Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities
Abstract
:1. Introduction
2. GLOBOCAN 2020 Stats for PCa and ECa
3. Prostate Cancer (PCa)
3.1. Diagnosis and Risk Factors
3.2. Genomics, Racial and Socioeconomic Disparities
4. Endometrial Cancer (ECa)
4.1. Diagnosis and Risk Factors
4.2. Genomics, Racial and Socioeconomic Disparities
5. Non-Coding RNAs in PCa and ECa
5.1. PCa and Type II ECa Associated Micro-RNAs (miRNAs) in African Population
5.2. PCa and Type II ECa Associated Long Non-Coding RNAs (lncRNAs) in the African Population
6. Possible Role Players in Cancer Disparities: Insights into Improvements
7. Cancer Genomics Research in LMICs: Challenges and Opportunities
8. Pan-African Genomics Cancer Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osler, W. Aequanimitas: With Other Addresses to Medical Students, Nurses and Practitioners of Medicine; HK Lewis: London, UK, 1920. [Google Scholar]
- Lewis, D.D.; Cropp, C.D. The Impact of African Ancestry on Prostate Cancer Disparities in the Era of Precision Medicine. Genes 2020, 11, 1471. [Google Scholar] [CrossRef] [PubMed]
- Schwartzberg, L.; Kim, E.S.; Liu, D.; Schrag, D. Precision Oncology: Who, How, What, When, and When Not? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.; Longo, D.L. Precision Medicine—Personalized, Problematic, and Promising. N. Engl. J. Med. 2015, 372, 2229–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science to Value. Heal. Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef]
- Relling, M.V.; Evans, W.E.J.N. Pharmacogenomics in the Clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- A Makary, M.; Daniel, M. Medical error—The Third Leading Cause of Death in the US. BMJ 2016, 353, i2139. [Google Scholar] [CrossRef]
- Ritchie, M.D.; De Andrade, M.; Kuivaniemi, H. The Foundation of Precision Medicine: Integration of Electronic Health Records with Genomics through Basic, Clinical, and Translational Research. Front. Genet. 2015, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Sboner, A.; Elemento, O. A Primer on Precision Medicine Informatics. Briefings Bioinform. 2015, 17, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Zeeshan, S.; Xiong, R.; Liang, B.T.; Ahmed, Z. 100 Years of Evolving gene-disease Complexities and Scientific Debutants. Briefings Bioinform. 2019, 21, 885–905. [Google Scholar] [CrossRef]
- Khoury, M.J.; Iademarco, M.F.; Riley, W.T. Precision Public Health for the Era of Precision Medicine. Am. J. Prev. Med. 2016, 50, 398–401. [Google Scholar] [CrossRef] [Green Version]
- England NHS. Improving Outcomes through Personalised Medicine. Available online: http://www.england.nhs.uk/wp-content/uploads/2016/09/improving-Outcomes-Personalised-medicine.Pdf (accessed on 15 September 2021).
- Primorac, D.; Bach-Rojecky, L.; Vađunec, D.; Juginović, A.; Žunić, K.; Matišić, V.; Skelin, A.; Arsov, B.; Boban, L.; Erceg, D.; et al. Pharmacogenomics at the Center of Precision Medicine: Challenges and Perspective in an Era of Big Data. Pharmacogenomics 2020, 21, 141–156. [Google Scholar] [CrossRef]
- Tang, W.K.B.-K.; Endrenyi, L. Hypothesis: Comparisons of Inter- and Intra-Individual Variations Can Substitute for Twin Studies in Drug Research. Pharmacogenetics 1998, 8, 283–289. [Google Scholar] [CrossRef]
- Lazarou, J.; Pomeranz, B.H.; Corey, P.N. Incidence of Adverse Drug Reactions in Hospitalized Patients. JAMA J. Am. Med. Assoc. 1998, 279, 1200–1205. [Google Scholar] [CrossRef]
- Plumpton, C.O.; Roberts, D.; Pirmohamed, M.; Hughes, D.A. A Systematic Review of Economic Evaluations of Pharmacogenetic Testing for Prevention of Adverse Drug Reactions. PharmacoEconomics 2016, 34, 771–793. [Google Scholar] [CrossRef]
- Olufadewa, I.; Adesina, M.; Ayorinde, T. Global Health in Low-Income and Middle-Income Countries: A Framework for Action. Lancet Glob. Health 2021, 9, e899–e900. [Google Scholar] [CrossRef]
- Marima, R.; Hull, R.; Mathabe, K.; Setlai, B.; Batra, J.; Sartor, O.; Mehrotra, R.; Dlamini, Z. Prostate Cancer Racial, Socioeconomic, Geographic Disparities: Targeting the Genomic Landscape and Splicing Events in Search for Diagnostic, Prognostic and Therapeutic Targets. Am. J. Cancer Res. 2021, 11, 1012–1030. [Google Scholar]
- Adeloye, D.; David, R.A.; Aderemi, A.V.; Iseolorunkanmi, A.; Oyedokun, A.; Iweala, E.E.J.; Omoregbe, N.; Ayo, C.K. An Estimate of the Incidence of Prostate Cancer in Africa: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0153496. [Google Scholar] [CrossRef] [Green Version]
- Guttery, D.; Blighe, K.; Polymeros, K.; Symonds, R.P.; Macip, S.; Moss, E. Racial Differences in Endometrial Cancer Molecular Portraits in The Cancer Genome Atlas. Oncotarget 2018, 9, 17093–17103. [Google Scholar] [CrossRef]
- Ferguson, S.E.; Olshen, A.B.; Levine, D.A.; Viale, A.; Barakat, R.R.; Boyd, J. Molecular Profiling of Endometrial Cancers from African–American and Caucasian Women. Gynecol. Oncol. 2006, 101, 209–213. [Google Scholar] [CrossRef]
- Marnitz, S.; Walter, T.; Schömig-Markiefka, B.; Engler, T.; Kommoss, S.; Brucker, S.Y. A Modern Approach to Endometrial Carcinoma: Will Molecular Classification Improve Precision Medicine in the Future? Cancers 2020, 12, 2577. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.C.; Tishkoff, S.A. African Genetic Diversity: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping. Annu. Rev. Genom. Hum. Genet. 2008, 9, 403–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotimi, C.N.; Bentley, A.R.; Doumatey, A.P.; Chen, G.; Shriner, D.; Adeyemo, A. The Genomic Landscape of African Populations in Health and Disease. Hum. Mol. Genet. 2017, 26, R225–R236. [Google Scholar] [CrossRef] [PubMed]
- Rebbeck, T.R. Prostate Cancer Disparities by Race and Ethnicity: From Nucleotide to Neighborhood. Cold Spring Harb. Perspect. Med. 2018, 8, a030387. [Google Scholar] [CrossRef]
- Allard, J.E.; Maxwell, G.L. Race Disparities Between Black and White Women in the Incidence, Treatment, and Prognosis of Endometrial Cancer. Cancer Control 2009, 16, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.F.B. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/Today (accessed on 20 September 2021).
- McGinley, K.F.; Tay, K.J.; Moul, J.W. Prostate Cancer in Men of African Origin. Nat. Rev. Urol. 2016, 13, 99–107. [Google Scholar] [CrossRef]
- Sharma, R. The Burden of Prostate Cancer Is Associated with Human Development Index: Evidence from 87 Countries, 1990–2016. EPMA J. 2019, 10, 137–152. [Google Scholar] [CrossRef]
- Hamilton, W.; Sharp, D. Symptomatic Diagnosis of Prostate Cancer in Primary Care: A Structured Review. Br. J. Gen. Pract. 2004, 54, 617–621. [Google Scholar]
- Busolo, D.S.; Woodgate, R.L. Cancer Prevention in Africa: A Review of the Literature. Glob. Health Promot. 2014, 22, 31–39. [Google Scholar] [CrossRef]
- Sharma, S.; Zapatero-Rodríguez, J.; O’Kennedy, R. Prostate Cancer Diagnostics: Clinical Challenges and the Ongoing Need for Disruptive and Effective Diagnostic Tools. Biotechnol. Adv. 2017, 35, 135–149. [Google Scholar] [CrossRef]
- Singh, K.; Goad, E.H.A.; Ramklass, S.S. Waiting Times for Prostate Cancer Diagnosis in KwaZulu-Natal, South Africa. S. Afr. Med. J. 2015, 105, 484. [Google Scholar] [CrossRef] [Green Version]
- Staszewski, J.; Haenszel, W. Cancer Mortality Among the Polish-Born in the United States. J. Natl. Cancer Inst. 1965, 35, 291–297. [Google Scholar] [CrossRef]
- Bylsma, L.C.; Alexander, D.D. A Review and Meta-Analysis of Prospective Studies of Red and Processed Meat, Meat Cooking Methods, Heme Iron, Heterocyclic Amines and Prostate Cancer. Nutr. J. 2015, 14, 125. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, S.; Platz, E.A.; Kavanaugh, C.J.; Thuita, L.; Hoffman, S.C.; Helzlsouer, K.J. Meat and Dairy Consumption and Subsequent Risk of Prostate Cancer in a US Cohort Study. Cancer Causes Control 2007, 18, 41–50. [Google Scholar] [CrossRef]
- Pasquali, R.; Casimirri, F.; Cantobelli, S.; Melchionda, N.; Labate, A.M.M.; Fabbri, R.; Capelli, M.; Bortoluzzi, L. Effect of Obesity and Body Fat Distribution on Sex Hormones and Insulin in Men. Metabolism 1991, 40, 101–104. [Google Scholar] [CrossRef]
- Adamowicz, K. Assessment of Quality of Life in Advanced, Metastatic Prostate Cancer: An Overview of Randomized Phase III Trials. Qual. Life Res. 2016, 26, 813–822. [Google Scholar] [CrossRef]
- Wendler, D.; Kington, R.; Madans, J.; Van Wye, G.; Christ-Schmidt, H.; A Pratt, L.; Brawley, O.W.; Gross, C.P.; Emanuel, E. Are Racial and Ethnic Minorities Less Willing to Participate in Health Research? PLoS Med. 2005, 3, e19. [Google Scholar] [CrossRef] [Green Version]
- Sagar, A.D.; Najam, A. The Human Development Index: A Critical Review. Ecol. Econ. 1998, 25, 249–264. [Google Scholar] [CrossRef]
- Waters, K.M.; Le Marchand, L.; Kolonel, L.N.; Monroe, K.R.; Stram, D.O.; Henderson, B.E.; Haiman, C.A. Generalizability of Associations from Prostate Cancer Genome-Wide Association Studies in Multiple Populations. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1285–1289. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Kibel, A.S.; Hu, J.J.; Turner, A.R.; Pruett, K.; Zheng, S.L.; Sun, J.; Isaacs, S.D.; Wiley, K.E.; Kim, S.-T.; et al. Prostate Cancer Risk Associated Loci in African Americans. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2145–2149. [Google Scholar] [CrossRef] [Green Version]
- Harris, Y.; Gorelick, P.B.; Samuels, P.; Bempong, I. Why African Americans May Not Be Participating in Clinical Trials. J. Natl. Med. Assoc. 1996, 88, 630–634. [Google Scholar] [PubMed]
- Wissing, M.D.; Kluetz, P.G.; Ning, Y.-M.; Bull, J.; Merenda, C.; Murgo, A.J.; Pazdur, R. Under-Representation of Racial Minorities in Prostate Cancer Studies Submitted to the US Food and Drug Administration to Support Potential Marketing Approval, 1993–2013. Cancer 2014, 120, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Branson, R.D.; Davis, K.; Butler, K.L. African Americans’ Participation in Clinical Research: Importance, Barriers, and Solutions. Am. J. Surg. 2007, 193, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Harris, Y.; Burnett, B.; Bonecutter, F.J. The Recruitment Triangle: Reasons Why African Americans Enroll, Refuse to Enroll, or Voluntarily Withdraw from a Clinical Trial. An Interim Report from the African-American Antiplatelet Stroke Prevention Study (AAASPS). J. Natl. Med. Assoc. 1998, 90, 141–145. [Google Scholar]
- Haiman, C.A.; Chen, G.K.; Blot, W.J.; Strom, S.S.; Berndt, S.I.; Kittles, R.A.; Rybicki, B.A.; Isaacs, W.B.; Ingles, S.A.; Stanford, J.L.; et al. Genome-Wide Association Study of Prostate Cancer in Men of African Ancestry Identifies a Susceptibility Locus at 17q21. Nat. Genet. 2011, 43, 570–573. [Google Scholar] [CrossRef] [Green Version]
- Hooker, S.; Hernandez, W.; Chen, H.; Robbins, C.; Torres, J.B.; Ahaghotu, C.; Carpten, J.; Kittles, R.A. Replication of Prostate Cancer Risk Loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 2010, 70, 270–275. [Google Scholar] [CrossRef]
- Chang, B.-L.; Spangler, E.; Gallagher, S.; Haiman, C.A.; Henderson, B.; Isaacs, W.; Benford, M.L.; Kidd, L.R.; Cooney, K.; Strom, S.; et al. Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent. Cancer Epidemiol. Biomark. Prev. 2011, 20, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zheng, S.L.; Chang, B.-L.; Smith, J.R.; Carpten, J.D.; Stine, O.C.; Isaacs, S.D.; Wiley, K.E.; Henning, L.; Ewing, C.; et al. Linkage of Prostate Cancer Susceptibility Loci to Chromosome 1. Qual. Life Res. 2001, 108, 335–345. [Google Scholar] [CrossRef]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline Mutations inHOXB13and Prostate-Cancer Risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Schaid, D.J.; Smith, J.R.; French, A.J.; Schroeder, J.J.; McDonnell, S.K.; Peterson, B.J.; Wang, Z.-Y.; Carpten, J.D.; Roberts, S.G.; et al. Linkage Analyses at the Chromosome 1 Loci 1q24-25 (HPC1), 1q42.2-43 (PCAP), and 1p36 (CAPB) in Families with Hereditary Prostate Cancer. Am. J. Hum. Genet. 2000, 66, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.M.; Lange, E.M.; Chen, H.; Zheng, S.L.; Chang, B.; Wiley, K.E.; Isaacs, S.D.; Walsh, P.C.; Isaacs, W.B.; Xu, J.; et al. Hereditary Prostate Cancer in African American Families: Linkage Analysis Using Markers That Map to Five Candidate Susceptibility Loci. Br. J. Cancer 2004, 90, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.R.; Freije, D.; Carpten, J.D.; Grönberg, H.; Xu, J.; Isaacs, S.D.; Brownstein, M.J.; Bova, G.S.; Guo, H.; Bujnovszky, P.; et al. Major Susceptibility Locus for Prostate Cancer on Chromosome 1 Suggested by a Genome-Wide Search. Science 1996, 274, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Cooney, K.A.; Huang, L.; Sandler, H.M.; Lange, E.; Lange, K.; Miesfeldt, S.; McCarthy, J.D.; Montie, J.E.; Oesterling, J.E. Prostate Cancer Susceptibility Locus on Chromosome 1q: A Confirmatory Study. J. Natl. Cancer Inst. 1997, 89, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Schleutker, J.; Matikainen, M.; Smith, J.; Koivisto, P.; Baffoe-Bonnie, A.; Kainu, T.; Gillanders, E.; Sankila, R.; Pukkala, E.; Carpten, J.; et al. A Genetic Epidemiological Study of Hereditary Prostate Cancer (HPC) in Finland: Frequent HPCX Linkage in Families with Late-Onset Disease. Clin. Cancer Res. 2000, 6, 4810–4815. [Google Scholar]
- Baffoe-Bonnie, A.B.; Kittles, R.A.; Gillanders, E.; Ou, L.; George, A.; Robbins, C.; Ahaghotu, C.; Bennett, J.; Boykin, W.; Hoke, G.; et al. Genome-Wide Linkage of 77 Families from the African American Hereditary Prostate Cancer Study (AAHPC). Prostate 2007, 67, 22–31. [Google Scholar] [CrossRef]
- Ledet, E.M.; Sartor, O.; Rayford, W.; Bailey-Wilson, J.; Mandal, D.M. Suggestive Evidence of Linkage Identified at Chromosomes 12q24 and 2p16 in African American Prostate Cancer Families from Louisiana. Prostate 2012, 72, 938–947. [Google Scholar] [CrossRef]
- Chua, F.Y.; Adams, B.D. Androgen Receptor and MiR-206 Regulation in Prostate Cancer. Transcription 2017, 8, 313–327. [Google Scholar] [CrossRef]
- Gandhi, J.; Afridi, A.; Vatsia, S.; Joshi, G.; Joshi, G.; Kaplan, S.A.; Smith, N.L.; Khan, S.A. The Molecular Biology of Prostate Cancer: Current Understanding and Clinical Implications. Prostate Cancer Prostatic Dis. 2017, 21, 22–36. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor in Prostate Cancer. Endocr. Rev. 2004, 25, 276–308. [Google Scholar] [CrossRef] [Green Version]
- Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G. Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. Eur. Urol. 2014, 65, 1140–1151. [Google Scholar] [CrossRef]
- Mazaris, E.; Tsiotras, A. Molecular Pathways in Prostate Cancer. Nephro Urol. Mon. 2013, 5, 792–800. [Google Scholar] [CrossRef] [Green Version]
- Wengner, A.M.; Scholz, A.; Haendler, B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int. J. Mol. Sci. 2020, 21, 8273. [Google Scholar] [CrossRef]
- Graham, M.K.; Meeker, A. Telomeres and Telomerase in Prostate Cancer Development and Therapy. Nat. Rev. Urol. 2017, 14, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Eeles, R.A.; The COGS–Cancer Research UK GWAS–ELLIPSE (Part of GAME-ON) Initiative; Al Olama, A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.; Tymrakiewicz, M.; Ghoussaini, M.; Luccarini, C.; Dennis, J.; et al. Identification of 23 New Prostate Cancer Susceptibility Loci Using the ICOGS Custom Genotyping Array. Nat. Genet. 2013, 45, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Mahal, B.A.; Alshalalfa, M.; Kensler, K.H.; Chowdhury-Paulino, I.; Kantoff, P.; Mucci, L.A.; Schaeffer, E.M.; Spratt, D.; Yamoah, K.; Nguyen, P.L.; et al. Racial Differences in Genomic Profiling of Prostate Cancer. N. Engl. J. Med. 2020, 383, 1083–1085. [Google Scholar] [CrossRef]
- Awasthi, S.; Berglund, A.E.; Abraham-Miranda, J.; Rounbehler, R.J.; Kensler, K.H.; Serna, A.N.; Vidal, A.C.; You, S.; Freeman, M.R.; Davicioni, E.; et al. Comparative Genomics Reveals Distinct Immune-Oncologic Pathways in African American Men with Prostate Cancer. Clin. Cancer Res. 2021, 27, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Zeigler-Johnson, C.; Friebel, T.; Walker, A.H.; Wang, Y.; Spangler, E.; Panossian, S.; Patacsil, M.; Aplenc, R.; Wein, A.J.; Malkowicz, S.B.; et al. CYP3A4,CYP3A5, andCYP3A43Genotypes and Haplotypes in the Etiology and Severity of Prostate Cancer. Cancer Res. 2004, 64, 8461–8467. [Google Scholar] [CrossRef] [Green Version]
- Zeigler-Johnson, C.; Spangler, E.; Jalloh, M.; Gueye, S.M.; Rennert, H.; Rebbeck, T.R. Genetic Susceptibility to Prostate Cancer in Men of African Descent: Implications for Global Disparities in Incidence and Outcomes. Can. J. Urol. 2008, 15, 3872–3882. [Google Scholar] [PubMed]
- Farrell, J.; Petrovics, G.; McLeod, D.G.; Srivastava, S. Genetic and Molecular Differences in Prostate Carcinogenesis Between African American and Caucasian American Men. Int. J. Mol. Sci. 2013, 14, 15510–15531. [Google Scholar] [CrossRef] [Green Version]
- Kwabi-Addo, B.; Wang, S.; Chung, W.; Jelinek, J.; Patierno, S.R.; Wang, B.-D.; Andrawis, R.; Lee, N.H.; Apprey, V.; Issa, J.-P.; et al. Identification of Differentially Methylated Genes in Normal Prostate Tissues from African American and Caucasian Men. Clin. Cancer Res. 2010, 16, 3539–3547. [Google Scholar] [CrossRef] [Green Version]
- Woodson, K.; Hayes, R.; Wideroff, L.; Villaruz, L.; Tangrea, J. Hypermethylation of GSTP1, CD44, and E-Cadherin Genes in Prostate Cancer Among US Blacks and Whites. Prostate 2003, 55, 199–205. [Google Scholar] [CrossRef]
- Woodson, K.; Hanson, J.; Tangrea, J. A Survey of Gene-Specific Methylation in Human Prostate Cancer Among Black and White Men. Cancer Lett. 2004, 205, 181–188. [Google Scholar] [CrossRef]
- Smith, R.A.; Von Eschenbach, A.C.; Wender, R.; Levin, B.; Byers, T.; Rothenberger, D.; Brooks, D.; Creasman, W.; Cohen, C.; Runowicz, C.; et al. American Cancer Society Guidelines for the Early Detection of Cancer: Update of Early Detection Guidelines for Prostate, Colorectal, and Endometrial Cancers. Also: Update 2001—Testing for Early Lung Cancer Detection. CA Cancer J. Clin. 2001, 51, 38–75. [Google Scholar] [CrossRef] [Green Version]
- Lane, B.F.; Wong-You-Cheong, J.J.; Javitt, M.C.; Glanc, P.; Brown, D.L.; Dubinsky, T.; Harisinghani, M.G.; Harris, R.D.; Khati, N.J.; Mitchell, D.G.; et al. ACR Appropriateness Criteria® First Trimester Bleeding. Ultrasound Q. 2013, 29, 91–96. [Google Scholar] [CrossRef]
- Behnamfar, F.; Khamehchian, T.; Mazouchi, T.; Fahiminezhad, T. Diagnostic Value of Endometrial Sampling with Pipelle Suction Curettage for Identifying Endometrial Lesions in Patients with Abnormal Uterine Bleeding. J. Res. Med. Sci. 2004, 9, 21–23. [Google Scholar]
- Blackburn, B.E.; Soisson, S.; Rowe, K.; Snyder, J.; Fraser, A.; Deshmukh, V.; Newman, M.; Smith, K.; Herget, K.; Kirchhoff, A.C.; et al. Prognostic Factors for Rural Endometrial Cancer Patients in a Population-Based Cohort. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Donkers, H.; Bekkers, R.; Massuger, L.; Galaal, K. Socioeconomic Deprivation and Survival in Endometrial Cancer: The Effect of BMI. Gynecol. Oncol. 2020, 156, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Donkers, H.; Bekkers, R.; Massuger, L.; Galaal, K. Systematic Review on Socioeconomic Deprivation and Survival in Endometrial Cancer. Cancer Causes Control 2019, 30, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, F.; Smits, A.; Lopes, A.D.B.; Das, N.; Pollard, A.; Massuger, L.; Bekkers, R.; Galaal, K. The Impact of BMI on Surgical Complications and Outcomes in Endometrial Cancer surgery—An Institutional Study and Systematic Review of the Literature. Gynecol. Oncol. 2015, 139, 369–376. [Google Scholar] [CrossRef]
- Matias-Guiu, X.; Prat, J. Molecular Pathology of Endometrial Carcinoma. Histopathology 2012, 62, 111–123. [Google Scholar] [CrossRef]
- Madison, T.; Schottenfeld, D.; James, S.A.; Schwartz, A.G.; Gruber, S.B. Endometrial Cancer: Socioeconomic Status and Racial/Ethnic Differences in Stage at Diagnosis, Treatment, and Survival. Am. J. Public Health 2004, 94, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Svanvik, T.; Marcickiewicz, J.; Sundfeldt, K.; Holmberg, E.; Strömberg, U. Sociodemographic Disparities in Stage-Specific Incidences of Endometrial Cancer: A Registry-Based Study in West Sweden, 1995–2016. Acta Oncol. 2019, 58, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, B.; Liu, F.; Bristow, R. Disparities in Uterine Cancer Epidemiology, Treatment, and Survival Among African Americans in the United States. Gynecol. Oncol. 2013, 130, 652–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remmerie, M.; Janssens, V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front. Oncol. 2019, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Banno, K.; Kisu, I.; Yanokura, M.; Tsuji, K.; Masuda, K.; Ueki, A.; Kobayashi, Y.; Yamagami, W.; Nomura, H.; Tominaga, E.; et al. Biomarkers in Endometrial Cancer: Possible Clinical Applications (Review). Oncol. Lett. 2012, 3, 1175–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutt, S.; Tailor, A.; Ellis, P.; Michael, A.; Butler-Manuel, S.; Chatterjee, J. The Role of Biomarkers in Endometrial Cancer and Hyperplasia: A Literature Review. Acta Oncol. 2019, 58, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horrée, N.; van Diest, P.J.; Sie-Go, D.M.; Heintz, A.P.M. The Invasive Front in Endometrial Carcinoma: Higher Proliferation and Associated Derailment of Cell Cycle Regulators. Hum. Pathol. 2007, 38, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.W.; Ellenson, L.H. Molecular Genetics of Endometrial Carcinoma. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 339–367. [Google Scholar] [CrossRef]
- Cavaliere, A.; Perelli, F.; Zaami, S.; Piergentili, R.; Mattei, A.; Vizzielli, G.; Scambia, G.; Straface, G.; Restaino, S.; Signore, F. Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer. Health 2021, 9, 965. [Google Scholar] [CrossRef]
- Altschuler, J.; Stockert, J.; Kyprianou, N. Non-Coding RNAs Set a New Phenotypic Frontier in Prostate Cancer Metastasis and Resistance. Int. J. Mol. Sci. 2021, 22, 2100. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, S.; Singh, A.P. MicroRNA-Based Cancer Therapeutics: Big Hope from Small RNAs. Mol. Cell. Pharmacol. 2010, 2, 213–219. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Arora, S.; Prajapati, V.; Singh, S.; Singh, A. Cancer “Stemness”—Regulating MicroRNAs: Role, Mechanisms and Therapeutic Potential. Curr. Drug Targets 2013, 14, 1175–1184. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Arora, S.; Singh, S.; Bhardwaj, A.; Averett, C.; Singh, A. MicroRNAs in Pancreatic Malignancy: Progress and Promises. Cancer Lett. 2014, 347, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Theodore, S.C.; Rhim, J.S.; Turner, T.; Yates, C. MiRNA 26a Expression in a Novel Panel of African American Prostate Cancer Cell Lines. Ethn. Dis. 2010, 20, S1–S96. [Google Scholar]
- Theodore, S.C.; Davis, M.; Zhao, F.; Wang, H.; Chen, D.; Rhim, J.; Dean-Colomb, W.; Turner, T.; Ji, W.; Zeng, G.; et al. MicroRNA Profiling of Novel African American and Caucasian Prostate Cancer Cell Lines Reveals a Reciprocal Regulatory Relationship of MiR-152 and DNA Methyltranferase 1. Oncotarget 2014, 5, 3512–3525. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Sigman, D.B.; Borkowski, A.; Kyprianou, N. Racial Differences in Prostate Cancer Growth: Apoptosis and Cell Proliferation in Caucasian and African-American Patients. Prostate 2000, 42, 130–136. [Google Scholar] [CrossRef]
- Hatcher, D.; Daniels, G.; Osman, I.; Lee, P. Molecular Mechanisms Involving Prostate Cancer Racial Disparity. Am. J. Transl. Res. 2009, 1, 235–248. [Google Scholar]
- Wang, B.-D.; Ceniccola, K.; Yang, Q.; Andrawis, R.; Patel, V.; Ji, Y.; Rhim, J.S.; Olender, J.; Popratiloff, A.; Latham, P.; et al. Identification and Functional Validation of Reciprocal microRNA–mRNA Pairings in African American Prostate Cancer Disparities. Clin. Cancer Res. 2015, 21, 4970–4984. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, G.L.; Shoji, Y.; Darcy, K.; Litzi, T.; Berchuck, A.; Hamilton, C.A.; Conrads, T.P.; Risinger, J.I. MicroRNAs in Endometrial Cancers from Black and White Patients. Am. J. Obstet. Gynecol. 2015, 212, 191.e1–191.e10. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Yang, Y.; Hao, B.; Wang, R.; Li, Y.; Wu, Q. Loss of Has-MiR-337-3p Expression Is Associated with Lymph Node Metastasis of Human Gastric Cancer. J. Exp. Clin. Cancer Res. 2013, 32, 76. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [Green Version]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-Cancer Analysis of Whole Genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Kobayashi, N.; Todo, Y.; Watari, H. Exploring LncRNA-Mediated Regulatory Networks in Endometrial Cancer Cells and the Tumor Microenvironment: Advances and Challenges. Cancers 2019, 11, 234. [Google Scholar] [CrossRef] [Green Version]
- Tanos, V.; Ariel, I.; Prus, D.; De-Groot, N.; Hochberg, A. H19 and IGF2 Gene Expression in Human Normal, Hyperplastic, and Malignant Endometrium. Int. J. Gynecol. Cancer 2004, 14, 521–525. [Google Scholar] [CrossRef]
- Merriel, S.W.D.; Funston, G.; Hamilton, W. Prostate Cancer in Primary Care. Adv. Ther. 2018, 35, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Bussemakers, M.J.; Van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.; Schalken, J.A.; Debruyne, F.M.; Ru, N.; Isaacs, W.B. DD3: A New Prostate-Specific Gene, Highly Overexpressed in Prostate Cancer. Cancer Res. 1999, 59, 5975–5979. [Google Scholar] [PubMed]
- Wei, J.T.; Feng, Z.; Partin, A.W.; Brown, E.; Thompson, I.; Sokoll, L.; Chan, D.W.; Lotan, Y.; Kibel, A.S.; Busby, J.E.; et al. Can Urinary PCA3 Supplement PSA in the Early Detection of Prostate Cancer? J. Clin. Oncol. 2014, 32, 4066–4072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Yuan, X.-Q.; Liu, Z.-Y.; Li, W.-L.; Zhang, C.-Y.; Zhang, Y.-Q.; Pan, X.; Chen, J.; Li, Y.-H.; Li, G.-C. High LncRNA H19 Expression as Prognostic Indicator: Data Mining in Female Cancers and Polling Analysis in Non-Female Cancers. Oncotarget 2016, 8, 1655–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, T.M.; Knight, S.R.; Harrison, E.M.; Søreide, K. Global Inequities in Precision Medicine and Molecular Cancer Research. Front. Oncol. 2018, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Kader, F.; Ghai, M. DNA Methylation-Based Variation Between Human Populations. Mol. Genet. Genom. 2017, 292, 5–35. [Google Scholar] [CrossRef]
- Song, M.-A.; Brasky, T.M.; Marian, C.; Weng, D.Y.; Taslim, C.; Dumitrescu, R.G.; Llanos, A.A.; Freudenheim, J.L.; Shields, P.G. Racial Differences in Genome-Wide Methylation Profiling and Gene Expression in Breast Tissues from Healthy Women. Epigenetics 2015, 10, 1177–1187. [Google Scholar] [CrossRef]
- Saffroy, R.; Morère, J.-F.; Bosselut, N.; Innominato, P.F.; Hamelin, J.; Trédaniel, J.; Masse, S.; Dussaule-Duchatelle, V.; Balaton, A.; Validire, P.; et al. Impact of Country of Birth on Genetic Testing of Metastatic Lung Adenocarcinomas in France: African Women Exhibit a Mutational Spectrum More Similar to Asians Than to Caucasians. Oncotarget 2017, 8, 50792–50803. [Google Scholar] [CrossRef] [Green Version]
- Pollard, J.; Burns, P.A.; Hughes, T.A.; Ho-Yen, C.; Jones, J.L.; Mukherjee, G.; Omoniyi-Esan, G.O.; Titloye, N.A.; Speirs, V.; Shaaban, A.M. Differential Expression of MicroRNAs in Breast Cancers from Four Different Ethnicities. Pathobiology 2018, 85, 220–226. [Google Scholar] [CrossRef]
- Hansen, M.E.; Hunt, S.C.; Stone, R.C.; Horvath, K.; Herbig, U.; Ranciaro, A.; Hirbo, J.; Beggs, W.; Reiner, A.P.; Wilson, J.G.; et al. Shorter Telomere Length in Europeans Than in Africans Due to Polygenetic Adaptation. Hum. Mol. Genet. 2016, 25, 2324–2330. [Google Scholar] [CrossRef] [Green Version]
- Amador, M.A.T.; Cavalcante, G.C.; Santos, N.P.C.; Gusmão, L.; Guerreiro, J.F.; Ribeiro-Dos-Santos, Â.; Santos, S. Distribution of Allelic and Genotypic Frequencies of IL1A, IL4, NFKB1 and PAR1 Variants in Native American, African, European and Brazilian Populations. BMC Res. Notes 2016, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zeng, X.; Lu, H.; Ji, H.; Zhao, E.; Li, Y. Association Between 8q24 (rs13281615 and rs6983267) Polymorphism and Breast Cancer Susceptibility: A Meta-Analysis Involving 117,355 Subjects. Oncotarget 2016, 7, 68002–68011. [Google Scholar] [CrossRef] [Green Version]
- Allen, M. The Dilemma for Women of Color in Clinical Trials. J. Am. Med. Women Assoc. 1994, 49, 105–109. [Google Scholar]
- O’Donnell, P.H.; Dolan, M.E. Cancer Pharmacoethnicity: Ethnic Differences in Susceptibility to the Effects of Chemotherapy. Clin. Cancer Res. 2009, 15, 4806–4814. [Google Scholar] [CrossRef] [Green Version]
- Sekine, I.; Yamamoto, N.; Nishio, K.; Saijo, N. Emerging Ethnic Differences in Lung Cancer Therapy. Br. J. Cancer 2008, 99, 1757–1762. [Google Scholar] [CrossRef] [Green Version]
- Mulder, N.J.; Adebiyi, E.; Adebiyi, M.; Adeyemi, O.; Ahmed, A.; Ahmed, R.; Akanle, M.B.; Alibi, M.; Armstrong, D.L.; Aron, S.; et al. Development of Bioinformatics Infrastructure for Genomics Research. Glob. Hear. 2017, 12, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Nordling, L.J.N. Putting Genomes to Work in Africa. Nature 2017, 544, 20–22. [Google Scholar] [CrossRef] [Green Version]
- Mukhwana, A.M.; Kariuki, T.; Kay, S.; Silva, A.J.; Kirkland, J. The African Academy of Sciences Research Management Programme in Africa. J. Res. Manag. Gov. 2019, 2, 31–33. [Google Scholar] [CrossRef]
- Hoppe, T.A.; Litovitz, A.; Willis, K.A.; Meseroll, R.A.; Perkins, M.J.; Hutchins, B.I.; Davis, A.F.; Lauer, M.S.; Valantine, H.A.; Anderson, J.M.; et al. Topic Choice Contributes to the Lower Rate of NIH Awards to African-American/Black Scientists. Sci. Adv. 2019, 5, eaaw7238. [Google Scholar] [CrossRef] [Green Version]
- Carnethon, M.R.; Kershaw, K.N.; Kandula, N.R. Disparities Research, Disparities Researchers, and Health Equity. JAMA 2020, 323, 211. [Google Scholar] [CrossRef]
- Ginther, D.K.; Schaffer, W.T.; Schnell, J.; Masimore, B.; Liu, F.; Haak, L.L.; Kington, R. Race, Ethnicity, and NIH Research Awards. Science 2011, 333, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Savitt, T.L. The Use of Blacks for Medical Experimentation and Demonstration in the Old South. J. South. Hist. 1982, 48, 331. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.L. Twenty Years After. The Legacy of the Tuskegee Syphilis Study. When Evil Intrudes. Hast. Cent. Rep. 1992, 22, 29–32. [Google Scholar]
- Barrios, C.H.; Mano, M.S. Is Independent Clinical Research Possible in Low- and Middle-Income Countries? A Roadmap to Address Persistent and New Barriers and Challenges. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 221–230. [Google Scholar] [CrossRef]
- Loree, J.; Anand, S.; Dasari, A.; Unger, J.M.; Gothwal, A.; Ellis, L.M.; Varadhachary, G.; Kopetz, S.; Overman, M.J.; Raghav, K. Disparity of Race Reporting and Representation in Clinical Trials Leading to Cancer Drug Approvals From 2008 to 2018. JAMA Oncol. 2019, 5, e191870. [Google Scholar] [CrossRef]
- World Health Organisation. Access to Medicines and Health Products. Available online: http://www.who.int/medicines/areas/Access/Improving-Affordabilityeffectiveness-Ofcancer- (accessed on 8 August 2021).
- ICH Harmonised Guideline Integrated Addendum to ICH E6(R1): Guideline for Good Clinical Practice ICH E6(R2) ICH Consensus Guideline. Integrated Addendum to ICH E6 (R1): Guideline for Good Clinical Practice E6 (R2). Available online: https://ichgcp.Net/ (accessed on 8 August 2021).
- Rehman, A.; Awais, M.; Baloch, N.U.-A. Precision Medicine and Low- to Middle-Income Countries. JAMA Oncol. 2016, 2, 293–294. [Google Scholar] [CrossRef]
- Joyner, M.J.; Paneth, N. Seven Questions for Personalized Medicine. JAMA 2015, 314, 999–1000. [Google Scholar] [CrossRef]
- Teixeira, P.R.; Vitória, M.A.; Barcarolo, J. Antiretroviral Treatment in Resource-Poor Settings. AIDS 2004, 18 (Suppl. S3), S5–S7. [Google Scholar] [CrossRef]
- Konecny, G.E. Cancer Genomics and Clinical Practice: How Can We Close the Gap More Quickly? Curr. Opin. Obstet. Gynecol. 2017, 29, 1–3. [Google Scholar] [CrossRef]
- Garraway, L.A.; Verweij, J.; Ballman, K.V. Precision Oncology: An Overview. J. Clin. Oncol. 2013, 31, 1803–1805. [Google Scholar] [CrossRef] [Green Version]
- Bourret, P.; Castel, P.; Bergeron, H.; Cambrosio, A. Organizing Precision Oncology: Introduction to the Special Issue. New Genet. Soc. 2021, 40, 1–6. [Google Scholar] [CrossRef]
- Beer, P.A.; Cooke, S.L.; Chang, D.K.; Biankin, A.V. Defining the Clinical Genomic Landscape for Real-World Precision Oncology. Genomics 2020, 112, 5324–5330. [Google Scholar] [CrossRef]
- Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.; Reardon, B.; et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018, 173, 371–385.e18. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and Saturation Analysis of Cancer Genes across 21 Tumour Types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.C.; Tishkoff, S.A. The Evolution of Human Genetic and Phenotypic Variation in Africa. Curr. Biol. 2010, 20, R166–R173. [Google Scholar] [CrossRef] [Green Version]
- Chimusa, E.R.; Meintjies, A.; Tchanga, M.; Mulder, N.J.; Seoighe, C.; Soodyall, H.; Ramesar, R. A Genomic Portrait of Haplotype Diversity and Signatures of Selection in Indigenous Southern African Populations. PLoS Genet. 2015, 11, e1005052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, A.; Aron, S.; Botigué, L.R.; Sengupta, D.; Botha, G.; Bensellak, T.; Wells, G.; Kumuthini, J.; Shriner, D.; Fakim, Y.J.; et al. Author Correction: High-Depth African Genomes Inform Human Migration and Health. Nat. Cell Biol. 2021, 592, E26. [Google Scholar] [CrossRef] [PubMed]
- Petersen, D.C.; Jaratlerdsiri, W.; Van Wyk, A.; Chan, E.K.F.; Fernandez, P.; Lyons, R.J.; Mutambirw, S.B.A.; Van Der Merwe, A.; Venter, P.A.; Bates, W.; et al. African KhoeSan Ancestry Linked to High-Risk Prostate Cancer. BMC Med Genom. 2019, 12, 82. [Google Scholar] [CrossRef]
- Boyle, P.; Ngoma, T.; Sullivan, R.; Brawley, O. Cancer in Africa: The Way Forward. Ecancermedicalscience 2019, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.S. Early Lessons from the Implementation of Genomic Medicine Programs. Annu. Rev. Genom. Hum. Genet. 2019, 20, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-H.; Petrovics, G.; Srivastava, S. Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. Int. J. Mol. Sci. 2018, 19, 1255. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Walsh, T.; Gulsuner, S.; Casadei, S.; Lee, M.K.; Ogundiran, T.O.; Ademola, A.; Falusi, A.G.; Adebamowo, C.; Oluwasola, A.O.; et al. Inherited Breast Cancer in Nigerian Women. J. Clin. Oncol. 2018, 36, 2820–2825. [Google Scholar] [CrossRef]
- Hayes, V.M.; Bornman, M.R. Prostate Cancer in Southern Africa: Does Africa Hold Untapped Potential to Add Value to the Current Understanding of a Common Disease? J. Glob. Oncol. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Ambele, M.A.; Van Zyl, A.; Pepper, M.S.; Van Heerden, M.B.; Van Heerden, W.F.P. Amplification of 3q26.2, 5q14.3, 8q24.3, 8q22.3, and 14q32.33 Are Possible Common Genetic Alterations in Oral Cancer Patients. Front. Oncol. 2020, 10, 683. [Google Scholar] [CrossRef]
Gene Marker | Gene Product Role | Loci | Ref. |
---|---|---|---|
European only | |||
CABP | Calcium-binding protein 1 | 1p36 | [51] |
HOXB13 rs138213197 | Homeobox protein Hox-B13 | 17q21 | [52] |
European and African American | |||
HPC20 | hereditary prostate cancer genetic-susceptibility locus | *20q13 | [53,54] |
HPC1 | hereditary prostate cancer genetic-susceptibility locus | *1q24-25 | [53,54,55,56] |
PCAP | Predisposing for Cancer Prostate locus | *1q42-43 | [53,54,56] |
HPCX | Hereditary Prostate Cancer, X-Linked | *Xq27-28 | [54,57] |
*8q24 | [43] | ||
*3p12 | [43] | ||
KLK2/3 | Kallikrein-2/3 | *19q13.33 | [42] |
NUDT10/11 | Nucleoside diphosphate-linked moiety X motif 10/11 (Nudix motif 10/11) | *Xp11.22 | [49] |
11q13.2 | [49] | ||
HNF1B/TCF2 | Hepatocyte nuclear factor 1-beta/Transcription gactor 2 | 17q12 | [49] |
JAZF1 | Juxtaposed with another zinc finger protein 1 | [50] | |
MSMB | Beta-microseminoprotein | [50] | |
African American | |||
DXS986 | DExD/H-Box Helicase 58 | *Xq21 | [58] |
D17S1852 | Microsatellite marker | *17p11 | [58] |
rs980481 | A/C/T single-nucleotide variation on chromosome 2 | *2p16 | [59] |
rs71527 | C/T single nucleotide variation affecting the gene coding for Carbamoyl-phosphate synthase 1 (CPS1) | *2p16 | [59] |
rs11067228 | A/G single-nucleotide variation on chromosome 12 | *12q24 | [59] |
D11S908 | DNA segment containing a CA repeat | *11q22 | [58] |
D2S2259 | DNA segment containing a CA repeat | *2p21 | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marima, R.; Hull, R.; Mbeje, M.; Molefi, T.; Mathabe, K.; Elbagory, A.M.; Demetriou, D.; Dlamini, Z. Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. Int. J. Mol. Sci. 2022, 23, 628. https://doi.org/10.3390/ijms23020628
Marima R, Hull R, Mbeje M, Molefi T, Mathabe K, Elbagory AM, Demetriou D, Dlamini Z. Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. International Journal of Molecular Sciences. 2022; 23(2):628. https://doi.org/10.3390/ijms23020628
Chicago/Turabian StyleMarima, Rahaba, Rodney Hull, Mandisa Mbeje, Thulo Molefi, Kgomotso Mathabe, Abdulrahman M. Elbagory, Demetra Demetriou, and Zodwa Dlamini. 2022. "Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities" International Journal of Molecular Sciences 23, no. 2: 628. https://doi.org/10.3390/ijms23020628
APA StyleMarima, R., Hull, R., Mbeje, M., Molefi, T., Mathabe, K., Elbagory, A. M., Demetriou, D., & Dlamini, Z. (2022). Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. International Journal of Molecular Sciences, 23(2), 628. https://doi.org/10.3390/ijms23020628