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Abstract: Protein abundance is crucial for the majority of genetically regulated cell functions to act
properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the
efficiency of different stages of gene expression is of great importance for predicting the actual protein
abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA
sequence features, such as codon usage bias and mRNA secondary structure properties. In this study,
we have evaluated correlation coefficients between experimentally measured protein abundance and
predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms,
belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into
account not only codon bias, but also number and energy of secondary structures in mRNA if
those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The
results show that, for a number of organisms, secondary structures are a better predictor of protein
abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated
with the value of the correlation coefficient. The first factor is the elongation efficiency optimization
type—the organisms whose genomes are optimized for codon usage only have significantly higher
correlation coefficients. The second factor is taxonomical identity—bacteria that belong to the class
Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate,
which is shown to be higher for the organisms with higher correlation coefficients between protein
abundance and predicted translation elongation efficiency. The obtained results can be useful for
further improvement of methods for protein abundance prediction.

Keywords: protein abundance prediction; translation elongation efficiency; translation in prokaryotes

1. Introduction

It is well-known that proteins are the key elements that provide cell function, hence
many physiological processes are controlled by the efficient allocation of the cellular
proteome [1]. That is why quantification of protein abundance is of great importance
for medical and biological studies. Experimental methods for measuring the amount of
protein are expensive and labor-intensive; therefore, the problem of predicting the amount
of protein based on genetic data is urgent.

1.1. Protein Abundance Prediction Tools

There are several approaches for prediction of protein abundance and tools that are
used to calculate protein abundance for a particular organism based on mRNA abundance
data and parameters of mRNA sequence. Many of them are species-specific, such as
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the tool that was developed for predicting protein abundance of Saccharomyces cerevisiae
and Schizosaccharomyces pombe [2]. The calculations are based on experimentally obtained
mRNA abundance, codon usage, the mRNA folding energy, and proteins’ half-life, which
were obtained for both organisms and used as constants for each protein. The correlation
between predicted and measured protein abundance is 0.77 and 0.74 for S. cerevisiae and
S. pombe, respectively. The authors underline the factors that highly impact prediction
accuracy: mRNA abundance, codon usage, and energy of mRNA fold. Another example is
a tool that uses mRNA data for the prediction of protein abundance for immune cells of
humans and mice [3]. The correlation between predicted and measured protein abundance
is about 0.79–0.94.

Also, a few tools working without mRNA abundance data exist. There is an algorithm
that uses only mRNA sequence features data to predict highly and lowly expressed proteins
of S. cerevisiae. This algorithm uses 91 features including various estimates of codon bias
calculated in various ways, CG content, codon-pair frequencies, etc. It shows a high
correlation coefficient (0.75) between predicted and measured data for the organisms
under study; however, the application of this model to Escherichia coli shows a modest (0.5)
correlation between measured and predicted data [4]. These algorithms show high accuracy
on organisms that have been used for training. However, predicting basal protein levels in
a more general case for non-model organisms still remains challenging. Moreover, even for
such a well-studied model organism as Escherichia coli, different studies emphasize different
factors contributing to actual protein abundance. According to [5], the major part of protein
abundance (53%) is determined by transcript level and at least 12% of protein abundance is
determined by effectors of translation elongation. On the other hand, translational initiation
determines about 1% of protein abundance. However, there is other evidence suggesting
that translation initiation also might play a significant role, especially, when the expression
levels of individual genes are under focus rather than global translation efficiency and
cellular fitness [6]. Therefore, bioinformatic estimation of factors contributing to protein
abundance, such as elongation efficiency, is an important step towards in silico prediction of
protein abundance levels. Here we investigate the capability to predict protein abundance
for phylogenetically diverse organisms by using the EloE (Elongation Efficiency) tool [7–10].
This tool calculates parameters that impact elongation efficiency of the translation stage:
codon bias, number of secondary structures in mRNA, and energy of secondary structures
in mRNA.

1.2. Codon Usage Bias Impacts Elongation Efficiency

The codon usage bias is the unequal proportion of synonymous codons occurrence
throughout a genome. The fact that codon usage bias is associated with gene expres-
sion level was shown by Sharp, Tuohy, and Mosurski [11], who demonstrated on yeast
that the highly expressed genes consist of common codons and lowly expressed genes
contain infrequent codons. The experiment with replacement of common codons to infre-
quent codons into E. coli genes showed that infrequent codons could increase translation
time [12]. Per-codon elongation rates are crucially dependent on the tRNA pool [13].
Codons with low abundance of the corresponding tRNA require more time for the correct
accommodation of the corresponding tRNA in the A-site of the ribosome, which makes
them non-optimal codons. Therefore, the content of optimal and non-optimal codons across
mRNA affects gene elongation efficiency. The fact that codon bias is associated with the
level of gene expression has been shown in many studies and reviews [14–23]. The great
impact of codon bias on translation efficiency was shown on E. coli [16,20], S. cerevisiae,
and Trichomonas vaginalis [14]. The codon usage bias has proven to be a good predictor
of gene expression for S. cerevisiae [4] and Trypanosoma brucei [19]; however, it proves to
be insufficient for a number of other organisms including Rickettsia, Ehrlichia, Buchnera,
Mycoplasma, Micrococcus, Helicobacter, and some spirochaetes [24–31].
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There is a classical approach to quantify codon usage bias known as the Codon
Adaptation Index (CAI) [32]. CAI is widely used to assess the codon usage bias in various
organisms and is implemented in several programming packages [33–35].

The codon usage bias might tune gene expression according to gene function. As it
has been shown for several S. cerevisiae genes, mRNAs of housekeeping genes, such as
those involved in glycolysis, are uniformly enriched in high-optimality codons, whereas
proteins involved in transient responses to stimuli, such as the pheromone response, are
enriched in non-optimal codons [36]. Genes that control circadian rhythms in various
organisms, including cyanobacteria and Neurospora crassa, are also deficient in optimal
codons. The authors suggest that enrichment in non-optimal codons helps to provide low
levels of such regulatory gene products to allow quick elimination of the product after
stimulus has disappeared [36]. Frumkin with colleagues [18] recoded genes in E. coli to
demonstrate that codon usage patterns not only tune the elongation rates of particular
genes, but also affect the global protein translation efficiency. Optimal codon composition
of highly expressed genes increases the efficiency of translation and, consequently, reduces
the number of ribosomes required for expression of these genes. This allows to indirectly
increase the rate of translation initiation for other transcripts due to an increase in the pool
of free ribosomes. Similar results have been shown on S. cerevisiae [37]. Shah et al. also
demonstrated on S. cerevisiae that codon bias strongly affects protein abundance in genes
with high mRNA level, whereas the effect of codon bias on protein abundance in genes
with low mRNA abundance (<1% of transcriptome) is much lower but still significant [38].
The latter might be accounted for by the fact that translation of low-expressed genes slightly
contributes into the pool of free ribosomes.

Besides the factors listed above, codon usage bias is associated with a number of other
factors. It can be related to the gene function, e.g., hydrophobic loci of encoded proteins are
associated with specific codon usage and signal peptides demonstrate non-optimal codons
enrichment, or to the location of gene on the chromosome strand (leading or lagging) [22].

In conclusion, optimization by codon content is crucially important for the highly
expressed genes, especially the genes expressed constitutively, which are supposed to be
optimized by codon content, but it might be less critical for other genes, especially those
with low expression and under special regulation. Therefore, it is proven that codon bias
is a good predictor of efficiency of translation elongation and gene expression levels for
several organisms, which provides opportunities for prediction of gene expression at the
constitutive level based on the codon bias of genes.

1.3. Secondary Structures Impact Elongation Efficiency

It has been shown that the translation elongation rate is tuned not only by the codon
usage bias but also by mRNA secondary structures [39–41]. Strong mRNA secondary
structures reduce the speed of translating ribosomes [37,38,42], as it requires time for
unweaving [43]. It is provided by the helicase activity of the ribosome using the active
mechanical unwinding mechanism [43–46]. In this mechanism, the ribosome is translocated
by applying force to the closed state of the mRNA duplex, which requires additional energy
consumption. This mechanism, revealed in the data obtained from E. coli, affects the basal
rate of translocation in a prokaryotic cell [43]. Moreover, it is known that different ORFs on
an intra-operon level translate differentially varying in rates as much as 100-fold, which
was demonstrated for E. coli [47]. Apparently, minimization of the abundance and energy
of secondary structures in mRNA is supposed to increase the translation elongation rate.

However, it should be noted that the abundance and the energy of mRNA secondary
structures tend to be higher over coding regions compared to untranslated regions, as
was shown in yeast and E. coli [48]. Secondary structures in mRNA perform various func-
tions [39,40], including modulation of folding for some proteins [49], regulation of mRNA
half-life [36,50–52], regulation of translational frameshifting [53,54], termination–insulation
and re-initiation control [55], whereby secondary structures can influence other stages
of gene expression. This can introduce uncertainty about the effect of mRNA secondary
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structures on protein abundance. However, since for the abovementioned reasons, the
number and stability of mRNA structures negatively affect translation efficiency, and the
impact of secondary structures in the implementation of the listed functions may vary
among different taxonomic groups (for example, there are many other mechanisms for
regulation of mRNA decay in bacteria [52]), we can assume that the number and energy
of secondary structures in mRNA can be a good predictor of the protein abundance for
some organisms.

It is interesting that codon usage might be associated with the stability of secondary
structures. It has been shown for E. coli and S. cerevisiae that the regions of high secondary
structure content are preferentially enriched in high-optimal codons while non-optimal
codons are located in low structured regions. Authors suggest that this pattern allows
compensation for their independent effects on translation, helping to smooth overall
translational speed and reducing the chance of potentially detrimental points of excessively
slow or fast ribosome movement [56]. Moreover, genes tend to have significant codon bias
in the regions of extremely high and low levels of secondary structure, which is found
across all domains of life [57]. As has been shown in yeast, both codon usage bias and
mRNA structural stability positively regulate mRNA expression levels and, moreover,
highly structured and stable mRNA is selected [58]. It seems that codon bias and secondary
structures in mRNA tend to be balanced to ensure optimal level of gene expression.

1.4. Summary

In conclusion, codon bias and secondary structures greatly impact translation elon-
gation efficiency and contribute to gene expression. Therefore, a prediction of protein
abundance based on these parameters seems to be a useful perspective. Here we analyze
the capability to predict protein abundance using the EloE tool that calculates elongation
efficiency indexes (EEI) based on these parameters. Previously, this tool was applied to
show a significant correlation between EEI and gene expression for S. cerevisiae (0.79) and
for Helicobacter pylori (0.28) [10]. As demonstrated for H. pylori, the correlation between
gene expression and EEI increases with gene length, showing a maximum correlation
(0.58) at a gene length of about 2200 bp [59]. In this work, we assess the correlation be-
tween EEI and gene expression at the protein level for various prokaryotes with diverse
lifestyles, including archaea, obligate and opportunistic pathogenic bacteria, cyanobacteria,
and species adapted to harsh environments (in particular, extremely acidophilic bacteria
Acidithiobacillus ferrooxidans, and halophilic archaea Halobacterium salinarum).

2. Results

We have analyzed the correlation between protein abundance and base elongation
efficiency index (EEI) value for various groups of microorganisms (see the details in the
Materials and Methods section) and have investigated how this correlation depends on the
following factors:

• Base EEI type, i.e., the mode of evolutionary optimization of translation exhibited by a
particular genome;

• Taxonomical identity of an analyzed genome;
• Cell doubling time, i.e., microorganism’s reproduction rate;
• Mean (M) and standard deviation (R) of ranks of ribosomal protein genes measured

on the base EEI scale.

Taking into account these factors allows us to study the structure of the sample,
disentangling their impact on the correlation coefficient value between protein abundance
and EEI.

Different genomic features in association with the obtained correlation coefficients
(corr(PA|EEI)) between base EEI and protein abundance have also been analyzed. Neither
genome length (r = −0.004, p = 0.85) nor number of genes (r = 0.01, p = 0.84) nor number of
tRNAs (r = 0.36, p = 0.37) correlate significantly with the correlation coefficient between
protein abundance and EEI. At the same time, such characteristics as number of ribosomal
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protein genes (r = 0.488, p = 1 × 10−16) and GC content (r = −0.394, p = 0.02) demonstrate
significant correlation with the corr(PA|EEI). The number of ribosomal genes also correlates
with the minimal doubling time of a microbe (Spearman’s correlation coefficient r = −0.428,
p = 0.046).

To understand the representativeness of using proteomic data, we have calculated
proteome coverage. Proteome coverage, which is a percentage of protein-coding genes
presented in proteomic data, varies among samples. The median coverage per studying
organism is 50.8 with the standard deviation 24.1. This means that for most of the analyzed
organisms, the data used for analysis do not characterize the entire proteome, but do cover
at least a significant part of it.

The correlation, coverage, minimal doubling time, EEI type, and mean (M) and
standard deviation (R) values for each organism are demonstrated in Table 1.

Table 1. Values of the analyzed parameters for the studied organisms: elongation efficiency type (EEI
type), which was obtained by EloE (see the details in Materials and Methods section); coverage of
proteomic data; Spearman correlation coefficients between protein abundance and base EEI index;
corresponding p-value; minimal doubling time (see the references in Table 4); mean (M) and standard
deviation (R) values of ranks of ribosomal protein genes measured on the base EEI scale.

Organism EEI Type Coverage Correlation
Coefficient p-Value Doubling

Time (h) M_Main R_Main

Staphylococcus aureus 1 62.5 0.66 8.46 × 10−211 0.4 83 25
Shigella flexneri 1 39.4 0.65 4.01 × 10−202 0.5 94 12

Streptococcus pyogenes 1 75.9 0.63 3.60 × 10−141 0.6667 91 26
Lactococcus lactis 1 57.1 0.60 2.58 × 10−128 0.5 76 49

Bacteroides thetaiotaomicron 1 15.9 0.57 2.52 × 10−67 2.7 91 20
Listeria monocytogenes 1 16.4 0.57 1.46 × 10−41 0.5167 79 36

Escherichia coli 1 97.40 0.57 0 0.3333 87 30
Bacillus anthracis 4 26.20 0.52 3.42 × 10−102 0.5 77 46

Campylobacter jejuni 2 47.40 0.46 6.48 × 10−42 2.4667 67 37
Salmonella typhimurium 1 56.3 0.45 1.79 × 10−126 0.5 85 39

Thermococcus gammatolerans 1 62.2 0.44 3.71 × 10−66 4.5 77 32
Legionella pneumophila 4 25.2 0.42 2.50 × 10−05 3.3 66 43

Synechocystis sp. 1 37.8 0.40 8.01 × 10−48 5.8 53 51
Yersinia pestis 1 29.6 0.40 4.86 × 10−47 1 91 26

Desulfovibrio vulgaris 4 27.1 0.39 3.87 × 10−37 2.48 79 18
Deinococcus deserti 1 38.5 0.38 6.58 × 10−48 2.6 87 28
Bartonella henselae 4 85.7 0.35 1.21 × 10−41 3 61 41

Leptospira interrogans 2 66.2 0.35 6.06 × 10−66 8.2 59 42
Halobacterium salinarum 4 54.2 0.33 2.00 × 10−02 11 36 41

Helicobacter pylori 2 98.8 0.28 1.22 × 10−29 0.8333 51 44
Pseudomonas aeruginosa 3 43.6 0.27 1.37 × 10−42 0.5 83 17

Mycobacterium tuberculosis 4 84 0.26 3.44 × 10−28 14.7 36 63
Microcystis aeruginosa 4 79.00 0.24 1.60 × 10−06 46 55 46

Mycoplasma pneumoniae 2 60.9 0.14 1.14 × 10−83 8 34 54
Acidithiobacillus ferrooxidans 2 41.9 0.12 1.73 × 10−05 5 42 47

Overall, the mean Spearman’s correlation coefficient between protein abundance and
EEI calculated for the whole sample equals to 0.4 (the boxplot depicting corresponding
descriptive statistics is shown in Figure 1). The majority of analyzed organisms, with the
exception of Neisseria meningitidis, have shown a significant correlation between protein
abundance and base EEI values. However, the correlation coefficient values vary greatly
among the organisms.
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Figure 1. Spearman’s correlation coefficients between protein abundance and EEI for 25 prokaryotes.

This result means that predicting protein abundance solely based on elongation trans-
lation characteristics, such as those calculated by EloE, will have good accuracy for some
organisms and poor accuracy for others. Further analysis aims to reveal the parameters
that contribute to the correlation coefficients’ values.

2.1. Dependence of Correlation between Protein Abundance and the EEI from EEI Type

To determine the patterns of the correlation coefficients’ distribution among the or-
ganisms depending on their mode of evolutionary optimization of translation, we split the
sample into several subsamples according to the genome’s base EEI type established by
EloE (see Figure 2).
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Figure 2. Spearman’s correlation coefficients between protein abundance and EEI distribution among
5 EEI types for 25 prokaryotes (Neisseria meningitidis, the organism with p-value > 0.05, is excluded).

The highest correlation was obtained for the organisms belonging to the EEI1 type,
which relies primarily on codon usage optimization for efficient translation. The correlation
coefficients for organisms which were assigned to the EEI2 and the EEI4 types are signif-
icantly lower. The optimization of elongation efficiency types for these organisms were
based on the optimization of number of secondary structures in mRNA for the EEI2 type,
and codon usage and the optimization of number of secondary structures in mRNA for the
EEI4 type.

It is important to note that the organisms belonging to the types other than the codon
usage bias optimization only type (the EEI1 type) do not demonstrate higher correlation co-
efficients if elongation efficiency indices are calculated taking into account codon usage bias
only, i.e., using the EEI1 formula (see Figure 3 and Table A1). The correlation coefficients
between the EEI1 indices and protein abundance are significantly lower (p = 0.02, Welch’s
t-test) than the correlation coefficients between the base EEI type and protein abundance for
the organisms belonging to the type which minimizes the number of secondary structures
(EEI2) (Figure 3a). They are also lower for Pseudomonas aeruginosa, which belongs to the
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type that considers only energy of secondary structures (EEI3, see Figure 3b), though we
do not have enough sample size to deduce any extrapolations from here. Finally, the type
that considers the codon usage bias and the number of secondary structures in mRNA
(EEI4, Figure 3c) demonstrates higher corr(PA|EEI4) values than corr(PA|EEI1) at a trend
level (p = 0.24). Thus, applying the approach that considers different elongation efficiency
types allows improvement of the accuracy of predictions for those organisms that do not
demonstrate a clear codon usage optimization pattern.
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Figure 3. The distributions of the Spearman’s correlation coefficient values between protein abun-
dance and EEI for the organisms belonged to the different elongation efficiency optimization types
that take into account: number of secondary structures (EEI2, panel (a)), energy of secondary struc-
tures (EEI3, panel (b)), codon bias and number of secondary structures (EEI4, panel (c)). All these
distributions are compared with the correlation between protein abundance and indices for codon
bias-based index (EEI1) calculated for the same organisms.

2.2. Dependence of Correlation between Protein Abundance and the EEI from Phylogeny

Phylogenetically distant organisms can have significant differences in the regulation
of gene expression. Therefore, the significance of the effect of translation elongation factors
on the overall level of gene expression may also differ among phylogenetically diverse
organisms. In this regard, the ability to predict protein abundance based on the elongation
translation characteristics can vary greatly for different phylogenic groups.

Below, we have mapped the analyzed strains onto a phylogenetic tree in order to
reflect the diversity of phylogenetic groups represented in the analysis and to determine
for which phylogenetic groups the prediction of protein abundance by EloE provides the
most accurate results, which is demonstrated in Figure 4 rendered using iTol [60].

As one can see, the tree includes both species known for codon usage bias being a
reliable measure of their translation elongation efficiency (such as E. coli), and those who
have been shown to contravene that pattern (such as H. pylori and the representatives of
Mycoplasma genus). Accordingly, the former belong to the EEI1 optimization type, while
the latter are distributed to the other elongation efficiency optimization types, which take
into account the effect of secondary structures in mRNA. Moreover, there are a number of
new species that have not been studied in this regard before, and which, therefore, present
a special interest.
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The most represented taxa are phylum Firmicutes, namely, class Bacilli, and phylum
Proteobacteria, in particular, class Gammaproteobacteria. Also, the mean correlation coeffi-
cients among the studied organisms of these taxa are 0.59 and 0.46, respectively, which are
higher than the mean correlation coefficient for the entire dataset (0.4). Notably, most of the
bacteria belonging to these classes belong to the EEI1 type, which show higher correlation
coefficients. However, this difference is significant only for class Bacilli, compared with the
other microorganisms from the analyzed set (Welch test, p = 2.2 × 10−5). Other taxa are rep-
resented by only a couple of species, if any, and their correlation coefficients corr(PA|EEI)
are highly varied. The differences among correlation coefficients probably occur due to the
different extents of influence of the codon usage bias and secondary structures on gene
expression among species.

Thus, one can use elongation efficiency indices for a theoretical assessment of expected
protein expression profile in the case of absence of proteomic data for a particular represen-
tative of one of those classes that demonstrate relatively high correlation between protein
abundance and their base EEI, though biological implications of belonging to a specific
elongation efficiency optimization type might vary depending on the particular taxa.

2.3. Dependence of Correlation between Protein Abundance and the EEI from Minimal
Doubling Time

Doubling time as a characteristic reflecting reproduction rate varies greatly, both
among various bacterial species and inside the same species if it grows in different con-
ditions [61]. It is known that bacterial growth rates are correlated with ribosome abun-
dance [62], and therefore it correlates with the entire translation rate due to reduction in
active ribosome fraction during slow growth [63]. However, translation elongation main-
tains a significant rate even in poor nutrient conditions with slow bacterial growth [63],
which enables cells to produce proteins crucial for surviving in harsh environments in a
timely manner.

The prediction of protein abundance using elongation efficiency indices assumes
that coding sequences of highly expressed genes, such as ribosomal protein genes, are
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heavily optimized compared to the genes with low level of basal expression. This means
that if elongation efficiency is more evenly optimized because it is a less essential step in
determining protein abundance than, for instance, a gene regulation, such an organism can
demonstrate a reduced quality of protein abundance prediction. Higgs and Ran [64] found
a low correlation between tRNA gene abundance and codon usage for most bacteria with
high doubling time. They supposed that, although the translation is the limiting factor of
division in fast-growing organisms, this is not the case for slow-multiplying organisms.
Although their results could also be explained by the high impact of mRNA secondary
structures in translation, this aspect is still worth being tested.

Also, it was demonstrated [65] that a prokaryotic growth rate is highly correlated with
the codon usage bias. In fast-growing organisms, codon usage bias is more pronounced due
to codon usage optimization, which is crucial since the tRNA pool becomes limiting at very
high growth rates. Based on the codon usage bias of ribosomal protein, Weissman, Hou, and
Fuhrman have predicted [66] the minimum doubling time for about 200,000 prokaryotes.
Such an estimation of the growth rate divides prokaryotes into two groups, which fits their
ecological roles. The first one is copiotrophs, consisting of fast-growing microbes that grow
in nutrient-rich environments. The other is oligotrophs, represented by microbes that are
adapted to low levels of nutrients and tend to have slow growth rates. Based on these
results, authors have defined oligotroph as an organism for which a selection for rapid
maximal growth is weak enough so that translation efficiency is not optimized by selection
for optimized codon usage.

In the light of the listed above, a hypothesis can be formulated that protein abundance
predictions will be less efficient for prokaryotes with the high minimal doubling time.

Indeed, one can notice (Figure 5a) an increase in the corr(PA|EEI) with a decrease in
the minimum doubling time (DT), although bacteria with fast growth and a low correlation
coefficient also exist. The Pearson correlation coefficient between corr(PA|EEI) and minimal
doubling time for 25 organisms is r =−0.446 (p = 0.025). No relationship was found between
the base EEI type and the doubling time. However, it is worth noting that slowly growing
bacteria (with the DT ≥ 5 h) are mostly represented by EEI types which consider secondary
structures (only one out of seven organisms belong to the EEI1 type). Consistent with
previous studies, codon usage bias slightly reflects the gene expression profile for those six
organisms, which is demonstrated by calculation of corr(PA|EEI) for each of the five EEI
types (see Table A1). Considering the secondary structures enables us to reach higher (but
still quite low) correlation coefficients.
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We hypothesize that some prokaryotic species living in harsh environments could
demonstrate a similar level of translation efficiency optimization throughout the genome.
Such organisms are supposed to show a high minimum doubling time and lower translation
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elongation efficiency for ribosomal genes than fast-growing species. As mean elongation
efficiency of ribosomal proteins is reflected by M values, we have compared them for
fast-growing and slow-growing prokaryotes (Figure 5b).

The Welch test between M values of fast-growing organisms (with the minimal dou-
bling time no more than two hours) and slow-growing organisms (with the minimal dou-
bling time higher than five hours) has shown a significant difference (p-value = 7.059 × 10−6).
The comparison of medium-growing organisms (with the minimal doubling time between
two and five hours) and slow-growing organisms also has shown a significant difference
for M values (p = 0.0002).

Notably, the lower correlation between protein abundance and elongation efficiency
for organisms with higher minimum doubling time cannot be explained only by a weaker
optimization of ribosomal protein genes in favor of other genes. If we do not consider
elongation efficiency of ribosomal protein genes during the selection of the base EEI type
by selection of the EEI type that shows higher correlation coefficients between protein
abundance and elongation efficiency, which simulates the usage of the optimal group of
highly optimized genes, the correlation coefficients do not necessarily rise. In particular,
changing EEI type greatly increases (from 0.12 to 0.34 for Acidithiobacillus ferrooxidans, and
from 0.36 to 0.46 for Leptospira interrogans) the correlation coefficient only for two of seven
slow-growing organisms under study (see Table A1). In summary, the prediction of protein
abundance is less efficient for slow-growing organisms, which can be explained by less
pronounced differences in elongation efficiency optimization throughout the genomes of
these organisms. In other words, translation elongation efficiency does not appear to be a
limiting factor in determining protein abundance for slow-growing microorganisms.

2.4. Dependence of Correlation between Protein Abundance and the EEI from Elongation Efficiency
of Ribosomal Protein Genes

As mentioned earlier, the ranks of ribosomal gene proteins, which contribute to the
M (mean) and R (standard deviation) parameters, are used to determine a genome’s base
elongation efficiency index type, which describes the mode of evolutionary optimization of
translation in a particular genome in the most accurate way. Here we have examined how
the correlation coefficient between the EEI and protein abundance depends on the M and R
values for the base EEI type (see Figure 6).
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The Pearson correlation coefficient between M and corr(PA|EEI) for 25 organisms is
0.7344 (p = 2.9 × 10−5). The Pearson correlation coefficient between R and corr(PA|EEI)
is −0.454 (p = 0.022). This reassuring result indicates that the strategy of maximizing M
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and minimizing R that is used to determine the base EEI type in the EloE is the right way,
which not only has a theoretical basis but also is substantiated by experimental data.

As these parameters are highly correlated with corr(PA|EEI), they could be used
for estimating prediction potential (correlation coefficient between the EEI and protein
abundance) for an organism under study. Also, these parameters are calculated by the
algorithm itself and do not require the involvement of additional data, which makes them
convenient enough to assess the efficiency of the algorithm.

For this purpose, a linear regression model has been built. The independent variable
is represented by the M parameter only, since M and R parameters are highly correlated.

Corr.coe f = 0.0432 + 0.0054 ∗M (1)

The determination coefficient (R2) equals 0.35, and the mean squared error (MSE)
equals 0.011. The test for significance of regression shows F > F-critical (10.36 > 4.2793),
p = 0.038, which means that the regression model is statistically significant. In summary,
the statistics shows that the model has a prediction power.

Using this formula with caution, and taking into account the observed range of M
values, one could predict the expected correlation coefficient for another organism, which
does not have enough data covering its protein expression profile.

In summary, we can use the EloE for a rough prediction of gene expression at the
protein level. Taking into account the EEI type, doubling time, taxonomic identity, as well
as the M and R parameters, allows us to derive an approximate estimate of the expected
correlation coefficient between base EEI values and actual protein abundance.

3. Discussion

The gene expression is a multi-level process including various regulation on a tran-
scriptional and translational level. The protein abundance reflects the overall effect of all
the factors contributing to the gene expression, whereas each of these factors has its own
particular share in this cumulative effect. One of the intriguing questions within this context
is the problem of predicting the basal gene expression based on only partial information
available, in particular, the genomic sequence data. This study focuses on investigating
correlation between the translation elongation characteristics and proteomic data. As our
analysis indicates, the mean correlation coefficient between protein abundance and base
elongation efficiency index (EEI) calculated for the whole sample is not high, which was
expected, since we are trying to predict the protein abundance based on the elongation
efficiency, while the protein yield is also influenced by other stages, including the stage of
transcription, translation initiation [6,15,67], and other factors such as half-life values of the
respective protein and mRNA [15,50,52], as well as the protein’s structure and its resistance
to proteases [68–70]. To the best of our knowledge, this is the first time such an analysis
of correlation between protein abundance and different elongation efficiency measures
has been performed based on the proteomics data for the prokaryotes belonging to such a
range of taxonomic groups including non-model organisms and the organisms which are
known for codon usage being an ineffective measure of translation elongation efficiency of
their genes.

However, the correlation coefficients between protein abundance and the EEI values
vary greatly among the organisms. The bioinformatic assessment of the factors affecting the
correlation between protein abundance and elongation efficiency in prokaryotes has shown
that there are several factors associated with the value of the correlation coefficient. The
first is the EEI type—organisms that correspond to the EEI1 type, which takes into account
codon bias only, have significantly higher correlation coefficients. Such a difference between
these types could be explained by ambiguous [71] contributions of secondary structures to
protein abundance. Although secondary structures in mRNA decrease ribosome velocity,
they can protect mRNA from ribonucleases and, therefore, increase mRNA abundance.
As a result, protein abundance could both decrease and increase under the influence of
secondary structures. Thus, we should expect a lower prediction accuracy for organisms



Int. J. Mol. Sci. 2022, 23, 11996 12 of 23

belonging to optimization types, for which secondary structures play a significant role in
determining the protein abundance (EEI2, EEI3, EEI4, and, probably, EEI5). Unfortunately,
among the organisms with available protein profiles, Neisseria meningitidis, the only one
belonging to the EEI5 base type, do not show a significant correlation between protein
abundance and EEI values—not only base ones but any EEI values, including classic
codon usage bias. Therefore, we refrain from making any decisive conclusions about that
particular optimization type. It is worth noting, however, that for those organisms under
study, which fall into one of the optimization types (EEI2, EEI3, and EEI4) characterized
by the role of mRNA secondary structures, applying their base elongation efficiency index
allows us to reach higher correlation coefficients than if using EEI1, which represents
classic codon usage bias. We believe that this indicates the complex nature and the role
of translation elongation efficiency in determining protein abundance in these classes
of organisms.

The second factor is taxonomic identity of an organism under study—such a class
as Bacilli is among those characterized by the highest correlation coefficient between EEI
and protein abundance. Using this information to derive estimates of expected correlation
coefficients for the organisms that lack proteomic profiles seems to be a promising approach,
though we definitely need more data to be able to improve the quality of such an assessment.
The third factor is the microorganism’s reproduction rate. We observe an increase in the
correlation coefficient between the EEI and protein abundance with a decrease in the
minimum doubling time, that is, fast-growing prokaryotes tend to have a high correlation
coefficient. The latter might be associated with the similar level of elongation efficiency
across the genome in slow-growing species, which is reflected in ribosomal protein coding
genes being not the most highly optimized group of genes among them. The fact that
genes encoding ribosomal proteins may not be highly efficient at translation elongation
was shown on several Mycoplasma species (C. M. haemolamae, M. haemocanis, M. wenyonii,
M. haemofelis, M. pneumonia, C. M. haemominutum, and M. suis). These species demonstrate
decreased M values and a reduced number of perfect local inverted repeats (potential
hairpins) in mRNA of both ribosomal and non-ribosomal genes. It makes translation
elongation efficiency of non-ribosomal genes similar to ribosomal ones [72]. Thus, there
are various situations where either an organism possesses a quite compact and evenly
optimized genome or translation elongation efficiency does not appear to be a limiting
stage in determining protein level. However, we have also demonstrated that, in general,
the initial approach used by the EloE that relies on assessing the ranks of ribosomal proteins
in the gene list sorted by the base EEI values is adequate to the experimental data of the
organisms under study, especially for the organisms with a high number of ribosomal
protein genes and low GC content. Therefore, it can be used in further development of
the algorithms that would take into account not only translation elongation, but also other
stages that affect the level of gene expression.

One of the difficulties in studying the relationships between elongation efficiency
characteristics and protein abundance at the organism level is the lack of the genome-wide
protein abundance profiles to assess the actual correlation between protein abundance and
elongation efficiency indices based on representative datasets, which would include protein-
encoding genes with various expression levels for taxonomically divergent organisms,
including non-model ones. However, as more proteomic studies generating a full protein
profile of an organism under study are published, the whole picture of how the particular
aspects of optimization of translation elongation efficiency affect the protein abundance in
various microorganisms will become more clear and detailed. We believe that a thorough
bioinformatic estimation of factors contributing to protein abundance, such as elongation
efficiency, paying attention to the actual biodiversity of prokaryotic species, is an important
step towards in silico prediction of protein abundance levels.
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4. Materials and Methods
4.1. Proteomic and Genomic Data

Gene expression at the protein level data was taken from the PaxDb database [73].
This database stores proteomic data obtained by MS-MS spectroscopy, which provides
quantitative protein abundance information. Proteomes were obtained from 26 prokaryotic
organisms, including 24 bacteria and 2 archaea. Since for many organisms, numerous
experimental data are present, in the further calculation we used a median abundance of
each protein per organism. The genomes of these strains with the corresponding loci iden-
tifiers were obtained from the NCBI Assembly database [74], the list of species presented in
Table 2.

Table 2. The list of species under study (species for which proteomic data were collected) and
corresponding assembly accessions.

№ Species Assembly Accession

1 Acidithiobacillus ferrooxidans ATCC23270 GCF_000021485.1
2 Bacillus anthracis str. Sterne GCF_000008165.1
3 Bacteroides thetaiotaomicron VPI-5482 GCF_000011065.1
4 Bartonella henselae str. Houston-1 GCF_000046705.1
5 Campylobacter jejuni NCTC11168 GCF_000009085.1
6 Deinococcus deserti VCD115 GCF_000020685.1
7 Desulfovibrio vulgaris str. Hildenborough GCF_000195755.1
8 Escherichia coli K12 MG1655 GCF_000005845.2
9 Halobacterium salinarum NRC-1 GCF_000006805.1

10 Helicobacter pylori 26695 GCF_000008525.1
11 Lactococcus lactis subsp. lactis Il1403 GCF_000006865.1
12 Legionella pneumophila subsp. pneumophila str. Philadelphia 1 GCF_000008485.1
13 Leptospira interrogans serovar Lai str. 56601 GCF_000007685.1
14 Listeria monocytogenes EGD-e GCF_000196035.1
15 Microcystis aeruginosa NIES-843 GCF_000010625.1
16 Mycobacterium tuberculosis H37Rv GCF_000195955.2
17 Mycoplasma pneumoniae FH GCF_001272835.1
18 Neisseria meningitidis MC58 GCF_000008805.1
19 Pseudomonas aeruginosa PAO1 GCF_000006765.1
20 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 GCF_000006945.2
21 Shigella flexneri 2a str. 301 GCF_000006925.2
22 Staphylococcus aureus GCF_000009665.1
23 Streptococcus pyogenes GCF_000006785.2
24 Synechocystis sp. PCC 6803 GCF_000009725.1
25 Thermococcus gammatolerans EJ3 GCF_000022365.1
26 Yersinia pestis CO92 (enterobacteria) GCF_000009065.1

Neisseria meningitidis has been excluded from the subsequent analysis due to its in-
significant correlation between protein abundance and base EEI values.

4.2. EloE Elongation Efficiency Indices (EEI)

In this article, we have analyzed elongation efficiency indices calculated by EloE
(Elongation Efficiency) tool [7] (developed by Sokolov V.S, Novosibirsk, Russia). The
executable file of the tool as well as the user’s manual, input and output data are deposited
in the Supplementary files. It requires a Java Runtime Environment (JRE) SE 7 or higher
to run the program. The EloE algorithm calculates elongation efficiency indices (EEI) for
each organism’s protein-coding gene in five ways (Table 3) [9,10] using annotated genome
sequence. The elongation efficiency indices are calculated according to Formula (2):

EEI(i) = K/(w1Ta(i) + w2Te(i)) (2)

where K—normalization constant, which is used to assure the range of EEI(i) within [0, 10];
w1 and w2—weight coefficients (equals 0 if a parameter is excluded and 1 if it is considered);
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Ta(i) estimates the average time required for the fixation of isoacceptor aminoacyl-tRNA in
the A site of the ribosome; and Te(i) estimates the average time demanded by the ribosome
for the translocation stage. There are two options for Te(i) function: LCIL(i), which
calculates local complementarity based on number of potential secondary structures in
mRNA, and LCIE(i), which calculates local complementarity taking into account the energy
of potential secondary structures in mRNA. The formulae can be found in Appendix A.

Table 3. The description of elongation efficiency types (EEI types) calculation.

Type Codon Usage
(Ta(i))

Local Complementarity Level
(Potential mRNA Secondary Structures,

Te(i) Depending on LCIL(i))

Local Complementarity Level with the Energy
of Potential mRNA Secondary Structures

(Te(i) Depending on LCIE(i))

EEI1 + — —
EEI2 — + —
EEI3 — — +
EEI4 + + —
EEI5 + — +

For each elongation efficiency index (EEI), protein-coding genes are sorted in descend-
ing order according to the corresponding EEI values. To determine the index type that
properly describes the efficiency of elongation translation in the particular organism under
study, mean (M) and standard deviation (R) of the ranks of ribosomal protein genes are
calculated. The ribosomal protein genes are known to be intensely expressed along a wide
range of organisms and assumed to be, therefore, optimized in the efficiency of translation
elongation. However, a list of highly expressed genes can be manually set by a user.

M and R values are calculated for each of the five EEI types [10].

Mrank =
1

Nrib
∑Nrib

i=1 xi; (3)

Rrank =

√
1

Nrib
∑Nrib

i=1 (Mrank − xi)
2; (4)

where Mrank¯the mean rank of ribosomal protein genes, Rrank¯the standard deviation of ri-
bosomal protein genes’ ranks, Nrib¯the number of ribosomal protein-coding genes, and xi¯is
the rank of ribosomal protein-coding gene in the gene set arranged in order of increasing
EEI values.

M = 100 ∗
(

2 ∗ (Mrank − 1)
Ntot − 1

− 1
)

, (5)

R = 100 ∗ 2 ∗ (Rrank − 1)
Ntot − 1

, (6)

Ntot is the total number of protein-coding genes, M is the normalized mean rank of ribo-
somal genes, and R is the normalized standard deviation for ranks of ribosomal genes
calculated for the EEI type.

We regard the type that has the maximum M parameter as the base organism type.
If there are several types sharing the maximum M value, a type with the minimum R
is defined as the base type. Elongation efficiency indices for protein-coding genes of an
organism are calculated by this type. In this study, we have analyzed EEIs of the base type
for each organism from Table 2.

4.3. Statistical Analysis and Regression Model

To estimate the power of elongation efficiency indices as predictors of gene expres-
sion at the protein level, we calculated the correlation coefficient between experimentally
measured protein abundance and base EEI for each organism; we will further refer to it
as (corr(PA|EEI). As EEI indices have a rank-size distribution, we used Spearman’s rank
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correlation coefficient [75] with the p-value threshold for statistical significance of 0.05.
Then we have also calculated the correlation between corr(PA|EEI) and other parame-
ters (doubling time, M, R parameters). In this case, we have used Pearson’s correlation.
Since the values do not correspond to the normal distribution, verification of statistical
significance has been provided by the bootstrap method [76] using the “boot” package in R.

The linear regression model has been built for 25 samples (see Table 2). Predictor
variable is represented by M parameter, the dependent variable is corr(PA|EEI). The linear
regression model has been built using the Sklearn package in Python using the entire
dataset. The quality of the model was assessed by R2, mean square error (MSE), and mean
absolute error (MAE) using Monte Carlo cross validation from the cross_validate and
ShuffleSplit functions from the Sklearn package with splitting the dataset 2000 times into
20% test and 80% training sets.

4.4. Minimal Doubling Time

The value of minimal doubling time for each organism has been obtained from the
literature (see Table 4). If the doubling time differs depending on medium and temperature,
the minimum value is selected. All values are turned into hours.

Table 4. The table reflects minimal doubling time for each species in hours and in a logarithmic
form. The article from which the data were taken is also presented for each of the organisms (column
DT_source).

Organism Doubling_Time (DT), h Log (DT) DT_Source

Acidithiobacillus ferrooxidans 5 0.69897 [77]
Bacillus anthracis 0.5 −0.30103 [78]

Bacteroides thetaiotaomicron 2.7 0.431364 [79]
Bartonella henselae 3 0.477121 [80]

Campylobacter jejuni 2.466667 0.39211 [81]
Deinococcus deserti 2.6 0.414973 [82]

Desulfovibrio vulgaris 2.48 0.394452 [83]
Escherichia coli 0.333333 −0.47712 [61]

Halobacterium salinarum 11 1.041393 [84]
Helicobacter pylori 0.833333 −0.07918 [85]
Lactococcus lactis 0.5 −0.30103 [86]

Legionella pneumophila 3.3 0.518514 [87]
Leptospira interrogans 8.2 0.913814 [88]
Listeria monocytogenes 0.516667 −0.28679 [89]
Microcystis aeruginosa 46 1.662758 [90]

Mycobacterium tuberculosis 14.7 1.167317 [91]
Mycoplasma pneumoniae 8 0.90309 [92]
Pseudomonas aeruginosa 0.5 −0.30103 [93]
Salmonella typhimurium 0.5 −0.30103 [94]

Shigella flexneri 0.5 −0.30103 [95]
Staphylococcus aureus 0.4 −0.39794 [93]
Streptococcus pyogenes 0.666667 −0.17609 [96]

Synechocystis sp. 5.8 0.763428 [97]
Thermococcus gammatolerans 4.5 0.653213 [98]

Yersinia pestis 1 0 [78]
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Appendix A

Detailed description of Formula (2), which is used for the elongation efficiency in-
dices calculation.

Appendix A.1. Codon Usage Calculation

In Formula (2), the effect of codon usage bias is calculated by the formula below:

Ta(i) = ∑ni
j=1 βδ(i,j)/ni; (A1)

βδ(i,j) =
∑C

m=1
√

am√aδ(i, j)
; (A2)

where 1/βδ(i,j) reflects optimal relative concentration of aminoacyl-tRNA complementary
to jth codon of the genetic code; αδ(i,j) and αm are the usage frequencies in the subset of
genes for the δ(i,j) and m codons, respectively; ni—the number of codons in the gene i;
C—the total number of codons.

Appendix A.2. Secondary Structures Calculation

In Formula (2), the effect of secondary structures is calculated by the formula below:

Te(i) = tmin(1− p(i)) + tmax p(i), (A3)

tmin is the minimal time of translocation, tmax is the maximum time of translocation; p(i)—the
probability of realizing the maximum translocation time for the gene i.

p(i) =
∫ LCI(i)

0

kn+1xn

G(n + 1)
e−kxdx; (A4)

k =
m
σ2 ; (A5)

n =
(m

σ

)2
; (A6)

m and σ2 are expected value and variance of a positive random variable with density,
respectively; G(n+1)—Gamma function, LCI(i)—local complementary index for the gene i.
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Appendix A.3. Local Complementary Indices Calculation
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Figure A1. The illustration of the analysis of local inverted repeats in a window m ∈
[1, mi − smax − lmax] described in Formulas (A7) and (A8).

LCI1(i) =
∑mi−smax−lmax

m=1

{
∑smax

s=smin

[
∑lmax

l=lmin
ζ(con(m, m + s− 1), con(m + s + l, m + 2s + l − 2))

]}
mi − smax − lmax

(A7)

LCI2(i) =
∑mi−smax−lmax

m=1

{
∑smax

s=smin

[
∑lmax

l=lmin
ψ(con(m, m + s), con(m + s + l − 1, m + 2s + l − 2))

]}
mi − smax − lmax

(A8)

Calculation of local complementarity indexes (LCI1 and LCI2):

• con(k, j) is a gene context from nucleotide k to nucleotide j, and con(x, y) is comple-
mentary gene context from nucleotide x to nucleotide y (x < y);

• s is the length of the con(k, j) = con(x, y), which is the number of nucleotides in the
considered reverted repeat; it is not less than Smin = 3 nucleotides and not higher than
Smax = 6 nucleotides;

• l is the distance between such repeats, lmin = 3, lmax = 50 nucleotides;
• mi is the length of gene i without the last three nucleotides (stop codon);
• ζ(con1, con2) = 1 if the contexts are identical and ζ(con1, con2) = 0 in other cases;
• ψ(con1, con2) is the energy of a hairpin formed by con1, con2, calculated conventionally.
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Appendix B

Table A1. The table represents Pearson’s correlations between measured protein abundance and elongation efficiency indices calculated by EloE and corresponding
p-values. These correlation coefficients have been evaluated using several EEI values: (a) EEI values which have been calculated for the base EEI type of the studied
organism are presented in the “r base” column with the p-value in the “Pval base” column, and the base EEI type is presented in the “EEI type” column and
represents which of the five EEI types is determined as the type of the organism under study; (b) EEI values which were calculated for the each EEI type (1–5), the
correlation coefficients and the p-values presented in the “r” and “Pval” columns for each type, respectively.

Organism EEIType r Base Pval Base r1 Pval 1 r2 Pval 2 r3 Pval 3 r4 Pval 4 r5 Pval 5

Bacteroides thetaiotaomicron 1 0.57 2.52 × 10−67 0.57 2.52 × 10−67 0 9.07 × 10−1 0.08 2.95 × 10−2 0.45 2.49 × 10−39 0.21 2.58 × 10−9

Deinococcus deserti 1 0.38 6.58 × 10−48 0.38 6.58 × 10−48 0.19 5.05 × 10−12 0.16 4.75 × 10−9 0.42 2.77 × 10−59 0.37 1.88 × 10−43

Escherichia coli 1 0.57 0 0.57 0 0 7.71 × 10−1 −0.04 4.66 × 10−3 0.5 1.37 × 10−252 0.38 6.89 × 10−142

Lactococcus lactis 1 0.6 2.58 × 10−128 0.6 2.58 × 10−128 0.29 1.37 × 10−26 −0.16 6.93 × 10−9 0.6 4.20 × 10−127 0.04 1.55 × 10−1

Listeria monocytogenes 1 0.57 1.46 × 10−41 0.57 1.46 × 10−41 0.1 3.24 × 10−2 −0.06 2.02 × 10−1 0.53 3.84 × 10−35 0.23 6.85 × 10−7

Salmonella typhimurium 1 0.45 1.79 × 10−126 0.45 1.79 × 10−126 0.16 2.70 × 10−15 0.17 1.10 × 10−18 0.46 8.48 × 10−133 0.44 4.92 × 10−123

Shigella flexneri 1 0.65 4.01 × 10−202 0.65 4.01 × 10−202 0.05 4.94 × 10−2 0.24 5.17 × 10−24 0.62 8.03 × 10−178 0.6 1.71 × 10−162

Staphylococcus aureus 1 0.66 8.46 × 10−211 0.66 8.46 × 10−211 0.22 7.89 × 10−20 −0.16 4.63 × 10−11 0.59 2.74 × 10−159 0.05 3.43 × 10−2

Streptococcus pyogenes 1 0.63 3.60 × 10−141 0.63 3.60 × 10−141 0.08 6.81 × 10−3 −0.12 2.22 × 10−05 0.59 3.28 × 10−121 0.2 2.36 × 10−13

Synechocystis sp. 1 0.4 8.01 × 10−48 0.4 8.01 × 10−48 0.09 1.02 × 10−3 −0.03 2.71 × 10−1 0.3 2.11 × 10−26 0.11 2.02 × 10−4

Thermococcus gammatolerans 1 0.44 3.71 × 10−66 0.44 3.71 × 10−66 −0.02 4.18 × 10−1 −0.16 3.25 × 10−9 0.37 6.11 × 10−44 0.11 6.38 × 10−5

Yersinia pestis 1 0.4 4.86 × 10−47 0.4 4.86 × 10−47 0.01 7.23 × 10−1 0.06 4.22 × 10−2 0.36 6.63 × 10−39 0.31 2.53 × 10−27

Acidithiobacillusferrooxidans 2 0.12 1.73 × 10−5 0.22 6.07 × 10−16 0.12 1.73 × 10−5 0.15 7.05 × 10−8 0.35 7.86 × 10−39 0.34 2.38 × 10−36

Campylobacter jejuni 2 0.46 6.48 × 10−42 −0.15 3.25 × 10−5 0.46 6.48 × 10−42 −0.21 8.67 × 10−9 0.34 5.60 × 10−22 −0.24 1.93 × 10−11

Helicobacter pylori 2 0.28 1.22 × 10−29 0.07 5.65 × 10−3 0.28 1.22 × 10−29 −0.16 3.60 × 10−10 0.39 1.06 × 10−57 −0.12 4.31 × 10−6

Leptospira interrogans 2 0.35 6.06 × 10−66 −0.28 2.65 × 10−40 0.35 6.06 × 10−66 −0.16 6.61 × 10−15 0.46 8.46 × 10−117 −0.25 2.45 × 10−34

Mycoplasma pneumoniae 2 0.24 1.60 × 10−6 0.06 2.14 × 10−1 0.24 1.60 × 10−6 0.01 8.88 × 10−1 0.26 3.25 × 10−7 0.03 6.04 × 10−1

Pseudomonas aeruginosa 3 0.27 1.37 × 10−42 0.09 1.76 × 10−5 0.25 2.09 × 10−36 0.27 1.37 × 10−42 0.28 1.24 × 10−44 0.3 6.09 × 10−53

Bacillus anthracis 4 0.52 3.42 × 10−102 0.53 3.42 × 10−102 0.1 1.86 × 10−4 −0.17 1.57 × 10−10 0.52 1.01 × 10−94 −0.1 1.39 × 10−4

Bartonella henselae 4 0.35 1.21 × 10−41 0.37 1.21 × 10−41 0.09 1.91 × 10−3 −0.06 4.79 × 10−2 0.35 1.15 × 10−38 0.13 2.43 × 10−6

Desulfovibrio vulgaris 4 0.39 3.87 × 10−37 0.4 3.87 × 10−37 0.13 5.22 × 10−5 0.18 3.23 × 10−8 0.39 5.07 × 10−36 0.36 8.71 × 10−31

Halobacterium salinarum 4 0.33 2.00 × 10−2 0.08 2.00 × 10−2 0.17 1.00 × 10−5 0.15 1.00 × 10−7 0.33 1.00 × 10−9 0.28 1.00 × 10−22

Legionella pneumophila 4 0.42 2.50 × 10−5 0.15 2.50 × 10−5 0.17 4.34 × 10−6 −0.03 3.57 × 10−1 0.42 2.72 × 10−32 0 9.27 × 10−1

Microcystis aeruginosa 4 0.14 1.14 × 10−83 −0.27 1.14 × 10−83 0.17 5.59 × 10−35 −0.17 3.95 × 10−32 0.14 1.43 × 10−22 −0.29 1.43 × 10−96

Mycobacterium tuberculosis 4 0.26 3.44 × 10−28 0.19 3.44 × 10−28 0.05 1.48 × 10−3 0.05 4.60 × 10−3 0.26 1.45 × 10−52 0.21 3.94 × 10−36

Neisseria meningitidis 5 0.09 7.73 × 10−2 0.08 8.93 × 10−2 0.07 1.41 × 10−1 0.03 5.30 × 10−1 0.04 3.88 × 10−1 0.09 7.73 × 10−2
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Table A2. The table represents M (the normalized mean rank of ribosomal genes) and R (the normalized standard deviation for ranks of ribosomal genes) calculated
for each EEI type (1–5), the EEI type, and M and R values for the EEI type (the columns M_main, R_main).

Organism EEI Type M1 R1 M2 R2 M3 R3 M4 R4 M5 R5 M_Main R_Main

Acidithiobacillus ferrooxidans 2 2 54 42 47 36 48 34 51 42 47 42 47
Bacillus anthracis 4 76 48 38 46 −43 55 77 46 −48 51 77 46

Bacteroides thetaiotaomicron 1 91 20 −14 58 17 60 71 38 50 41 91 20
Bartonella henselae 4 54 42 32 53 −5 57 61 41 16 60 61 41

Campylobacter jejuni 2 −43 54 67 37 −25 57 34 67 −49 42 67 37
Deinococcus deserti 1 85 31 30 53 19 56 84 22 64 49 87 28

Desulfovibrio vulgaris 4 61 34 42 40 38 47 79 19 70 38 79 18
Escherichia coli 1 87 30 13 63 14 53 82 34 75 36 87 30

Halobacterium salinarum 4 −6 36 14 41 5 42 36 41 29 43 36 41
Helicobacter pylori 2 −33 55 51 44 −10 63 32 52 −24 59 51 44
Lactococcus lactis 1 76 49 46 50 −37 62 75 52 −27 68 76 49

Legionella pneumophila 4 16 61 27 61 −11 59 66 43 −10 57 66 43
Leptospira interrogans 2 −61 45 59 42 −38 53 49 52 −61 34 59 42
Listeria monocytogenes 1 79 36 28 59 −23 62 77 38 13 61 79 36
Microcystis aeruginosa 4 −42 39 44 48 −46 45 55 46 −53 33 55 46

Mycobacterium tuberculosis 4 −7 60 18 56 8 61 36 63 29 69 36 63
Mycoplasma pneumoniae 2 −11 55 34 54 −28 58 29 60 −30 52 34 54
Pseudomonas aeruginosa 3 −75 27 83 18 83 17 25 43 44 34 83 17
Salmonella typhimurium 1 84 40 24 63 30 47 82 42 82 38 85 39

Shigella flexneri 1 95 6 6 64 7 53 87 19 79 35 94 12
Staphylococcus aureus 1 83 25 48 47 −32 62 81 29 −18 63 83 25
Streptococcus pyogenes 1 91 26 −4 62 −25 59 88 27 26 71 91 26

Synechocystis sp. 1 53 51 19 60 −30 58 40 51 −13 65 53 51
Thermococcus gammatolerans 1 77 32 0 65 −37 54 63 47 3 67 77 32

Yersinia pestis 1 91 26 −1 65 −4 59 82 34 60 56 91 26
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