10−9 | 0.28 | 1.00 × 10−22 |
Legionella pneumophila | 4 | 0.42 | 2.50 × 10−5 | 0.15 | 2.50 × 10−5 | 0.17 | 4.34 × 10−6 | −0.03 | 3.57 × 10−1 | 0.42 | 2.72 × 10−32 | 0 | 9.27 × 10−1 |
Microcystis aeruginosa | 4 | 0.14 | 1.14 × 10−83 | −0.27 | 1.14 × 10−83 | 0.17 | 5.59 × 10−35 | −0.17 | 3.95 × 10−32 | 0.14 | 1.43 × 10−22 | −0.29 | 1.43 × 10−96 |
Mycobacterium tuberculosis | 4 | 0.26 | 3.44 × 10−28 | 0.19 | 3.44 × 10−28 | 0.05 | 1.48 × 10−3 | 0.05 | 4.60 × 10−3 | 0.26 | 1.45 × 10−52 | 0.21 | 3.94 × 10−36 |
Neisseria meningitidis | 5 | 0.09 | 7.73 × 10−2 | 0.08 | 8.93 × 10−2 | 0.07 | 1.41 × 10−1 | 0.03 | 5.30 × 10−1 | 0.04 | 3.88 × 10−1 | 0.09 | 7.73 × 10−2 |
Organism | EEI Type | M1 | R1 | M2 | R2 | M3 | R3 | M4 | R4 | M5 | R5 | M_Main | R_Main |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acidithiobacillus ferrooxidans | 2 | 2 | 54 | 42 | 47 | 36 | 48 | 34 | 51 | 42 | 47 | 42 | 47 |
Bacillus anthracis | 4 | 76 | 48 | 38 | 46 | −43 | 55 | 77 | 46 | −48 | 51 | 77 | 46 |
Bacteroides thetaiotaomicron | 1 | 91 | 20 | −14 | 58 | 17 | 60 | 71 | 38 | 50 | 41 | 91 | 20 |
Bartonella henselae | 4 | 54 | 42 | 32 | 53 | −5 | 57 | 61 | 41 | 16 | 60 | 61 | 41 |
Campylobacter jejuni | 2 | −43 | 54 | 67 | 37 | −25 | 57 | 34 | 67 | −49 | 42 | 67 | 37 |
Deinococcus deserti | 1 | 85 | 31 | 30 | 53 | 19 | 56 | 84 | 22 | 64 | 49 | 87 | 28 |
Desulfovibrio vulgaris | 4 | 61 | 34 | 42 | 40 | 38 | 47 | 79 | 19 | 70 | 38 | 79 | 18 |
Escherichia coli | 1 | 87 | 30 | 13 | 63 | 14 | 53 | 82 | 34 | 75 | 36 | 87 | 30 |
Halobacterium salinarum | 4 | −6 | 36 | 14 | 41 | 5 | 42 | 36 | 41 | 29 | 43 | 36 | 41 |
Helicobacter pylori | 2 | −33 | 55 | 51 | 44 | −10 | 63 | 32 | 52 | −24 | 59 | 51 | 44 |
Lactococcus lactis | 1 | 76 | 49 | 46 | 50 | −37 | 62 | 75 | 52 | −27 | 68 | 76 | 49 |
Legionella pneumophila | 4 | 16 | 61 | 27 | 61 | −11 | 59 | 66 | 43 | −10 | 57 | 66 | 43 |
Leptospira interrogans | 2 | −61 | 45 | 59 | 42 | −38 | 53 | 49 | 52 | −61 | 34 | 59 | 42 |
Listeria monocytogenes | 1 | 79 | 36 | 28 | 59 | −23 | 62 | 77 | 38 | 13 | 61 | 79 | 36 |
Microcystis aeruginosa | 4 | −42 | 39 | 44 | 48 | −46 | 45 | 55 | 46 | −53 | 33 | 55 | 46 |
Mycobacterium tuberculosis | 4 | −7 | 60 | 18 | 56 | 8 | 61 | 36 | 63 | 29 | 69 | 36 | 63 |
Mycoplasma pneumoniae | 2 | −11 | 55 | 34 | 54 | −28 | 58 | 29 | 60 | −30 | 52 | 34 | 54 |
Pseudomonas aeruginosa | 3 | −75 | 27 | 83 | 18 | 83 | 17 | 25 | 43 | 44 | 34 | 83 | 17 |
Salmonella typhimurium | 1 | 84 | 40 | 24 | 63 | 30 | 47 | 82 | 42 | 82 | 38 | 85 | 39 |
Shigella flexneri | 1 | 95 | 6 | 6 | 64 | 7 | 53 | 87 | 19 | 79 | 35 | 94 | 12 |
Staphylococcus aureus | 1 | 83 | 25 | 48 | 47 | −32 | 62 | 81 | 29 | −18 | 63 | 83 | 25 |
Streptococcus pyogenes | 1 | 91 | 26 | −4 | 62 | −25 | 59 | 88 | 27 | 26 | 71 | 91 | 26 |
Synechocystis sp. | 1 | 53 | 51 | 19 | 60 | −30 | 58 | 40 | 51 | −13 | 65 | 53 | 51 |
Thermococcus gammatolerans | 1 | 77 | 32 | 0 | 65 | −37 | 54 | 63 | 47 | 3 | 67 | 77 | 32 |
Yersinia pestis | 1 | 91 | 26 | −1 | 65 | −4 | 59 | 82 | 34 | 60 | 56 | 91 | 26 |
References
- Hui, S.; Silverman, J.M.; Chen, S.S.; Erickson, D.W.; Basan, M.; Wang, J.; Hwa, T.; Williamson, J.R. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 2015, 11, 784. [Google Scholar] [CrossRef]
- Mehdi, A.M.; Patrick, R.; Bailey, T.L.; Boden, M. Predicting the dynamics of protein abundance. Mol. Cell. Proteom. 2014, 13, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, R.; Rundquist, O.; Kim, M.J.; Hellberg, S.; Na, C.H.; Benson, M.; Gomez-Cabrero, D.; Kockum, I.; Tegnér, J.; Piehl, F.; et al. On the prediction of protein abundance from RNA. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Ventorim, R.; Almeida, E.; Silveira, S.; Silveira, W. Protein Abundance Prediction Through Machine Learning Methods. J. Mol. Biol. 2021, 433, 167267. [Google Scholar] [CrossRef]
- Guimaraes, J.C.; Rocha, M.; Arkin, A.P. Transcript level and sequence determinants of protein abundance and noise in Escherichia coli. Nucleic Acids Res. 2014, 42, 4791–4799. [Google Scholar] [CrossRef] [Green Version]
- Kudla, G.; Murray, A.W.; Tollervey, D.; Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science 2009, 324, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, V.; Zuraev, B.; Lashin, S.; Matushkin, Y. Web application for automatic prediction of gene translation elongation efficiency. J. Integr. Bioinform. 2015, 12, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likhoshvai, A.; Matushkin, Y.G. Nucleotide composition-based prediction of gene expression efficacy. Mol. Biol. 2000, 34, 397–405. [Google Scholar] [CrossRef]
- Likhoshvai, V.A.; Matushkin, Y.G. Differentiation of single-cell organisms according to elongation stages crucial for gene expression efficacy. FEBS Lett. 2002, 516, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, N.V.; Likhoshvai, V.A.; Matushkin, Y.G. Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms. Mol. Biol. 2007, 41, 843–850. [Google Scholar] [CrossRef]
- Sharp, P.M.; Tuohy, T.M.F.; Mosurski, K.R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14, 5125–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, M.A.; Kurland, C.G.; Pedersen, S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 1989, 207, 365–377. [Google Scholar] [CrossRef]
- Wei, Y.; Silke, J.R.; Xia, X. An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci. Rep. 2019, 9, 3184. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.E.; Brooks, A.E.S.; Poole, A.M.; Simoes-Barbosa, A. Determinants of translation efficiency in the evolutionarily-divergent protist Trichomonas vaginalis. BMC Mol. Cell Biol. 2020, 21, 54. [Google Scholar] [CrossRef]
- Cambray, G.; Guimaraes, J.C.; Arkin, A.P. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in escherichia coli. Nat. Biotechnol. 2018, 36, 1005–1015. [Google Scholar] [CrossRef]
- Mohammad, F.; Green, R.; Buskirk, A.R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 2019, 8, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hia, F.; Takeuchi, O. The effects of codon bias and optimality on mRNA and protein regulation. Cell. Mol. Life Sci. 2021, 78, 1909–1928. [Google Scholar] [CrossRef]
- Frumkin, I.; Lajoie, M.J.; Gregg, C.J.; Hornung, G.; Church, G.M.; Pilpel, Y. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc. Natl. Acad. Sci. USA 2018, 115, E4940–E4949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeacock, L.; Faria, J.; Horn, D. Codon usage bias controls mRNA and protein abundance in trypanosomatids. eLife 2018, 7, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Boël, G.; Letso, R.; Neely, H.; Price, W.N.; Su, M.; Luff, J.; Valecha, M.; Everett, J.K.; Acton, T.B.; Xiao, R.; et al. Codon influence on protein expression in E.coli. Nature 2016, 529, 358–363. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Iriarte, A.; Lamolle, G.; Musto, H. Codon Usage Bias: An Endless Tale. J. Mol. Evol. 2021, 89, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.G.E.; Sharp, P.M. Codon usage and base composition in Rickettsia prowazekii. J. Mol. Evol. 1996, 42, 525–536. [Google Scholar] [CrossRef]
- Lafay, B.; Lloyd, A.T.; McLean, M.J.; Devine, K.M.; Sharp, P.M.; Wolfe, K.H. Proteome composition and codon usage in spirochaetes: Species-specific and DNA strand-specific mutational biases. Nucleic Acids Res. 1999, 27, 1642–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frutos, R.; Viari, A.; Ferraz, C.; Bensaid, A.; Morgat, A.; Boyer, F.; Coissac, E.; Vachiéry, N.; Demaille, J.; Martinez, D. Comparative genomics of three strains of Ehrlichia ruminantium: A review. Ann. N. Y. Acad. Sci. 2006, 1081, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang, A. Intragenic codon usage in proteobacteria: Translational selection, IS expansion and genomic shrinkage. Gene 2021, 809, 146015. [Google Scholar] [CrossRef] [PubMed]
- Lafay, B.; Atherton, J.C.; Sharp, P.M. Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 2000, 146 Pt 4, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Rispe, C.; Delmotte, F.; van Ham, R.C.H.J.; Moya, A. Mutational and Selective Pressures on Codon and Amino Acid Usage in Buchnera, Endosymbiotic Bacteria of Aphids. Genome Res. 2004, 14, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.M.; Bailes, E.; Grocock, R.J.; Peden, J.F.; Sockett, E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 2005, 33, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, V.S.; Likhoshvai, V.A.; Matushkin, Y.G. Gene expression and secondary mRNA structures in different Mycoplasma species. Russ. J. Genet. Appl. Res. 2014, 4, 208–217. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.D. Python Implementation of Codon Adaptation Index. J. Open Source Softw. 2018, 3, 905. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A. BCAWT: Automated tool for codon usage bias analysis for molecular evolution. J. Open Source Softw. 2019, 4, 1500. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Zinovyev, A.; Kepes, F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics 2003, 19, 2005–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, G.; Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 2018, 19, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Pop, C.; Rouskin, S.; Ingolia, N.T.; Han, L.; Phizicky, E.M.; Weissman, J.S.; Koller, D. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 2014, 10, 770. [Google Scholar] [CrossRef]
- Shah, P.; Ding, Y.; Niemczyk, M.; Kudla, G.; Plotkin, J.B. XRate-limiting steps in yeast protein translation. Cell 2013, 153, 1589. [Google Scholar] [CrossRef] [Green Version]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell. 2015, 59, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Chiaruttini, C.; Guillier, M. On the role of mRNA secondary structure in bacterial translation. Wiley Interdiscip. Rev. RNA 2019, 11, 1–21. [Google Scholar] [CrossRef]
- Thanaraj, T.A.; Argos, P. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 1996, 5, 1594–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.-D.; Lancaster, L.; Hodges, C.; Zeri, A.-C.; Yoshimura, S.H.; Noller, H.F.; Bustamante, C.; Tinoco, I. Following translation by single ribosomes one codon at a time. Nature 2008, 452, 598–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Wen, J.-D.; Lancaster, L.; Noller, H.F.; Bustamante, C.; Tinoco, I.J. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 2011, 475, 118–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, P. Model of ribosome translation and mRNA unwinding. Eur. Biophys. J. 2013, 42, 347–354. [Google Scholar] [CrossRef]
- Xie, P.; Chen, H. Mechanism of ribosome translation through mRNA secondary structures. Int. J. Biol. Sci. 2017, 13, 712–722. [Google Scholar] [CrossRef]
- Takyar, S.; Hickerson, R.P.; Noller, H.F. mRNA Helicase Activity of the Ribosome. Cell 2005, 120, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, D.H.; Rouskin, S.; Zhang, Y.; Li, G.W.; Weissman, J.S.; Gross, C.A. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. eLife 2017, 6, 1–23. [Google Scholar] [CrossRef]
- Kertesz, M.; Wan, Y.; Mazor, E.; Rinn, J.L.; Nutter, R.C.; Chang, H.Y.; Segal, E. Genome-wide Measurement of RNA Secondary Structure in Yeast. Nature 2010, 467, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Faure, G.; Ogurtsov, A.Y.; Shabalina, S.A.; Koonin, E.V. Role of mRNA structure in the control of protein folding. Nucleic Acids Res. 2016, 44, 10898–10911. [Google Scholar] [CrossRef] [Green Version]
- Mauger, D.M.; Joseph Cabral, B.; Presnyak, V.; Su, S.V.; Reid, D.W.; Goodman, B.; Link, K.; Khatwani, N.; Reynders, J.; Moore, M.J.; et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. USA 2019, 116, 24075–24083. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, D.; Wu, F.; Standage-Beier, K.; Chen, X.; Wu, K.; Green, A.A.; Wang, X. Predictable control of RNA lifetime using engineered degradation-tuning RNAs. Nat. Chem. Biol. 2021, 17, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.K.; Kushner, S.R. Regulation of mRNA Decay in Bacteria. Annu. Rev. Microbiol. 2016, 70, 25–44. [Google Scholar] [CrossRef]
- Jacks, T.; Madhani, H.D.; Masiarz, F.R.; Varmus, H.E. Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region. Cell 1988, 55, 447–458. [Google Scholar] [CrossRef]
- Lopinski, J.D.; Dinman, J.D.; Bruenn, J.A. Kinetics of Ribosomal Pausing during Programmed −1 Translational Frameshifting. Mol. Cell. Biol. 2000, 20, 1095–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemla, Y.; Peeri, M.; Heltberg, M.L.; Eichler, J.; Jensen, M.H.; Tuller, T.; Alfonta, L. A possible universal role for mRNA secondary structure in bacterial translation revealed using a synthetic operon. Nat. Commun. 2020, 11, 4827. [Google Scholar] [CrossRef] [PubMed]
- Gorochowski, T.E.; Ignatova, Z.; Bovenberg, R.A.L.; Roubos, J.A. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res. 2015, 43, 3022–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebert, D.; Jehn, J.; Rosenkranz, D. Widespread selection for extremely high and low levels of secondary structure in coding sequences across all domains of life. Open Biol. 2019, 9, 190020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victor, M.P.; Acharya, D.; Begum, T.; Ghosh, T.C. The optimization of mRNA expression level by its intrinsic properties—Insights from codon usage pattern and structural stability of mRNA. Genomics 2019, 111, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Matushkin, Y.; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Russia. Personal communication, 2022.
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.; Wilson, D.J.; Feil, E.; Eyre-Walker, A. The distribution of bacterial doubling times in the wild. Proc. R. Soc. B Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [PubMed]
- Neidhardt, F.C.; Magasanik, B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim. Biophys. Acta 1960, 42, 99–116. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, M.; Warren, M.; Balakrishnan, R.; Patsalo, V.; Okano, H.; Williamson, J.R.; Fredrick, K.; Wang, Y.P.; Hwa, T. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2016, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P.G.; Ran, W. Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol. Biol. Evol. 2008, 25, 2279–2291. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Silva, S.; Rocha, E.P.C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissman, J.L.; Hou, S.; Fuhrman, J.A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. USA 2021, 118, 1–10. [Google Scholar] [CrossRef]
- Riba, A.; Nanni, N. Di, Mittal, N.; Arhné, E.; Schmidt, A.; Zavolan, M. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proc. Natl. Acad. Sci. USA 2019, 116, 15023–15032. [Google Scholar] [CrossRef] [Green Version]
- Ishihama, Y.; Schmidt, T.; Rappsilber, J.; Mann, M.; Harlt, F.U.; Kerner, M.J.; Frishman, D. Protein abundance profiling of the Escherichia coli cytosol. BMC Genom. 2008, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurizi, M.R. Proteases and protein degradation in Escherichia coli. Experientia 1992, 48, 178–201. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.B.; Church, G.M.; Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 2013, 342, 475–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samatova, E.; Daberger, J.; Liutkute, M.; Rodnina, M.V. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front. Microbiol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, V.S.; Likhoshvai, V.A.; Matushkun, Y.G. Gene expression and mRNA secondary structures in different Mycoplasma species. Vavilov J. Genet. Breed. 2013, 17, 639–650. [Google Scholar] [CrossRef]
- Wang, M.; Herrmann, C.J.; Simonovic, M.; Szklarczyk, D.; von Mering, C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 2015, 15, 3163–3168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitts, P.A.; Church, D.M.; Thibaud-Nissen, F.; Choi, J.; Hem, V.; Sapojnikov, V.; Smith, R.G.; Tatusova, T.; Xiang, C.; Zherikov, A.; et al. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2016, 44, D73–D80. [Google Scholar] [CrossRef]
- Wissler, C. The Spearman correlation formula. Science 1905, 22, 309–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: Philadelphia, PA, USA, 1994. [Google Scholar]
- Kai, T.; Nagano, T.; Fukumoto, T.; Nakajima, M.; Takahashi, T. Autotrophic growth of Acidithiobacillus ferrooxidans by oxidation of molecular hydrogen using a gas-liquid contactor. Bioresour. Technol. 2007, 98, 460–464. [Google Scholar] [CrossRef]
- Bugrysheva, J.V.; Lascols, C.; Sue, D.; Weigel, L.M. Rapid antimicrobial susceptibility testing of bacillus anthracis, yersinia pestis, and burkholderia pseudomallei by use of laser light scattering technology. J. Clin. Microbiol. 2016, 54, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Sonnenburg, E.D.; Zheng, H.; Joglekar, P.; Higginbottom, S.K.; Firbank, S.J.; Bolam, D.N.; Sonnenburg, J.L. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 2010, 141, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chenoweth, M.R.; Somerville, G.A.; Krause, D.C.; O’Reilly, K.L.; Gherardini, F.C. Growth Characteristics of Bartonella henselae in a Novel Liquid Medium: Primary Isolation, Growth-Phase-Dependent Phage Induction, and Metabolic Studies. Appl. Environ. Microbiol. 2004, 70, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducati, R.G.; Harijan, R.K.; Cameron, S.A.; Tyler, P.C.; Evans, G.B.; Schramm, V.L. Transition-State Analogues of Campylobacter jejuni 5′-Methylthioadenosine Nucleosidase. ACS Chem. Biol. 2018, 13, 3173–3183. [Google Scholar] [CrossRef]
- Bornot, J.; Molina-Jouve, C.; Uribelarrea, J.L.; Gorret, N. Quantitative characterization of the growth of deinococcus geothermalis dsm-11302: Effect of inoculum size, growth medium and culture conditions. Microorganisms 2015, 3, 441–463. [Google Scholar] [CrossRef]
- Fievet, A.; Ducret, A.; Mignot, T.; Valette, O.; Robert, L.; Pardoux, R.; Dolla, A.R.; Aubert, C. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris hildenborough. Front. Microbiol. 2015, 6, 1378. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, O.; Gronau, S.; Pfeiffer, F.; Mendoza, E.; Zimmer, R.; Oesterhelt, D. Systems Analysis of Bioenergetics and Growth of the Extreme Halophile Halobacterium salinarum. PLoS Comput. Biol. 2009, 5. [Google Scholar] [CrossRef] [Green Version]
- Andersen, A.P.; Elliott, D.A.; Lawson, M.; Barland, P.; Hatcher, V.B.; Puszkin, E.G. Growth and morphological transformations of Helicobacter pylori in broth media. J. Clin. Microbiol. 1997, 35, 2918–2922. [Google Scholar] [CrossRef] [Green Version]
- Holubová, J.; Josephsen, J. Potential of AbiS as defence mechanism determined by conductivity measurement. J. Appl. Microbiol. 2007, 103, 2382–2391. [Google Scholar] [CrossRef]
- O’Connor, T.J.; Adepoju, Y.; Boyd, D.; Isberg, R.R. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc. Natl. Acad. Sci. USA 2011, 108, 14733–14740. [Google Scholar] [CrossRef] [Green Version]
- Ratet, G.; Veyrier, F.J.; Fanton d’Andon, M.; Kammerscheit, X.; Nicola, M.A.; Picardeau, M.; Boneca, I.G.; Werts, C. Live Imaging of Bioluminescent Leptospira interrogans in Mice Reveals Renal Colonization as a Stealth Escape from the Blood Defenses and Antibiotics. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glomski, I.J.; Decatur, A.L.; Portnoy, D.A. Listeria monocytogenes Mutants That Fail to Compartmentalize Listerolysin O Activity Are Cytotoxic, Avirulent, and Unable to Evade Host Extracellular Defenses. Infect. Immun. 2003, 71, 6754–6765. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V. Isolation, Culture and Morphological Characterization of Microcystis Sp Toxic Strain From the Tacuary Reservoir. Int. J. Adv. Res. 2018, 6, 387–393. [Google Scholar] [CrossRef] [Green Version]
- James, B.W.; Williams, A.; Marsh, P.D. The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J. Appl. Microbiol. 2000, 88, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, E.; Malachowski, A.; Garcia-Morales, L.; Burgos, R.; Serrano, L.; Martins dos Santos, V.A.P.; Suarez-Diez, M. Model-driven design allows growth of Mycoplasma pneumoniae on serum-free media. npj Syst. Biol. Appl. 2020, 6. [Google Scholar] [CrossRef]
- McBirney, S.E.; Trinh, K.; Wong-Beringer, A.; Armani, A.M. Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates. Biomed. Opt. Express 2016, 7, 4034–4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abshire, K.Z.; Neidhardt, F.C. Growth rate paradox of Salmonella typhimurium within host macrophages. J. Bacteriol. 1993, 175, 3744–3748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchini, S.; Liu, H.; Jin, Q.; Hinton, J.C.D.; Yu, J. Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: Insights into the strategies of a cytosolic bacterial pathogen. Infect. Immun. 2005, 73, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Gera, K.; McIver, K.S. Laboratory growth and maintenance of streptococcus pyogenes (The Group A Streptococcus, GAS). Curr. Protoc. Microbiol. 2013, 30, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touloupakis, E.; Cicchi, B.; Torzillo, G. A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. Biotechnol. Biofuels 2015, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagorce, A.; Fourçans, A.; Dutertre, M.; Bouyssiere, B.; Zivanovic, Y.; Confalonieri, F. Genome-wide transcriptional response of the Archaeon Thermococcus gammatolerans to Cadmium. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
Organism | EEI Type | Coverage | Correlation Coefficient | p-Value | Doubling Time (h) | M_Main | R_Main |
---|---|---|---|---|---|---|---|
Staphylococcus aureus | 1 | 62.5 | 0.66 | 8.46 × 10−211 | 0.4 | 83 | 25 |
Shigella flexneri | 1 | 39.4 | 0.65 | 4.01 × 10−202 | 0.5 | 94 | 12 |
Streptococcus pyogenes | 1 | 75.9 | 0.63 | 3.60 × 10−141 | 0.6667 | 91 | 26 |
Lactococcus lactis | 1 | 57.1 | 0.60 | 2.58 × 10−128 | 0.5 | 76 | 49 |
Bacteroides thetaiotaomicron | 1 | 15.9 | 0.57 | 2.52 × 10−67 | 2.7 | 91 | 20 |
Listeria monocytogenes | 1 | 16.4 | 0.57 | 1.46 × 10−41 | 0.5167 | 79 | 36 |
Escherichia coli | 1 | 97.40 | 0.57 | 0 | 0.3333 | 87 | 30 |
Bacillus anthracis | 4 | 26.20 | 0.52 | 3.42 × 10−102 | 0.5 | 77 | 46 |
Campylobacter jejuni | 2 | 47.40 | 0.46 | 6.48 × 10−42 | 2.4667 | 67 | 37 |
Salmonella typhimurium | 1 | 56.3 | 0.45 | 1.79 × 10−126 | 0.5 | 85 | 39 |
Thermococcus gammatolerans | 1 | 62.2 | 0.44 | 3.71 × 10−66 | 4.5 | 77 | 32 |
Legionella pneumophila | 4 | 25.2 | 0.42 | 2.50 × 10−05 | 3.3 | 66 | 43 |
Synechocystis sp. | 1 | 37.8 | 0.40 | 8.01 × 10−48 | 5.8 | 53 | 51 |
Yersinia pestis | 1 | 29.6 | 0.40 | 4.86 × 10−47 | 1 | 91 | 26 |
Desulfovibrio vulgaris | 4 | 27.1 | 0.39 | 3.87 × 10−37 | 2.48 | 79 | 18 |
Deinococcus deserti | 1 | 38.5 | 0.38 | 6.58 × 10−48 | 2.6 | 87 | 28 |
Bartonella henselae | 4 | 85.7 | 0.35 | 1.21 × 10−41 | 3 | 61 | 41 |
Leptospira interrogans | 2 | 66.2 | 0.35 | 6.06 × 10−66 | 8.2 | 59 | 42 |
Halobacterium salinarum | 4 | 54.2 | 0.33 | 2.00 × 10−02 | 11 | 36 | 41 |
Helicobacter pylori | 2 | 98.8 | 0.28 | 1.22 × 10−29 | 0.8333 | 51 | 44 |
Pseudomonas aeruginosa | 3 | 43.6 | 0.27 | 1.37 × 10−42 | 0.5 | 83 | 17 |
Mycobacterium tuberculosis | 4 | 84 | 0.26 | 3.44 × 10−28 | 14.7 | 36 | 63 |
Microcystis aeruginosa | 4 | 79.00 | 0.24 | 1.60 × 10−06 | 46 | 55 | 46 |
Mycoplasma pneumoniae | 2 | 60.9 | 0.14 | 1.14 × 10−83 | 8 | 34 | 54 |
Acidithiobacillus ferrooxidans | 2 | 41.9 | 0.12 | 1.73 × 10−05 | 5 | 42 | 47 |
№ | Species | Assembly Accession |
---|---|---|
1 | Acidithiobacillus ferrooxidans ATCC23270 | GCF_000021485.1 |
2 | Bacillus anthracis str. Sterne | GCF_000008165.1 |
3 | Bacteroides thetaiotaomicron VPI-5482 | GCF_000011065.1 |
4 | Bartonella henselae str. Houston-1 | GCF_000046705.1 |
5 | Campylobacter jejuni NCTC11168 | GCF_000009085.1 |
6 | Deinococcus deserti VCD115 | GCF_000020685.1 |
7 | Desulfovibrio vulgaris str. Hildenborough | GCF_000195755.1 |
8 | Escherichia coli K12 MG1655 | GCF_000005845.2 |
9 | Halobacterium salinarum NRC-1 | GCF_000006805.1 |
10 | Helicobacter pylori 26695 | GCF_000008525.1 |
11 | Lactococcus lactis subsp. lactis Il1403 | GCF_000006865.1 |
12 | Legionella pneumophila subsp. pneumophila str. Philadelphia 1 | GCF_000008485.1 |
13 | Leptospira interrogans serovar Lai str. 56601 | GCF_000007685.1 |
14 | Listeria monocytogenes EGD-e | GCF_000196035.1 |
15 | Microcystis aeruginosa NIES-843 | GCF_000010625.1 |
16 | Mycobacterium tuberculosis H37Rv | GCF_000195955.2 |
17 | Mycoplasma pneumoniae FH | GCF_001272835.1 |
18 | Neisseria meningitidis MC58 | GCF_000008805.1 |
19 | Pseudomonas aeruginosa PAO1 | GCF_000006765.1 |
20 | Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 | GCF_000006945.2 |
21 | Shigella flexneri 2a str. 301 | GCF_000006925.2 |
22 | Staphylococcus aureus | GCF_000009665.1 |
23 | Streptococcus pyogenes | GCF_000006785.2 |
24 | Synechocystis sp. PCC 6803 | GCF_000009725.1 |
25 | Thermococcus gammatolerans EJ3 | GCF_000022365.1 |
26 | Yersinia pestis CO92 (enterobacteria) | GCF_000009065.1 |
Type | Codon Usage | Local Complementarity Level (Potential mRNA Secondary Structures, | Local Complementarity Level with the Energy of Potential mRNA Secondary Structures |
---|---|---|---|
EEI1 | + | — | — |
EEI2 | — | + | — |
EEI3 | — | — | + |
EEI4 | + | + | — |
EEI5 | + | — | + |
Organism | Doubling_Time (DT), h | Log (DT) | DT_Source |
---|---|---|---|
Acidithiobacillus ferrooxidans | 5 | 0.69897 | [77] |
Bacillus anthracis | 0.5 | −0.30103 | [78] |
Bacteroides thetaiotaomicron | 2.7 | 0.431364 | [79] |
Bartonella henselae | 3 | 0.477121 | [80] |
Campylobacter jejuni | 2.466667 | 0.39211 | [81] |
Deinococcus deserti | 2.6 | 0.414973 | [82] |
Desulfovibrio vulgaris | 2.48 | 0.394452 | [83] |
Escherichia coli | 0.333333 | −0.47712 | [61] |
Halobacterium salinarum | 11 | 1.041393 | [84] |
Helicobacter pylori | 0.833333 | −0.07918 | [85] |
Lactococcus lactis | 0.5 | −0.30103 | [86] |
Legionella pneumophila | 3.3 | 0.518514 | [87] |
Leptospira interrogans | 8.2 | 0.913814 | [88] |
Listeria monocytogenes | 0.516667 | −0.28679 | [89] |
Microcystis aeruginosa | 46 | 1.662758 | [90] |
Mycobacterium tuberculosis | 14.7 | 1.167317 | [91] |
Mycoplasma pneumoniae | 8 | 0.90309 | [92] |
Pseudomonas aeruginosa | 0.5 | −0.30103 | [93] |
Salmonella typhimurium | 0.5 | −0.30103 | [94] |
Shigella flexneri | 0.5 | −0.30103 | [95] |
Staphylococcus aureus | 0.4 | −0.39794 | [93] |
Streptococcus pyogenes | 0.666667 | −0.17609 | [96] |
Synechocystis sp. | 5.8 | 0.763428 | [97] |
Thermococcus gammatolerans | 4.5 | 0.653213 | [98] |
Yersinia pestis | 1 | 0 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korenskaia, A.E.; Matushkin, Y.G.; Lashin, S.A.; Klimenko, A.I. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. Int. J. Mol. Sci. 2022, 23, 11996. https://doi.org/10.3390/ijms231911996
Korenskaia AE, Matushkin YG, Lashin SA, Klimenko AI. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. International Journal of Molecular Sciences. 2022; 23(19):11996. https://doi.org/10.3390/ijms231911996
Chicago/Turabian StyleKorenskaia, Aleksandra E., Yury G. Matushkin, Sergey A. Lashin, and Alexandra I. Klimenko. 2022. "Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes" International Journal of Molecular Sciences 23, no. 19: 11996. https://doi.org/10.3390/ijms231911996
APA StyleKorenskaia, A. E., Matushkin, Y. G., Lashin, S. A., & Klimenko, A. I. (2022). Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. International Journal of Molecular Sciences, 23(19), 11996. https://doi.org/10.3390/ijms231911996