The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani
Abstract
:1. Introduction
2. Results
2.1. Inactivation of the dsbA Gene Does Not Cause an Increased Sensitivity to Stressful Conditions
2.2. The D. solani dsbA Mutant Is Impaired in Motility
2.3. The dsbA Mutant Shows Impaired Activity of Secreted Virulence Factors
2.4. DsbA Is Required to Establish the Infection in Potato Plants and to Cause Disease Symptoms
2.5. The Lack of a Functional dsbA Gene Causes Pronounced Changes in the Overall D. solani Cell Proteome
2.6. Exposure to Oxidative Stress Causes More Significant Changes in the Proteome of the wt D. solani Cells Than in That of the dsbA Mutant
2.7. The Lack of the Functional dsbA Gene Affects the Secretion of Virulence Factors
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Construction of the D. solani dsbA Knockout Strain
4.3. Construction of the D. solani dsbA Complementation Strain
4.4. Quantitative Real-Time PCR (qPCR)
4.5. Virulence Determinants Assays
4.6. Infection Tests
4.7. Cell Viability and Membrane Permeability Assays
4.8. Mass Spectrometry
4.8.1. Sample Preparation for Mass Spectrometry
4.8.2. Protein Digestion
4.8.3. Liquid Chromatography and Mass Spectrometry in Data-Dependent Acquisition Mode
4.8.4. SWATH Mass Spectrometry Experiments
4.8.5. Data Analysis
5. Conclusions
- The lack of a functional dsbA gene resulted in the loss of virulence of D. solani IPO2222. Consequently, the mutant was unable to develop disease symptoms in the natural host, the potato plant.
- The dsbA mutant was non-motile and deficient in the secretion of most extracellular virulence factors (pectinases, cellulases and siderophores).
- The lack of the DsbA protein led to multifaceted effects in the D. solani cells, with pronounced changes observed in the cellular proteome and secretome.
- The proteomic analysis suggested the induction of the extracytoplasmic and cytoplasmic stress responses in the dsbA mutant cells, that could lead to repression of biosynthesis pathways involved in virulence (flagella and PCWDE). A graphical summary of the conclusions is shown in Figure 7.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charkowski, A.; Blanco, C.; Condemine, G.; Expert, D.; Franza, T.; Hayes, C.; Hugouvieux-Cotte-Pattat, N.; Solanilla, E.L.; Low, D.; Moleleki, L.; et al. The Role of Secretion Systems and Small Molecules in Soft-Rot Enterobacteriaceae Pathogenicity. Annu. Rev. Phytopathol. 2012, 50, 425–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Kroll, J.S. DsbA: A Protein-Folding Catalyst Contributing to Bacterial Virulence. Microbes Infect. 1999, 1, 1221–1228. [Google Scholar] [CrossRef]
- Missiakas, D.; Raina, S. Protein Folding in the Bacterial Periplasm. J. Bacteriol. 1997, 179, 2465–2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, U.-H.; Wang, Y.; Jin, S. DsbA of Pseudomonas Aeruginosa Is Essential for Multiple Virulence Factors. Infect. Immun. 2003, 71, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Heras, B.; Shouldice, S.R.; Totsika, M.; Scanlon, M.J.; Schembri, M.A.; Martin, J.L. DSB Proteins and Bacterial Pathogenicity. Nat. Rev. Microbiol. 2009, 7, 215–225. [Google Scholar] [CrossRef]
- Bardwell, J.C.A.; McGovern, K.; Beckwith, J. Identification of a Protein Required for Disulfide Bond Formation in Vivo. Cell 1991, 67, 581–589. [Google Scholar] [CrossRef]
- Depuydt, M.; Leonard, S.E.; Vertommen, D.; Denoncin, K.; Morsomme, P.; Wahni, K.; Messens, J.; Carroll, K.S.; Collet, J.-F. A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation. Science 2009, 326, 1109–1111. [Google Scholar] [CrossRef]
- Smith, R.P.; Paxman, J.J.; Scanlon, M.J.; Heras, B. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules 2016, 21, 811. [Google Scholar] [CrossRef] [Green Version]
- Golanowska, M.; Galardini, M.; Bazzicalupo, M.; Hugouvieux-Cotte-Pattat, N.; Mengoni, A.; Potrykus, M.; Slawiak, M.; Lojkowska, E. Draft Genome Sequence of a Highly Virulent Strain of the Plant Pathogen Dickeya Solani, IFB0099. Genome Announc. 2015, 3, e00109–e00115. [Google Scholar] [CrossRef] [Green Version]
- Khayi, S.; Mondy, S.; Beury-Cirou, A.; Moumni, M.; Hélias, V.; Faure, D. Genome Sequence of the Emerging Plant Pathogen Dickeya Solani Strain RNS 08.23.3.1A. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, B.; Nkuriyingoma, P.; Van Gijsegem, F. Economic Impact of Pectobacterium and Dickeya Species on Potato Crops: A Review and Case Study. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 263–282. ISBN 978-3-030-61459-1. [Google Scholar]
- Czajkowski, R.; de Boer, W.J.; Velvis, H.; van der Wolf, J.M. Systemic Colonization of Potato Plants by a Soilborne, Green Fluorescent Protein-Tagged Strain of Dickeya Sp. Biovar 3. Phytopathology 2010, 100, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Degefu, Y.; Potrykus, M.; Golanowska, M.; Virtanen, E.; Lojkowska, E. A New Clade of Dickeya Spp. Plays a Major Role in Potato Blackleg Outbreaks in North Finland. Ann. Appl. Biol. 2013, 162, 231–241. [Google Scholar] [CrossRef]
- Laurila, J.; Ahola, V.; Lehtinen, A.; Joutsjoki, T.; Hannukkala, A.; Rahkonen, A.; Pirhonen, M. Characterization of Dickeya Strains Isolated from Potato and River Water Samples in Finland. Eur. J. Plant Pathol. 2008, 122, 213–225. [Google Scholar] [CrossRef]
- Potrykus, M.; Golanowska, M.; Sledz, W.; Zoledowska, S.; Motyka, A.; Kolodziejska, A.; Butrymowicz, J.; Lojkowska, E. Biodiversity of Dickeya Spp. Isolated from Potato Plants and Water Sources in Temperate Climate. Plant Dis. 2016, 100, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Sławiak, M.; Łojkowska, E.; van der Wolf, J.M. First Report of Bacterial Soft Rot on Potato Caused by Dickeya Sp. (Syn. Erwinia Chrysanthemi) in Poland. Plant Pathol. 2009, 58. [Google Scholar] [CrossRef]
- Sławiak, M.; van Beckhoven, J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.; Grabe, G.; van der Wolf, J.M. Biochemical and Genetical Analysis Reveal a New Clade of Biovar 3 Dickeya Spp. Strains Isolated from Potato in Europe. Eur. J. Plant Pathol. 2009, 125, 245–261. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G. Dickeya Species: An Emerging Problem for Potato Production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya Solani Sp. Nov., a Pectinolytic Plant-Pathogenic Bacterium Isolated from Potato (Solanum Tuberosum). Int. J. Syst. Evol. Microbiol. 2014, 64, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Shevchik, V.E. Bacterial Pectate Lyases, Structural and Functional Diversity. Environ. Microbiol. Rep. 2014, 6, 427–440. [Google Scholar] [CrossRef]
- Shevchik, V.E.; Bortoli-Gernnan, I.; Robert-Baudouy, J.; Robinet, S.; Barras, F.; Condemine, G. Differential Effect of DsbA and DsbC Mutations on Extracellular Enzyme Secretion in Erwinia Chrysanthemi. Mol. Microbiol. 1995, 16, 745–753. [Google Scholar] [CrossRef]
- Coulthurst, S.J.; Lilley, K.S.; Hedley, P.E.; Liu, H.; Toth, I.K.; Salmond, G.P.C. DsbA Plays a Critical and Multifaceted Role in the Production of Secreted Virulence Factors by the Phytopathogen Erwinia Carotovora Subsp. Atroseptica. J. Biol. Chem. 2008, 283, 23739–23753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antúnez-Lamas, M.; Cabrera-Ordóñez, E.; López-Solanilla, E.; Raposo, R.; Trelles-Salazar, O.; Rodríguez-Moreno, A.; Rodríguez-Palenzuela, P. 2009 Role of Motility and Chemotaxis in the Pathogenesis of Dickeya Dadantii 3937 (Ex Erwinia Chrysanthemi 3937). Microbiology 2009, 155, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, T.-M.; Huang, Y.; Simon, M.I.; Doyle, J. Robust Perfect Adaptation in Bacterial Chemotaxis through Integral Feedback Control. Proc. Natl. Acad. Sci. USA 2000, 97, 4649–4653. [Google Scholar] [CrossRef] [Green Version]
- Harshey, R.M. Bacterial Motility on a Surface: Many Ways to a Common Goal. Annu. Rev. Microbiol. 2003, 57, 249–273. [Google Scholar] [CrossRef]
- Allison, C.; Hughes, C. Bacterial Swarming: An Example of Prokaryotic Differentiation and Multicellular Behaviour. Sci. Prog. 1991, 75, 403–422. [Google Scholar] [PubMed]
- Fraser, G.M.; Hughes, C. Swarming Motility. Curr. Opin. Microbiol. 1999, 2, 630–635. [Google Scholar] [CrossRef]
- Reverchon, S.; Nasser, W. Dickeya Ecology, Environment Sensing and Regulation of Virulence Programme. Environ. Microbiol. Rep. 2013, 5, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, S.; Muskhelisvili, G.; Nasser, W. Chapter Three-Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. Prog. Mol. Biol. Transl. Sci. 2016, 142, 51–92. [Google Scholar] [CrossRef]
- Hölscher, T.; Kovács, Á.T. Sliding on the Surface: Bacterial Spreading without an Active Motor. Environ. Microbiol. 2017, 19, 2537–2545. [Google Scholar] [CrossRef]
- Wolfe, A.J.; Conley, M.P.; Kramer, T.J.; Berg, H.C. Reconstitution of Signaling in Bacterial Chemotaxis. J. Bacteriol. 1987, 169, 1878–1885. [Google Scholar] [CrossRef] [Green Version]
- Alberts, A.W.; Vagelos, P.R. 2 Acyl-CoA Carboxylases. Enzymes 1972, 6, 37–82. [Google Scholar] [CrossRef]
- Sobota, J.M.; Imlay, J.A. Iron Enzyme Ribulose-5-Phosphate 3-Epimerase in Escherichia Coli Is Rapidly Damaged by Hydrogen Peroxide but Can Be Protected by Manganese. Proc. Natl. Acad. Sci. USA 2011, 108, 5402–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, W.; Xia, B.; Inouye, M.; Severinov, K. Escherichia Coli CspA-Family RNA Chaperones Are Transcription Antiterminators. Proc. Natl. Acad. Sci. USA 2000, 97, 7784–7789. [Google Scholar] [CrossRef] [Green Version]
- Nossal, N.G.; Singer, M.F. The Processive Degradation of Individual Polyribonucleotide Chains: I. Escherichia Coli Ribonuclease II. J. Biol. Chem. 1968, 243, 913–922. [Google Scholar] [CrossRef]
- Lopez-Amoros, R.; Comas, J.; Vives-Rego, J. Flow Cytometric Assessment of Escherichia Coli and Salmonella Typhimurium Starvation-Survival in Seawater Using Rhodamine 123, Propidium Iodide, and Oxonol. Appl. Environ. Microbiol. 1995, 61, 2521–2526. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [Green Version]
- Dailey, F.E.; Berg, H.C. Mutants in Disulfide Bond Formation That Disrupt Flagellar Assembly in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1993, 90, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Kloek, A.P.; Brooks, D.M.; Kunkel, B.N. A DsbA Mutant of Pseudomonas Syringae Exhibits Reduced Virulence and Partial Impairment of Type III Secretion. Mol. Plant Pathol. 2000, 1, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, O.V.; Mavrodi, D.V.; Park, A.A.; Weller, D.M.; Thomashow, L.S.Y. 2006 The Role of DsbA in Colonization of the Wheat Rhizosphere by Pseudomonas Fluorescens Q8r1-96. Microbiology 2006, 152, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Mariconda, S.; Wang, Q.; Harshey, R.M. A Mechanical Role for the Chemotaxis System in Swarming Motility. Mol. Microbiol. 2006, 60, 1590–1602. [Google Scholar] [CrossRef]
- Novak, E.A.; Sekar, P.; Xu, H.; Moon, K.H.; Manne, A.; Wooten, R.M.; Motaleb, M.A. The Borrelia Burgdorferi CheY3 Response Regulator Is Essential for Chemotaxis and Completion of Its Natural Infection Cycle. Cell. Microbiol. 2016, 18, 1782–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Dong, Z.; Han, X.; Wang, H.; Jiang, L.; Sun, J.; Yang, Y.; Ma, T.; Shao, C.; Wang, X.; et al. Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria Monocytogenes via Redox Interactions. Front. Cell. Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef]
- Corral, J.; Pérez-Varela, M.; Barbé, J.; Aranda, J. Direct Interaction between RecA and a CheW-like Protein Is Required for Surface-Associated Motility, Chemotaxis and the Full Virulence of Acinetobacter Baumannii Strain ATCC 17978. Virulence 2020, 11, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spöring, I.; Felgner, S.; Preuße, M.; Eckweiler, D.; Rohde, M.; Häussler, S.; Weiss, S.; Erhardt, M. Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella Enterica Serovar Typhimurium. mBio 2018, 9, e00736-17. [Google Scholar] [CrossRef] [Green Version]
- Bontemps-Gallo, S.; Madec, E.; Dondeyne, J.; Delrue, B.; Robbe-Masselot, C.; Vidal, O.; Prouvost, A.-F.; Boussemart, G.; Bohin, J.-P.; Lacroix, J.-M. Concentration of Osmoregulated Periplasmic Glucans (OPGs) Modulates the Activation Level of the RcsCD RcsB Phosphorelay in the Phytopathogen Bacteria Dickeya Dadantii. Environ. Microbiol. 2013, 15, 881–894. [Google Scholar] [CrossRef]
- Madec, E.; Bontemps-Gallo, S.; Lacroix, J.-M. 2014 Increased Phosphorylation of the RcsB Regulator of the RcsCDB Phosphorelay in Strains of Dickeya Dadantii Devoid of Osmoregulated Periplasmic Glucans Revealed by Phos-Tag Gel Analysis. Microbiology 2014, 160, 2763–2770. [Google Scholar] [CrossRef]
- Wall, E.; Majdalani, N.; Gottesman, S. The Complex Rcs Regulatory Cascade. Annu. Rev. Microbiol. 2018, 72, 111–139. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y.; Yeom, S.; Kim, S.; Park, S.; Jeon, C.O.; Park, W. The Role of Disulfide Bond Isomerase A (DsbA) of Escherichia Coli O157:H7 in Biofilm Formation and Virulence. FEMS Microbiol. Lett. 2008, 278, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosadini, C.V.; Wong, S.M.S.; Akerley, B.J. The Periplasmic Disulfide Oxidoreductase DsbA Contributes to Haemophilus Influenzae Pathogenesis. Infect. Immun. 2008, 76, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- Rizzitello, A.E.; Harper, J.R.; Silhavy, T.J. Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia Coli. J. Bacteriol. 2001, 183, 6794–6800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missiakas, D.; Raina, S. The Extracytoplasmic Function Sigma Factors: Role and Regulation. Mol. Microbiol. 1998, 28, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Önder, Ö.; Turkarslan, S.; Sun, D.; Daldal, F. Overproduction or Absence of the Periplasmic Protease DegP Severely Compromises Bacterial Growth in the Absence of the Dithiol: Disulfide Oxidoreductase DsbA. Mol. Cell. Proteom. 2008, 7, 875–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorko-Glonek, J.; Sobiecka-Szkatula, A.; Narkiewicz, J.; Lipinska, B. 2008 The Proteolytic Activity of the HtrA (DegP) Protein from Escherichia Coli at Low Temperatures. Microbiology 2008, 154, 3649–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weski, J.; Ehrmann, M. Genetic Analysis of 15 Protein Folding Factors and Proteases of the Escherichia Coli Cell Envelope. J. Bacteriol. 2012, 194, 3225–3233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, M.; Hasenbein, S.; Mamant, N.; Merdanovic, M.; Poepsel, S.; Hauske, P.; Kaiser, M.; Huber, R.; Krojer, T.; Clausen, T.; et al. Structure, Function and Regulation of the Conserved Serine Proteases DegP and DegS of Escherichia Coli. Res. Microbiol. 2009, 160, 660–666. [Google Scholar] [CrossRef]
- Creze, C.; Castang, S.; Derivery, E.; Haser, R.; Hugouvieux-Cotte-Pattat, N.; Shevchik, V.E.; Gouet, P. The Crystal Structure of Pectate Lyase PelI from Soft Rot Pathogen Erwinia Chrysanthemi in Complex with Its Substrate. J. Biol. Chem. 2008, 283, 18260–18268. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.M.; Doan, C.N.; Oliver, R.L.; Yoder, M.D. Structure of Pectate Lyase A: Comparison to Other Isoforms. Acta Cryst. D Biol. Cryst. 2002, 58, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Lietzke, S.E.; Scavetta, R.D.; Yoder, M.D.; Jurnak, F. The Refined Three-Dimensional Structure of Pectate Lyase E from Erwinia Chrysanthemi at 2.2 A Resolution. Plant Physiol. 1996, 111, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.; Mayans, O.; Smith, D.; Worboys, K.; Pickersgill, R.W. Three-Dimensional Structure of Erwinia Chrysanthemi Pectin Methylesterase Reveals a Novel Esterase Active Site1 1Edited by J. Thornton. J. Mol. Biol. 2001, 305, 951–960. [Google Scholar] [CrossRef]
- Korotkov, K.V.; Sandkvist, M.; Hol, W.G.J. The Type II Secretion System: Biogenesis, Molecular Architecture and Mechanism. Nat. Rev. Microbiol. 2012, 10, 336–351. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zeng, Q.; Koestler, B.J.; Waters, C.M.; Sundin, G.W.; Hutchins, W.; Yang, C.-H. Deciphering the Components That Coordinately Regulate Virulence Factors of the Soft Rot Pathogen Dickeya Dadantii. Mol. Plant Microbe Interact. 2014, 27, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.-H.; Cami, B.; Kotoujansky, A.; Chambost, J.-P.; Frixon, C.; Cattanéo, J. Isolation of the Gene Encoding the Major Endoglucanase of Erwinia Chrysanthemi. Homology between Cel Genes of Two Strains of Erwinia Chrysanthemi. FEMS Microbiol. Lett. 1987, 41, 351–356. [Google Scholar] [CrossRef]
- Bortoli-German, I.; Brun, E.; Py, B.; Chippaux, M.; Barras, F. Periplasmic Disulphide Bond Formation Is Essential for Cellulase Secretion by the Plant Pathogen Erwinia Chrysanthemi. Mol. Microbiol. 1994, 11, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Franza, T.; Expert, D. Role of Iron Homeostasis in the Virulence of Phytopathogenic Bacteria: An ‘à La Carte’ Menu. Mol. Plant Pathol. 2013, 14, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.D.; Bobrov, A.G.; Kirillina, O.; Rhodes, E.R.; Actis, L.A.; Fetherston, J.D. Yersinia Pestis Transition Metal Divalent Cation Transporters. Adv. Exp. Med. Biol. 2012, 954, 267–279. [Google Scholar] [CrossRef]
- Capela, D.; Barloy-Hubler, F.; Gouzy, J.; Bothe, G.; Ampe, F.; Batut, J.; Boistard, P.; Becker, A.; Boutry, M.; Cadieu, E.; et al. Analysis of the Chromosome Sequence of the Legume Symbiont Sinorhizobium Meliloti Strain 1021. Proc. Natl. Acad. Sci. USA 2001, 98, 9877–9882. [Google Scholar] [CrossRef] [Green Version]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Price, N.L.; Raivio, T.L. Characterization of the Cpx Regulon in Escherichia Coli Strain MC4100. J. Bacteriol. 2009, 191, 1798–1815. [Google Scholar] [CrossRef] [Green Version]
- Bontemps-Gallo, S.; Madec, E.; Lacroix, J.-M. The Two-Component System CpxAR Is Essential for Virulence in the Phytopathogen Bacteria Dickeya Dadantii EC3937. Environ. Microbiol. 2015, 17, 4415–4428. [Google Scholar] [CrossRef] [Green Version]
- Skovierova, H.; Rowley, G.; Rezuchova, B.; Homerova, D.; Lewis, C.; Roberts, M.; Kormanec, J. 2006 Identification of the ΣE Regulon of Salmonella Enterica Serovar Typhimurium. Microbiology 2006, 152, 1347–1359. [Google Scholar] [CrossRef] [Green Version]
- Danese, P.N.; Silhavy, T.J. CpxP, a Stress-Combative Member of the Cpx Regulon. J. Bacteriol. 1998, 180, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Young, G.; Chen, J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Lin, D.; Rao, C.V.; Slauch, J.M. The Salmonella SPI1 Type Three Secretion System Responds to Periplasmic Disulfide Bond Status via the Flagellar Apparatus and the RcsCDB System. J. Bacteriol. 2008, 190, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Minic, Z. Proteomic Studies of the Effects of Different Stress Conditions on Central Carbon Metabolism in Microorganisms. J. Proteom. Bioinform 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Juhnke, H.; Krems, B.; Kötter, P.; Entian, K.-D. Mutants That Show Increased Sensitivity to Hydrogen Peroxide Reveal an Important Role for the Pentose Phosphate Pathway in Protection of Yeast against Oxidative Stress. Mol. Gen. Genet. 1996, 252, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Calderini, E.; Celebioglu, H.U.; Villarroel, J.; Jacobsen, S.; Svensson, B.; Pessione, E. Comparative Proteomics of Oxidative Stress Response of Lactobacillus Acidophilus NCFM Reveals Effects on DNA Repair and Cysteine de Novo Synthesis. Proteomics 2017, 17, 1600178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samsonov, V.V.; Samsonov, V.V.; Sineoky, S.P. DcrA and DcrB Escherichia Coli Genes Can Control DNA Injection by Phages Specific for BtuB and FhuA Receptors. Res. Microbiol. 2002, 153, 639–646. [Google Scholar] [CrossRef]
- Hancock, R.E.W. Alterations in Outer Membrane Permeability. Annu. Rev. Microbiol. 1984, 38, 237–264. [Google Scholar] [CrossRef] [PubMed]
- Strauch, K.L.; Johnson, K.; Beckwith, J. Characterization of DegP, a Gene Required for Proteolysis in the Cell Envelope and Essential for Growth of Escherichia Coli at High Temperature. J. Bacteriol. 1989, 171, 2689–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBroom, A.J.; Kuehn, M.J. Release of Outer Membrane Vesicles by Gram-Negative Bacteria Is a Novel Envelope Stress Response. Mol. Microbiol. 2007, 63, 545–558. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Sullivan, C.J.; Kuehn, M.J. Envelope Control of Outer Membrane Vesicle Production in Gram-Negative Bacteria. Biochemistry 2013, 52, 3031–3040. [Google Scholar] [CrossRef]
- Gevrekci, A.Ö. The Roles of Polyamines in Microorganisms. World J. Microbiol. Biotechnol. 2017, 33, 204. [Google Scholar] [CrossRef]
- Przepiora, T.; Figaj, D.; Radzinska, M.; Apanowicz, M.; Sieradzka, M.; Ambroziak, P.; Hugouvieux-Cotte-Pattat, N.; Lojkowska, E.; Skorko-Glonek, J. Effects of Stressful Physico-Chemical Factors on the Fitness of the Plant Pathogenic Bacterium Dickeya Solani. Eur. J. Plant Pathol. 2020, 156, 519–535. [Google Scholar] [CrossRef]
- Kotoujansky, A.; Diolez, A.; Boccara, M.; Bertheau, Y.; Andro, T.; Coleno, A. Molecular Cloning of Erwinia Chrysanthemi Pectinase and Cellulase Structural Genes. EMBO J. 1985, 4, 781–785. [Google Scholar] [CrossRef]
- Resibois, A.; Colet, M.; Faelen, M.; Schoonejans, E.; Toussaint, A. ΦEC2, a New Generalized Transducing Phage of Erwinia Chrysanthemi. Virology 1984, 137, 102–112. [Google Scholar] [CrossRef]
- Glasner, J.D.; Yang, C.-H.; Reverchon, S.; Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Bohin, J.-P.; Van Gijsegem, F.; Yang, S.; Franza, T.; Expert, D.; et al. Genome Sequence of the Plant-Pathogenic Bacterium Dickeya Dadantii 3937. J. Bacteriol. 2011, 193, 2076–2077. [Google Scholar] [CrossRef]
- Khayi, S.; Blin, P.; Chong, T.M.; Chan, K.-G.; Faure, D. Complete Genome Anatomy of the Emerging Potato Pathogen Dickeya Solani Type Strain IPO 2222T. Stand. Genom. Sci. 2016, 11, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawitzke, J.A.; Thomason, L.C.; Bubunenko, M.; Li, X.; Costantino, N.; Court, D.L. Chapter Seven-Recombineering: Using Drug Cassettes to Knock out Genes in Vivo. Methods Enzymol. 2013, 533, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Bingle, L.E.; Heurlier, K.; Pallen, M.J.; Penn, C.W.; Busby, S.J.; Hobman, J.L. Gene Doctoring: A Method for Recombineering in Laboratory and Pathogenic Escherichia Colistrains. BMC Microbiol. 2009, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.H. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia Coli and Related Bacteria; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1922. [Google Scholar]
- Lohaus, G.; Pennewiss, K.; Sattelmacher, B.; Hussmann, M.; Muehling, K.H. Is the Infiltration-Centrifugation Technique Appropriate for the Isolation of Apoplastic Fluid? A Critical Evaluation with Different Plant Species. Physiol. Plant. 2001, 111, 457–465. [Google Scholar] [CrossRef]
- Roeder, D.L.; Collmer, A. Marker-Exchange Mutagenesis of a Pectate Lyase Isozyme Gene in Erwinia Chrysanthemi. J. Bacteriol. 1985, 164, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Figaj, D.; Czaplewska, P.; Przepióra, T.; Ambroziak, P.; Potrykus, M.; Skorko-Glonek, J. Lon Protease Is Important for Growth Under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya Solani. Int. J. Mol. Sci. 2020, 21, 3687. [Google Scholar] [CrossRef]
- Golanowska, M.; Kielar, J.; Lojkowska, E. The Effect of Temperature on the Phenotypic Features and the Maceration Ability of Dickeya Solani Strains Isolated in Finland, Israel and Poland. Eur. J. Plant Pathol. 2017, 147, 803–817. [Google Scholar] [CrossRef]
- Ji, J.; Hugouvieux-Cotte-Pattat, N.; Robert-Baudouy, J. 1987 Use of Mu-Lac Insertions to Study the Secretion of Pectate Lyases by Erwinia Chrysanthemi. Microbiology 1987, 133, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, S.; Van Gijsegem, F.; Rouve, M.; Kotoujansky, A.; Robert-Baudouy, J. Organization of a Pectate Lyase Gene Family in Erwinia Chrysanthemi. Gene 1986, 49, 215–224. [Google Scholar] [CrossRef]
- Wood, P.J. The Use of Dye—Polysaccharide Interactions in β-d-Glucanase Assay. Carbohydr. Res. 1981, 94, C19–C23. [Google Scholar] [CrossRef]
- Collmer, A.; Ried, J.L.; Mount, M.S. Assay Methods for Pectic Enzymes. Methods Enzymol. 1988, 161, 329–335. [Google Scholar] [CrossRef]
- Coulthurst, S.J.; Lilley, K.S.; Salmond, G.P.C. Genetic and Proteomic Analysis of the Role of LuxS in the Enteric Phytopathogen, Erwinia Carotovora. Mol. Plant Pathol. 2006, 7, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Tardy, F.; Nasser, W.; Robert-Baudouy, J.; Hugouvieux-Cotte-Pattat, N. Comparative Analysis of the Five Major Erwinia Chrysanthemi Pectate Lyases: Enzyme Characteristics and Potential Inhibitors. J. Bacteriol. 1997, 179, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Biely, P.; Mislovičová, D.; Toman, R. Soluble Chromogenic Substrates for the Assay of Endo-1,4-β-Xylanases and Endo-1,4-β-Glucanases. Anal. Biochem. 1985, 144, 142–146. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N. The RhaS Activator Controls the Erwinia Chrysanthemi 3937 Genes RhiN, RhiT and RhiE Involved in Rhamnogalacturonan Catabolism. Mol. Microbiol. 2004, 51, 1361–1374. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Czajkowski, R.; van der Wolf, J.M.; Krolicka, A.; Ozymko, Z.; Narajczyk, M.; Kaczynska, N.; Lojkowska, E. Salicylic Acid Can Reduce Infection Symptoms Caused by Dickeya Solani in Tissue Culture Grown Potato (Solanum Tuberosum L.) Plants. Eur. J. Plant Pathol. 2015, 141, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Figaj, D.; Gieldon, A.; Bartczak, M.; Koper, T.; Zarzecka, U.; Lesner, A.; Lipinska, B.; Skorko-Glonek, J. The LD Loop as an Important Structural Element Required for Transmission of the Allosteric Signal in the HtrA (DegP) Protease from Escherichia Coli. FEBS J. 2016, 283, 3471–3487. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.J.; Zakai, S.A.I.; Kelly, D.J. The Periplasmic Chaperone Network of Campylobacter Jejuni: Evidence That SalC (Cj1289) and PpiD (Cj0694) Are Involved in Maintaining Outer Membrane Integrity. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, J.R. Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols. Anal. Chem. 2016, 88, 5438–5443. [Google Scholar] [CrossRef] [Green Version]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the MS/MS Spectra Generated by Data-Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol. Cell. Proteom. 2012, 11, O111.016717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bilbao, A.; Bruderer, T.; Luban, J.; Strambio-De-Castillia, C.; Lisacek, F.; Hopfgartner, G.; Varesio, E. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC–SWATH–MS Acquisition. J. Proteome Res. 2015, 14, 4359–4371. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.E.; Macur, K.; Czaplewska, P.; Liss, J.; Łukaszuk, K.; Ołdziej, S. Human Follicular Fluid Proteomic and Peptidomic Composition Quantitative Studies by SWATH-MS Methodology. Applicability of High PH RP-HPLC Fractionation. J. Proteom. 2019, 191, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
UniProt ID | Name | p-Value | Fold Change | Description | Number of Cys | Predicted Localization |
---|---|---|---|---|---|---|
MOTILITY AND CHEMOTAXIS | ||||||
A0A2K8VVH9 A0A6N0AT44 | CheA | 0.0023 | 0.4227 | Signal transduction histidine kinase CheA | 3 | C |
A0A6N0AAK8 | CheV | 0.0062 | 2.1167 | Chemotaxis protein | 1 | C |
A0A6N0AH46 | CheW | 0.0269 | 0.4451 | Chemotaxis protein | 0 | C |
A0A6N0B2V1 | FlgE | 0.0085 | 0.3043 | Flagellar hook protein | 0 | EX |
A0A6N0AG83 | FliC | <0.0001 | 0.0080 | Flagellin 1 | 0 | EX |
TRANSPORT | ||||||
A0A6N0AQD6 | GltI | 0.0010 | 0.2706 | Glutamate/aspartate periplasmic-binding protein | 2 | EX |
A0A6N0B4D0 | OppA | 0.0234 | 0.3684 | Periplasmic oligopeptide-binding protein | 0 | EX |
A0A6N0AX80 | PstS | 0.0214 | 2.6510 | Phosphate-binding protein | 0 | EX |
A0A2K8W558 A0A6N0B1L8 | SitA | 0.0025 | 2.6286 | Manganese ABC transporter, periplasmic-binding protein | 0 | EX |
STRESS RESPONSE AND PROTEIN QUALITY CONTROL | ||||||
A0A6N0AF95 | DegP | 0.0162 | 2.9982 | Periplasmic serine endoprotease | 2 | EX |
A0A6N0AY12 | GroES | 0.0004 | 0.2959 | 10 kDa chaperonin | 0 | C |
A0A6N0BH32 | GshB | 0.0043 | 2.7279 | Glutathione synthetase | 4 | C |
A0A6N0ARS9 | RecA | <0.0001 | 2.5880 | Recombinase A | 4 | C |
A0A6N0ABQ5 | RcsB | 0.0274 | 2.1452 | Transcriptional regulatory protein | 0 | C |
VIRULENCE AND ATTACHMENT | ||||||
A0A6N0ADK4 | OmpW | 0.0465 | 0.4662 | Outer membrane protein W | 0 | EX |
A0A2K8W5L9 A0A6N0BBS5 | OmpX | 0.0001 | 2.0530 | Attachment invasion locus protein precursor | 0 | EX |
PRIMARY METABOLISM | ||||||
A0A6N0AP75 | MaeA | 0.0202 | 3.0996 | NAD-dependent malic enzyme | 8 | C |
A0A2K8VWM7 | SuhB | 0.0004 | 5.5655 | Inositol-1-monophosphatase | 3 | C |
A0A6N0AXG4 | AccA | 0.0005 | 2.2560 | Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha | 4 | C |
A0A2K8W5K9 A0A6N0B1Z5 | 0.0059 | 0.3826 | acidPPc domain-containing protein | 3 | EX | |
A0A6N0AKV1 | 0.0452 | 2.8777 | Cytochrome bo(3) ubiquinol oxidase subunit 1 | 4 | EX | |
A0A2K8VUJ2 A0A6N0AFZ5 | 0.0009 | 3.6718 | 2-dehydropantoate 2-reductase | 5 | C | |
A0A6N0AZD1 | 0.0260 | 0.1796 | L-asparaginase | 0 | C | |
A0A2K8W0U8 A0A6N0AIW6 | 0.0472 | 0.3564 | NADH dehydrogenase | 6 | C | |
A0A6N0AL19 | 0.0108 | 2.1397 | NAD(P)H-flavin reductase | 2 | C | |
A0A6N0AAE7 | 0.0089 | 6.8300 | Phosphoglucomutase | 5 | C | |
A0A6N0B8R8 | 0.0279 | 10.8132 | Ribulose-phosphate 3-epimerase | 1 | C | |
→ protein synthesis | ||||||
A0A6N0B0C3 | HisD | 0.0057 | 2.5386 | Histidinol dehydrogenase, histidine biosynthesis | 7 | C |
A0A6N0AIR2 | LeuA | 0.0357 | 0.4026 | 2-isopropylmalate synthase | 6 | C |
A0A6N0AQ52 | L32 (RpmF) | 0.0294 | 0.4699 | 50S ribosomal protein L32 | 0 | C |
A0A6N0AJL8 | TrpS | 0.0024 | 2.1145 | Tryptophan-tRNA ligase | 4 | C |
A0A6N0AWV6 | TypA (BipA) | 0.0012 | 0.4929 | GTP-binding protein TypA/BipA (ribosome biogenesis) | 5 | C |
A0A2K8VZB6 A0A6N0AI45 | YxeP | 0.0013 | 3.3600 | N-acetyl-L,L-diaminopimelate deacetylase-like protein (Leu biosynthesis) | 2 | C |
A0A6N0BB83 | 0.0012 | 3.9494 | Elongation factor Tu | 3 | C | |
A0A6N0AJ97 | 0.0051 | 3.9942 | Elongation factor Tu | 3 | C | |
→ nucleic acids AND cofactors synthesis and homeostasis | ||||||
A0A6N0BGD6 | PurF | 0.0098 | 0.4078 | Amidophosphoribosyltransferase | 6 | C |
A0A2K8VZA5 A0A6N0AL00 | 0.0002 | 2.1056 | Adenylosuccinate lyase (de novo purine synthesis) | 2 | C | |
→ polyamine biosynthesis | ||||||
A0A6N0ASX1 | SpeA | 0.0010 | 3.1524 | Biosynthetic arginine decarboxylase | 8 | EX |
A0A6N0AWG0 | SpeD | 0.0253 | 2.0829 | S-adenosylmethionine decarboxylase proenzyme | 6 | C |
LIPOPROTEINS, MEMBRANE AND CELL WALL BIOGENESIS | ||||||
A0A6N0BB31 | BamA | 0.0019 | 2.5034 | Outer membrane protein assembly factor | 2 | EX |
A0A2K8VZQ3 A0A6N0AK79 | DcrB | 0.0126 | 2.3492 | Periplasmic bacteriophage sensitivity protein DcrB | 1 | EX |
A0A6N0BHR4 | MurC | 0.0060 | 2.9827 | UDP-N-acetylmuramate-L-alanine ligase | 2 | C |
OTHERS, UNIDENTIFIED | ||||||
A0A2K8W438 A0A6N0APE9 | VirK | 0.0480 | 0.1451 | VirK protein (D. dadantii YbjX homologue) | 2 | EX |
A0A2K8VTQ1 A0A6N0AFA2 | 0.0001 | 0.3205 | CaMKII-AD, RNS: SgcJ/EcaC family oxidoreductase | 2 | EX | |
A0A6N0AEH1 | 0.0233 | 0.4976 | Uncharacterized protein | 0 | N |
UniProt ID | Name | p-Value | Fold Change | p-Value | Fold Change | Description | No. of Cys | Pred. Local. |
---|---|---|---|---|---|---|---|---|
WILD TYPE | dsbA MUTANT | |||||||
MOTILITY AND CHEMOTAXIS | ||||||||
A0A2K8W3X3 A0A6N0ABX5 | 0.0272 | 0.3321 | Methyl-accepting chemotaxis protein I, serine chemoreceptor protein | 3 | EX | |||
TRANSPORT | ||||||||
A0A6N0B6V8 | OmpF | <0.0001 | 0.2333 | Outer membrane protein F | 0 | EX | ||
A0A6N0AX80 | PstS | 0.0013 | 4.4512 | Phosphate-binding protein | 0 | EX | ||
A0A6N0A6N3 | SecB | 0.0139 | 2.2809 | Protein-export protein SecB | 4 | C | ||
A0A2K8VZD5 A0A6N0B8Y3 | 0.0453 | 0.4820 | ABC-type polar amino acid transport system, ATPase component | 1 | EX | |||
A0A6N0AZI4 | 0.0145 | 0.4237 | Putative Fe(2+)-trafficking protein | 1 | EX | |||
A0A2K8W4X3 A0A6N0AAN4 | 0.0138 | 2.0647 | Outer membrane receptor protein, involved in siderophore uptake | 0 | EX | |||
CHAPERONES | ||||||||
A0A6N0B884 | IbpB | <0.0001 | 0.3876 | Small heat shock protein | 0 | C | ||
A0A6N0BK24 | SlyD | 0.0053 | 0.4416 | FKBP-type peptidyl-prolyl cis-trans isomerase | 5 | C | ||
A0A2K8VY47 | SurA | 0.0098 | 2.0860 | Chaperone | 0 | EX | ||
STRESS RESPONSE AND PROTEIN QUALITY CONTROL | ||||||||
A0A6N0AZJ6 | ClpP | 0.0003 | 2.0636 | ATP-dependent Clp protease proteolytic subunit | 2 | C | ||
A0A6N0AN16 | Dps | 0.0010 | 6.5526 | <0.0001 | 5.6274 | DNA protection during starvation protein | 0 | C |
A0A6N0AYR4 | KatG | 0.0017 | 2.0880 | 0.0014 | 2.3612 | Catalase-peroxidase | 1 | C |
A0A6N0AGM0 | OhrB | 0.0039 | 6.8570 | Organic hydroperoxide resistance protein | 2 | EX | ||
A0A6N0AY64 | Spy | 0.0309 | 2.9841 | Spheroplast protein Y | 0 | EX | ||
A0A6N0ADU5 | UspE | 0.0320 | 0.4192 | Universal stress protein E | 4 | C | ||
A0A6N0A9Y2 | <0.0001 | 4.7646 | <0.0001 | 6.3572 | Alkyl hydroperoxide reductase subunit C | 2 | C | |
A0A6N0BH32 | 0.0012 | 3.0958 | Glutathione synthetase | 4 | C | |||
A0A6N0A6E0 | <0.0001 | 3.0858 | 0.0034 | 2.0317 | Superoxide dismutase | 1 | C | |
A0A6N0BD39 | EC-YbbN | 0.0067 | 2.1508 | Thioredoxin | 2 | C | ||
VIRULENCE AND ATTACHMENT | ||||||||
A0A2K8VV27 A0A6N0ARC4 | 0.0076 | 2.4047 | Endo-1,4-beta-xylanase A, cellulolythic enzyme | 2 | EX | |||
METABOLISM | ||||||||
A0A6N0AXG4 | AccA | 0.0011 | 2.1010 | Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha | 4 | C | ||
A0A6N0AKX6 | CoaBC | 0.0380 | 2.6397 | Coenzyme A biosynthesis bifunctional protein | 6 | C | ||
A0A6N0AEA5 | FabA | 0.0124 | 2.9558 | 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase | 2 | C | ||
A0A6N0AP75 | MaeA | 0.0379 | 2.4525 | NAD-dependent malic enzyme | 8 | C | ||
A0A6N0B091 | MenB | 0.0002 | 2.0532 | 1,4-Dihydroxy-2-naphthoyl-CoA synthase | 8 | C | ||
A0A6N0BMC3 | MetK | 0.0005 | 2.2850 | S-adenosyl-methionine synthase | 4 | C | ||
A0A6N0B5I8 | PanB | 0.0029 | 0.4842 | 3-methyl-2-oxobutanoate hydroxymethyl-transferase | 5 | C | ||
A0A6N0AI34 | Ppa | 0.0001 | 0.2987 | Inorganic pyrophosphatase | 2 | C | ||
A0A6N0B8R8 | Rpe | <0.0001 | 9.3293 | Ribulose-phosphate 3-epimerase | 1 | C | ||
A0A2K8VWM7 | SuhB | 0.0425 | 2.0263 | Inositol-1-monophosphatase | 3 | C | ||
A0A2K8VW53 A0A6N0ARP4 | YfdZ | 0.0291 | 2.4133 | Putative PLP-dependent aminotransferase YfdZ | 4 | C | ||
A0A2K8VWF4 A0A6N0B632 | YhdN_3 | 0.0010 | 3.6295 | Oxidoreductase | 0 | C | ||
A0A2K8VUJ2 A0A6N0AFZ5 | <0.0001 | 3.3844 | 2-dehydropantoate 2-reductase | 5 | C | |||
A0A6N0BJD2 | 0.0027 | 0.1940 | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase | 5 | C | |||
A0A2K8VYG6 A0A6N0AT13 | <0.0001 | 7.0231 | 0.0042 | 7.5702 | Exported lipase | 1 | EX | |
A0A2K8VZB6 A0A6N0AI45 | 0.0010 | 3.3037 | N-acetyl-L,L-diaminopimelate deacetylase-like protein | 2 | C | |||
A0A6N0B1V3 | 0.0312 | 0.4177 | NADH:flavin oxidoreductase | 1 | C | |||
A0A6N0AAE7 | 0.0275 | 2.5083 | Phosphoglucomutase | 5 | C | |||
→ Protein synthesis | ||||||||
A0A6N0BHG2 | HisB | 0.0023 | 2.5244 | Histidine biosynthesis bifunctional protein | 6 | C | ||
A0A6N0B0C3 | HisD | 0.0025 | 3.1096 | Histidinol dehydrogenase, histidine biosynthesis | 7 | C | ||
A0A6N0BKQ0 | LeuC | 0.0003 | 0.4741 | 3-isopropylmalate dehydratase large subunit 1, L-leucine biosynthesis | 7 | C | ||
A0A6N0B5Q4 | LeuD | 0.0013 | 0.4868 | 3-isopropylmalate dehydratase small subunit 1, L-leucine biosynthesis | 2 | C | ||
A0A6N0AIZ0 | RplL | <0.0001 | 2.7155 | 50S ribosomal protein L7/L12 | 0 | C | ||
A0A6N0BJY9 | RplX | <0.0001 | 0.4967 | 50S ribosomal protein L24 | 0 | C | ||
A0A2K8VYU2 A0A6N0B5N4 | RpsJ | 0.0005 | 0.4470 | 30S ribosomal protein S10 | 0 | C | ||
A0A6N0BIP4 | RpsT | 0.0048 | 0.4073 | 30S ribosomal protein S20 | 0 | C | ||
A0A2K8VTM5 A0A6N0BHV7 | TrpD | 0.0020 | 3.6390 | Anthranilate phosphoribosyl-transferase | 2 | C | ||
A0A6N0AJL8 | TrpS | 0.0003 | 2.2887 | Tryptophan-tRNA ligase | 4 | C | ||
A0A6N0BHM5 | YfiA | <0.0001 | 2.0523 | Ribosome-associated inhibitor A | 1 | C | ||
A0A6N0B1J2 | YgfZ | 0.0299 | 0.4667 | tRNA-modifying protein | 3 | C | ||
A0A6N0AMQ7 | 0.0114 | 2.0908 | DNA-binding protein H-NS | 0 | C | |||
A0A6N0BB83 | 0.0224 | 3.2046 | Elongation factor Tu | 3 | C | |||
A0A6N0AJ97 | 0.0307 | 2.7311 | Elongation factor Tu | 3 | C | |||
A0A6N0ALX1 | 0.0057 | 3.0829 | Peptide chain release factor 3 | 6 | C | |||
A0A6N0B620 | 0.0377 | 2.0594 | Sulfite reductase (NADPH) flavoprotein alpha-component, cysteine biosynthesis | 1 | C | |||
→ Nucleic acids and cofactor synthesis and homeostasis | ||||||||
A0A6N0AB00 | Apt | 0.0208 | 0.4420 | Adenine phosphoribosyl-transferase | 1 | C | ||
A0A6N0BBV4 | CspE | 0.0051 | 0.4385 | Cold shock-like protein | 0 | C | ||
A0A6N0AQX1 | IhfA | 0.0172 | 2.0893 | Integration host factor subunit alpha | 0 | C | ||
A0A6N0BHM3 | 0.0232 | 2.0453 | Exoribonuclease 2 | 7 | C | |||
→ Poliamine biosynthesis | ||||||||
A0A6N0ASX1 | SpeA | 0.0102 | 2.5712 | Biosynthetic arginine decarboxylase | 8 | EX | ||
A0A2K8VWZ1 A0A6N0BJQ5 | SpeE | 0.0170 | 3.2343 | 0.0056 | 3.0386 | Polyamine aminopropyltransferase | 8 | C |
LIPOPROTEINS, MEMBRANE AND CELL WALL BIOGENESIS | ||||||||
A0A6N0BJT9 | ArnA | 0.0129 | 2.4335 | Bifunctional polymyxin resistance protein ArnA | 7 | C | ||
A0A6N0AHH6 | BamD | 0.0005 | 2.6820 | Outer membrane protein assembly factor | 1 | EX | ||
A0A6N0AZB8 | GlmU | 0.0086 | 2.7221 | Bifunctional protein, cell wall biogenesis | 4 | C | ||
A0A6N0BB99 | YbiS | 0.0120 | 2.5079 | L,D-transpeptidase | 1 | EX | ||
A0A6N0ARZ3 | 0.0371 | 2.9322 | Osmotically inducible lipoprotein E | 4 | EX | |||
A0A6N0BHR4 | 0.0042 | 2.6863 | UDP-N-acetylmuramate-L-alanine ligase | 2 | C | |||
A0A6N0AV98 | 0.0025 | 3.6632 | UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase | 4 | C | |||
OTHERS, UNIDENTIFIED | ||||||||
A0A2K8VZQ3 A0A6N0AK79 | DcrB | 0.0020 | 3.0076 | Periplasmic bacteriophage sensitivity protein DcrB | 1 | EX | ||
A0A6N0AWQ4 | ZapB | 0.0094 | 3.1295 | Cell division protein ZapB | 0 | C | ||
A0A2K8VTW3 | 0.0009 | 5.9074 | Uncharacterized protein | 3 | N | |||
A0A6N0AH49 | 0.0032 | 2.6561 | Uncharacterized protein | 2 | N |
Peak Name | Name | p-Value | Fold Change | Description | Number of Cys |
---|---|---|---|---|---|
MOTILITY AND CHEMOTAXIS | |||||
A0A6N0AH46 | CheW | 0.0168 | 0.4267 | Chemotaxis protein CheW | 0 |
A0A6N0AF74 | CheY | 0.0012 | 0.0683 | Chemotaxis protein CheY | 0 |
A0A6N0ADL9 | FlgB | 0.0006 | 0.0973 | Flagellar basal body rod protein FlgB | 0 |
A0A6N0B762 | FlgC | <0.0001 | 0.2802 | Flagellar basal body rod protein FlgC | 0 |
A0A6N0ADS2 | FlgD | 0.0011 | 0.1424 | Basal body rod modification protein FlgD | 0 |
A0A6N0B2V1 | FlgE | <0.0001 | 0.1296 | Flagellar hook protein FlgE | 0 |
A0A6N0BFR1 | FlgF | <0.0001 | 0.1241 | Flagellar basal body rod protein FlgF | 0 |
A0A6N0B547 | FlgG_1 | 0.0006 | 0.0664 | Flagellar basal body rod protein FlgG | 0 |
A0A6N0AH33 | FlgK | <0.0001 | 0.0324 | Flagellar hook-associated protein 1 | 0 |
A0A6N0ADK6 | FlgL | <0.0001 | 0.0458 | Flagellar hook-associated protein 3 | 0 |
A0A6N0AGC2 | FlgM | <0.0001 | 0.0238 | Negative regulator of flagellin synthesis | 0 |
A0A6N0AG83 | FliC_1 | <0.0001 | 0.0291 | Flagellin 1 | 0 |
A0A6N0ASL9 | FliD | <0.0001 | 0.0201 | Flagellar hook-associated protein 2 | 0 |
A0A6N0B5D6 | FliE | <0.0001 | 0.0420 | Flagellar hook–basal body complex protein FliE | 0 |
A0A6N0B4U8 | FliK | 0.0013 | 0.0256 | Flagellar hook-length control protein | 0 |
VIRULENCE, ATTACHMENT | |||||
A0A2K8VTS7 | <0.0001 | 0.0402 | Putative cellulase | 2 | |
A0A2K8VVJ2 A0A6N0BEF2 | <0.0001 | 0.0255 | Endo-1,4-beta-xylanase A | 4 | |
A0A6N0AEA4 | PelA | <0.0001 | 0.0118 | Pectate lyase A | 10 |
A0A6N0ATI6 | PelC_1 | <0.0001 | 0.0471 | Pectate lyase C | 4 |
A0A6N0BJ90 | PelC_2 | <0.0001 | 0.0227 | Pectate lyase C | 4 |
A0A6N0ARF7 | PelE | <0.0001 | 0.0181 | Pectate lyase E | 2 |
A0A6N0ANC2 | PelL_1 | <0.0001 | 0.0255 | Pectate lyase L | 3 |
A0A6N0AG85 | PelL_2 | 0.0017 | 0.0200 | Pectate lyase L | 4 |
A0A2K8VZ10 A0A6N0AYE1 | <0.0001 | 0.0700 | Pectate lyase | 1 | |
A0A6N0B698 | PemA | <0.0001 | 0.1544 | Pectinesterase A | 2 |
A0A6N0BBW4 | Pnl | <0.0001 | 0.0408 | Pectin lyase | 3 |
A0A6N0B2L1 | PrtA | 0.0364 | 0.3663 | Serralysin A | 0 |
A0A2K8VWN4 A0A6N0BGU2 | 0.0114 | 0.2795 | Neutral metalloproteinase | 2 | |
A0A6N0AC94 | XynC | 0.0003 | 0.1446 | Glucuronoxylanase XynC | 3 |
Strains | Relevant Genotype | Reference or Source |
---|---|---|
Dickeya dadantii 3937 | WT | [88] |
D. dadantii 3937 dsbA::cm (TP01) | dsbA gene inactivated by CmR insertion | This work |
D. dadantii 3937 dsbA-kn | Complementation strain with a functional dsbA gene and a KnR cassette | This work |
D. solani IPO2222 | WT | [89] |
D. solani IPO2222 dsbA::cm (TP02) | dsbA gene inactivated by CmR | This work |
D. solani IPO2222 dsbA-kn (TP03) | Complementation strain with functional dsbA gene and KnR | This work |
Plasmids | Feature | Reference or Source |
pGEM-7 | Cloning vector | Promega |
pCYC-184-cm | Donor of CmR cassette | [90], New England Biolabs |
pDOC-K | Donor of KnR cassette | [91] |
pDF-dsbA::cm | pGEM-7 with D. dadantii dsbA gene inactivated by CmR cassette | This work |
pDF-dsbA-kn | pGEM-7 with D. dadantii functional dsbA gene and KnR cassette | This work |
Name | Sequence |
---|---|
Dd-dsbA-L | GGACAATGACGACCAACTGGAG |
Dd-dsbA-R | GCTCGCTCATTACGCTTTTTGC |
Cm-Sawitzke-L | ACCAGCAATAGACATAAGCG |
Cm-Sawitzke-R | TGTGACGGAAGATCACTTC |
Ds-dsbA-L | GGCACCGATGTACTGACACTTA |
Ds-dsbA-R | GCAGTAAGCAGAAATGTCCAAAC |
Kan-L | GACCGGTCAATTGGCTGGAG |
Kan-R | GAATATCCTCCTTAGTTCC |
FWD Primer Sequence (5′-3′) | REV Primer Sequence (5′-3′) | Amplicon Length | PCR Efficiency | R2 | Concentration [µM] | |
---|---|---|---|---|---|---|
dsbA | AACAGCATCAAACATCAGCGGG | TCTGGGAGAATTGGGTAAGGAGC | 97 | 1.99 | 0.99 | 0.225 |
16S rRNA | GCTCGTGTTGTGAAATGTTGGGTT | GCAGTCTCCCTTGAGTTCCCAC | 94 | 1.96 | 1.0 | 0.225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przepiora, T.; Figaj, D.; Bogucka, A.; Fikowicz-Krosko, J.; Czajkowski, R.; Hugouvieux-Cotte-Pattat, N.; Skorko-Glonek, J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. Int. J. Mol. Sci. 2022, 23, 697. https://doi.org/10.3390/ijms23020697
Przepiora T, Figaj D, Bogucka A, Fikowicz-Krosko J, Czajkowski R, Hugouvieux-Cotte-Pattat N, Skorko-Glonek J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. International Journal of Molecular Sciences. 2022; 23(2):697. https://doi.org/10.3390/ijms23020697
Chicago/Turabian StylePrzepiora, Tomasz, Donata Figaj, Aleksandra Bogucka, Jakub Fikowicz-Krosko, Robert Czajkowski, Nicole Hugouvieux-Cotte-Pattat, and Joanna Skorko-Glonek. 2022. "The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani" International Journal of Molecular Sciences 23, no. 2: 697. https://doi.org/10.3390/ijms23020697
APA StylePrzepiora, T., Figaj, D., Bogucka, A., Fikowicz-Krosko, J., Czajkowski, R., Hugouvieux-Cotte-Pattat, N., & Skorko-Glonek, J. (2022). The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. International Journal of Molecular Sciences, 23(2), 697. https://doi.org/10.3390/ijms23020697