Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis
Abstract
:1. Introduction
2. Results
2.1. Deletions of KlFBA1 or KlTDH2 Affect Growth on Glucose
2.2. KlFBA1 Encodes the Sole Fructose-1,6-Bisphosphate Aldolase in K. lactis and KlTdh2 Is the Major Isoform of Glyceraldehyde-3-Phosphate Dehydrogenase
2.3. Heterologous Genes Complement the Growth Defects of a Klfba1 Deficiency
2.4. KlTdh2, but Not KlFba1, Accumulates in the Nucleus upon Oxidative Stress
3. Discussion
4. Materials and Methods
4.1. Strains and Growth Conditions
4.2. Construction of Plasmids, Gene Fusions and Deletions
4.3. Fluorescence Microscopy
4.4. Preparation of Crude Extracts and Enzymatic Determination
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, J.A. A history of research on yeasts 5: The fermentation pathway. Yeast 2003, 20, 509–543. [Google Scholar] [CrossRef] [PubMed]
- Ciriacy, M.; Breitenbach, I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J. Bacteriol. 1979, 139, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Clifton, D.; Weinstock, S.B.; Fraenkel, D.G. Glycolysis mutants in Saccharomyces cerevisiae. Genetics 1978, 88, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lobo, Z.; Maitra, P.K. Phosphofructokinase mutants of yeast. Biochemistry and genetics. J. Biol. Chem. 1983, 258, 1444–1449. [Google Scholar] [CrossRef]
- Fraenkel, D.G. The biochemical genetics of glycolysis in microbes. Basic Life Sci. 1981, 18, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Ciriacy, M. Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol. Gen. Genet. 1975, 138, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, H.D.; Zimmermann, F.K. Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J. Bacteriol. 1982, 151, 1146–1152. [Google Scholar] [CrossRef] [Green Version]
- Bruser, A.; Kirchberger, J.; Schoneberg, T. Altered allosteric regulation of muscle 6-phosphofructokinase causes Tarui disease. Biochem. Biophys. Res. Commun. 2012, 427, 133–137. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Svingou, M.; Kekou, K.; Vergnaud, S.; Xirou, S.; Niotakis, G.; Papadimas, G.K. Aldolase A deficiency: Report of new cases and literature review. Mol. Genet. Metab. Rep. 2021, 27, 100730. [Google Scholar] [CrossRef]
- Diaz-Ruiz, R.; Rigoulet, M.; Devin, A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta 2011, 1807, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeters, P.B.; Shenkin, A.; Sobotka, L.; Soeters, M.R.; de Leeuw, P.W.; Wolfe, R.R. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin. Nutr. 2021, 40, 2988–2998. [Google Scholar] [CrossRef] [PubMed]
- Breunig, K.D.; Bolotin-Fukuhara, M.; Bianchi, M.M.; Bourgarel, D.; Falcone, C.; Ferrero, I.I.; Frontali, L.; Goffrini, P.; Krijger, J.J.; Mazzoni, C.; et al. Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym. Microb. Technol. 2000, 26, 771–780. [Google Scholar] [CrossRef]
- Gonzalez Siso, M.I.; Cerdan, M.E. Kluyveromyces lactis: A suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. Oxidative Med. Cell. Longev. 2012, 2012, 634674. [Google Scholar] [CrossRef] [Green Version]
- Rodicio, R.; Heinisch, J.J. Yeast on the milky way: Genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013, 30, 165–177. [Google Scholar] [CrossRef]
- Goffrini, P.; Wesolowski-Louvel, M.; Ferrero, I. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol. Gen. Genet. 1991, 228, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Heinisch, J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol. Gen. Genet. 1986, 202, 75–82. [Google Scholar] [CrossRef]
- Jacoby, J.; Hollenberg, C.P.; Heinisch, J.J. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway. Mol. Microbiol. 1993, 10, 867–876. [Google Scholar] [CrossRef]
- Bertels, L.K.; Fernandez Murillo, L.; Heinisch, J.J. The pentose phosphate pathway in yeasts—More than a poor cousin of glycolysis. Biomolecules 2021, 11, 725. [Google Scholar] [CrossRef]
- Compagno, C.; Boschi, F.; Daleffe, A.; Porro, D.; Ranzi, B.M. Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluyveromyces lactis. Appl. Environ. Microbiol. 1999, 65, 4216–4219. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.M.; Tizzani, L.; Destruelle, M.; Frontali, L.; Wesolowski-Louvel, M. The ‘petite-negative’ yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol. Microbiol. 1996, 19, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Prior, C.; Mamessier, P.; Fukuhara, H.; Chen, X.J.; Wesolowski-Louvel, M. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol. Cell. Biol. 1993, 13, 3882–3889. [Google Scholar] [CrossRef] [PubMed]
- Cairey-Remonnay, A.; Deffaud, J.; Wesolowski-Louvel, M.; Lemaire, M.; Soulard, A. Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts. Mol. Cell. Biol. 2015, 35, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Rolland, S.; Hnatova, M.; Lemaire, M.; Leal-Sanchez, J.; Wesolowski-Louvel, M. Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis. Genetics 2006, 174, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, M.; Wesolowski-Louvel, M. Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. Genetics 2004, 168, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Santomartino, R.; Ottaviano, D.; Camponeschi, I.; Landicho, T.A.A.; Falato, L.; Visca, A.; Soulard, A.; Lemaire, M.; Bianchi, M.M. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis. FEMS Yeast Res. 2019, 19, foz041. [Google Scholar] [CrossRef] [PubMed]
- Kettner, K.; Kuettner, E.B.; Otto, A.; Lilie, H.; Golbik, R.P.; Strater, N.; Kriegel, T.M. In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1. Biochem. Biophys. Res. Commun. 2013, 435, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Kuettner, E.B.; Kettner, K.; Keim, A.; Svergun, D.I.; Volke, D.; Singer, D.; Hoffmann, R.; Muller, E.C.; Otto, A.; Kriegel, T.M.; et al. Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: A molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization. J. Biol. Chem. 2010, 285, 41019–41033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamas-Maceiras, M.; Rodriguez-Belmonte, E.; Becerra, M.; Gonzalez-Siso, M.I.; Cerdan, M.E. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genet. Biol. 2015, 82, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Neil, H.; Lemaire, M.; Wesolowski-Louvel, M. Regulation of glycolysis in Kluyveromyces lactis: Role of KlGCR1 and KlGCR2 in glucose uptake and catabolism. Curr. Genet. 2004, 45, 129–139. [Google Scholar] [CrossRef]
- Bozzi, A.; Saliola, M.; Falcone, C.; Bossa, F.; Martini, F. Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis. Biochim. Biophys. Acta 1997, 1339, 133–142. [Google Scholar] [CrossRef]
- Sacchetta, P.; Di Rado, R.; Saliola, M.; Bozzi, A.; Falcone, C.; Di Ilio, C.; Martini, F. Multiple unfolded states of alcohol dehydrogenase I from Kluyveromyces lactis by guanidinium chloride. Biochim. Biophys. Acta 2001, 1545, 238–244. [Google Scholar] [CrossRef]
- Saliola, M.; Bellardi, S.; Marta, I.; Falcone, C. Glucose metabolism and ethanol production in adh multiple and null mutants of Kluyveromyces lactis. Yeast 1994, 10, 1133–1140. [Google Scholar] [CrossRef]
- Gonzalez-Siso, M.I.; Tourino, A.; Vizoso, A.; Pereira-Rodriguez, A.; Rodriguez-Belmonte, E.; Becerra, M.; Cerdan, M.E. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1. Microb. Biotechnol. 2015, 8, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Verho, R.; Richard, P.; Jonson, P.H.; Sundqvist, L.; Londesborough, J.; Penttila, M. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 2002, 41, 13833–13838. [Google Scholar] [CrossRef] [PubMed]
- Gancedo, C.; Flores, C.L. Moonlighting proteins in yeasts. Microbiol. Mol. Biol. Rev. 2008, 72, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Sautin, Y.Y.; Holliday, L.S.; Gluck, S.L. The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J. Biol. Chem. 2004, 279, 8732–8739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciesla, M.; Mierzejewska, J.; Adamczyk, M.; Farrants, A.K.; Boguta, M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. Biochim. Biophys. Acta 2014, 1843, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Prado, S.M.; Cerdan, M.E.; Gonzalez Siso, M.I. Isolation and transcriptional regulation of the Kluyveromyces lactis FBA1 (fructose-1,6-bisphosphate aldolase) gene. Can. J. Microbiol. 2004, 50, 645–652. [Google Scholar] [CrossRef]
- Shams, F.; Oldfield, N.J.; Wooldridge, K.G.; Turner, D.P. Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: ‘ill met by moonlight’. Biochem. Soc. Trans. 2014, 42, 1792–1795. [Google Scholar] [CrossRef] [PubMed]
- Pirovich, D.B.; Da’dara, A.A.; Skelly, P.J. Multifunctional fructose 1,6-bisphosphate aldolase as a therapeutic target. Front. Mol. Biosci. 2021, 8, 719678. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.L.; O’Connor, J.E.; Azori, N.I.; Renau-Piqueras, J.; Gil, M.L.; Gozalbo, D. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology 2001, 147, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randez-Gil, F.; Sanchez-Adria, I.E.; Estruch, F.; Prieto, J.A. The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae. Microb. Biotechnol. 2020, 13, 562–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, M.L.; Dagan, S.; Eren, R.; Gozalbo, D. Evaluation of the usefulness of anti-glyceraldehyde-3-phosphate dehydrogenase antibodies as a treatment for invasive candidiasis in a murine model. Antonie Leeuwenhoek 2006, 89, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Falcao Moreira, R.; Fernandes, P.A.; Moradas-Ferreira, P. Kluyveromyces marxianus flocculence and growth at high temperature is dependent on the presence of the protein p37. Microbiology 1998, 144, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Agarwal, S.; Heyman, J.A.; Matson, S.; Heidtman, M.; Piccirillo, S.; Umansky, L.; Drawid, A.; Jansen, R.; Liu, Y.; et al. Subcellular localization of the yeast proteome. Genes Dev. 2002, 16, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, L.M.; Lehmbeck, F.; Sauer, U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005, 5, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Mojardin, L.; Vega, M.; Moreno, F.; Schmitz, H.P.; Heinisch, J.J.; Rodicio, R. Lack of the NAD(+)-dependent glycerol 3-phosphate dehydrogenase impairs the function of transcription factors Sip4 and Cat8 required for ethanol utilization in Kluyveromyces lactis. Fungal Genet. Biol. 2018, 111, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Rodicio, R.; Lopez, M.L.; Cuadrado, S.; Cid, A.F.; Redruello, B.; Moreno, F.; Heinisch, J.J.; Hegewald, A.K.; Breunig, K.D. Differential control of isocitrate lyase gene transcription by non-fermentable carbon sources in the milk yeast Kluyveromyces lactis. FEBS Lett. 2008, 582, 549–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branco, P.; Francisco, D.; Chambon, C.; Hebraud, M.; Arneborg, N.; Almeida, M.G.; Caldeira, J.; Albergaria, H. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl. Microbiol. Biotechnol. 2014, 98, 843–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.C.; Yang, Y.C.; Tien, C.P.; Yang, C.J.; Hsiao, M. Roles of aldolase family genes in human cancers and diseases. Trends. Endocrinol. Metab. 2018, 29, 549–559. [Google Scholar] [CrossRef]
- Marsh, J.J.; Lebherz, H.G. Fructose-bisphosphate aldolases: An evolutionary history. Trends. Biochem. Sci. 1992, 17, 110–113. [Google Scholar] [CrossRef]
- Boles, E.; Zimmermann, F.K. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Curr. Genet. 1993, 23, 187–191. [Google Scholar] [CrossRef]
- Chaffin, W.L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 2008, 72, 495–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, J.D.; Sievwright, I.K.; Auld, G.C.; Moore, N.R.; Gow, N.A.; Booth, N.A. Candida albicans binds human plasminogen: Identification of eight plasminogen-binding proteins. Mol. Microbiol. 2003, 47, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
- Karkowska-Kuleta, J.; Satala, D.; Bochenska, O.; Rapala-Kozik, M.; Kozik, A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol. 2019, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Stie, J.; Bruni, G.; Fox, D. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion. PLoS ONE 2009, 4, e5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinisch, J.J.; Buchwald, U.; Gottschlich, A.; Heppeler, N.; Rodicio, R. A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res. 2010, 10, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kirchrath, L.; Lorberg, A.; Schmitz, H.P.; Gengenbacher, U.; Heinisch, J.J. Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J. Mol. Biol. 2000, 300, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Gueldener, U.; Heinisch, J.; Koehler, G.J.; Voss, D.; Hegemann, J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30, e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, M.D.; Winston, F.; Hieter, P. (Eds.) Methods in Yeast Genetics; CSHL Press: New York, NY, USA, 1990. [Google Scholar]
- Schmitz, H.P.; Jendretzki, A.; Sterk, C.; Heinisch, J.J. The small yeast GTPase Rho5 and its dimeric GEF Dck1/Lmo1 respond to glucose starvation. Int. J. Mol. Sci. 2018, 19, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straede, A.; Heinisch, J.J. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett. 2007, 581, 4495–4500. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Knuesting, J.; Birkholz, O.; Heinisch, J.J.; Scheibe, R. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 2018, 18, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gietz, R.D.; Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988, 74, 527–534. [Google Scholar] [CrossRef]
- Chen, X.J. Low- and high-copy-number shuttle vectors for replication in the budding yeast Kluyveromyces lactis. Gene 1996, 172, 131–136. [Google Scholar] [CrossRef]
- Musielak, M.; Sterk, C.C.; Schubert, F.; Meyer, C.; Paululat, A.; Heinisch, J.J. The small GTPase KlRho5 responds to oxidative stress and affects cytokinesis. J. Cell Sci. 2021, 134, jcs258301. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, H.P.; Jendretzki, A.; Wittland, J.; Wiechert, J.; Heinisch, J.J. Identification of Dck1 and Lmo1 as upstream regulators of the small GTPase Rho5 in Saccharomyces cerevisiae. Mol. Microbiol. 2015, 96, 306–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamenhoff, S. Preparation and assay of deoxyribonucleic acids from animal tissue. Methods Enzymol. 1957, 3, 696–704. [Google Scholar]
- Rodicio, R.; Koch, S.; Schmitz, H.P.; Heinisch, J.J. KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis. Microbiology 2006, 152, 2635–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langenberg, A.K.; Bink, F.J.; Wolff, L.; Walter, S.; von Wallbrunn, C.; Grossmann, M.; Heinisch, J.J.; Schmitz, H.P. Glycolytic functions are conserved in the genome of the wine yeast Hanseniaspora uvarum, and pyruvate kinase limits its capacity for alcoholic fermentation. Appl. Environ. Microbiol. 2017, 83, e01580-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enzyme | Strain | Relevant Genotype | Specific Activity 1 [mU/mg Protein] |
---|---|---|---|
FBA | KHO46-2A | wild type | 303 ± 6 |
KHO285-1A | wild type | 268 ± 35 | |
KHO452-6C | Klfba1Δ | <1 | |
KHO489-6B | Klfba1Δ | <1 | |
GAPDH | KHO502.2-3D | wild type | 1069 ± 133 |
KHO502.2-5B | wild type | 1080 ± 157 | |
KHO502.2-17C | Kltdh1Δ | 597 ± 65 | |
KHO502.2-17D | Kltdh1Δ | 547 ± 36 | |
KHO502.2-1A | Kltdh2Δ | 238 ± 23 | |
KHO502.2-17A | Kltdh2Δ | 256 ± 18 | |
KHO502.2-2C | Kltdh1Δ Kltdh2Δ | <2 | |
KHO502.2-5D | Kltdh1Δ Kltdh2Δ | <2 |
Plasmid | Promoter | Specific Activity [mU/mg Protein] 1 | |
---|---|---|---|
2% Glucose | 2% Ethanol | ||
pJJH3043 | KlFBA1p | 224 ± 6 | 162 ± 4 |
pJJH3061 | KlTDH1p | 118 ± 8 | 363 ± 13 |
pJJH3042 | KlTDH2p | 127 ± 6 | 222 ± 8 |
pJJH3041 | KlGDP1p | 3 ± 1 | 22 ± 1 |
pJJH2031 | none | <1 | <1 |
Strain 1 | Genotype |
---|---|
Haploid: | |
KHO46-2A | MATalpha ura3 his3::loxP |
KHO69-8C | MATalpha ura3 leu2 his3::loxP ku80::loxP |
KHO209-8A | MATa ura3 leu2 his3::loxP lac4::loxP |
KHO285-1A | MATa his3::loxP |
KHO452-6C | MATalpha ura3 leu2 fba1::kanMX |
KHO465-6C | MATa ura3 leu2 ade4::loxP KlFBA1::GFP-kanMX KlNUP60::mCherry-kanMX |
KHO466-1A | MATalpha ura3 leu2 his3::loxP KlTDH2::GFP-kanMX KlNUP60::mCherry-kanMX |
KHO472-1D | MATa leu2 his3::loxP ade4::loxP KlTDH2::GFP-kanMX KlIDP1::mCherry-SkHIS3 |
KHO474-1A | MATa ura3 leu2 his3::loxP KlFBA1::GFP-kanMX KlIDP1::mCherry-SkHIS3 |
KHO477-1D | MATa ura3 fba1::kanMX |
KHO489-6B | MATa leu2 fba1::kanMX |
KHO502.2-1A | MATalpha leu2 his3::loxP ade4::loxP Kltdh2::kanMX |
KHO502.2-2C | MATalpha leu2 his3::loxP ade4::loxP Kltdh1::SpHIS5 Kltdh2::kanMX |
KHO502.2-3D | MATa ura3 leu2 his3::loxP ade4::loxP |
KHO502.2-5B | MATalpha ura3 leu2 his3::loxP ade4::loxP ku80::loxP |
KHO502.2-5D | MATalpha leu2 his3::loxP Kltdh1::SpHIS5 Kltdh2::kanMX |
KHO502.2-17A | MATa leu2 his3::loxP ade4::loxP Kltdh2::kanMX |
KHO502.2-17C | MATalpha ura3 leu2 his3::loxP Kltdh1::SpHIS5 |
KHO502.2-17D | MATalpha ura3 leu2 his3::loxP Kltdh1::SpHIS5 |
Diploid: | |
KHO70 | MATa/MATalpha ura3/ura3 leu2/leu2 his3::loxP/HIS3 ade2::loxP/ADE2 ku80::loxP/ku80::loxP |
KHO455 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/HIS3 ade4::loxP/ADE4 Kltdh2::kanMX/KlTDH2 ku80::loxP/KU80 |
KHO461 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/HIS3 trp1::kanMX/TRP1 Klgdp1::kanMX/KlGDP1 ku80::loxP/KU80 |
KHO476 | MATa/MATalpha leu2/LEU2 his3::loxP/his3::loxP Kltdh2::kanMX/KlTDH2 Klgdp1::SpHIS5/KlGDP1 |
KHO483 | MATa/MATalpha ura3/URA3 leu2/LEU2 Klfba1::kanMX/KlFBA1 |
KHO505 | MATa/MATalpha ura3/URA3 leu2/LEU2 his3::loxP/HIS3 Kltdh1::SpHIS5/KlTDH1 ku80::loxP/KU80 |
KHO506 | MATa/MATalpha leu2/LEU2 his3::loxP/HIS3 Kltdh1::SpHIS5/ KlTDH1 Kltdh2::kanMX/KlTDH2 Klgdp1::kanMX/KlGDP1 |
Plasmid | Vector | Inserted Sequences 1 |
---|---|---|
FBA gene expression | ||
pJJH2957 | pCXs22 | KlFBA1 with its flanking sequences cloned as an EcoRI/BamHI fragment |
pJJH3018 | pCXs22 | ScFBA1 with its flanking sequences cloned as an EcoRI/BamHI fragment |
pJJH3057 | pJJH2075 | Synthetic-yeast-optimized human ALDOA cloned as a BamHI/HindIII fragment under control of ScPFK2p |
pJJH3069 | YEplac181 | ScPFK2p-ALDOA subcloned from pJJH3057 as an EcoRI/BamHI fragment |
lacZ fusions | ||
pJJH3041 | pJJH2031 | KlGDP1 promoter cloned as a HindIII/BamHI fragment |
pJJH3042 | pJJH2031 | KlTDH2 promoter cloned as a HindIII/BamHI fragment |
pJJH3043 | pJJH2031 | KlFBA1 promoter cloned as a HindIII/BamHI fragment |
pJJH3061 | pJJH2031 | KlTDH1 promoter cloned as a HindIII/BamHI fragment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodicio, R.; Schmitz, H.-P.; Heinisch, J.J. Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. Int. J. Mol. Sci. 2022, 23, 772. https://doi.org/10.3390/ijms23020772
Rodicio R, Schmitz H-P, Heinisch JJ. Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. International Journal of Molecular Sciences. 2022; 23(2):772. https://doi.org/10.3390/ijms23020772
Chicago/Turabian StyleRodicio, Rosaura, Hans-Peter Schmitz, and Jürgen J. Heinisch. 2022. "Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis" International Journal of Molecular Sciences 23, no. 2: 772. https://doi.org/10.3390/ijms23020772
APA StyleRodicio, R., Schmitz, H. -P., & Heinisch, J. J. (2022). Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. International Journal of Molecular Sciences, 23(2), 772. https://doi.org/10.3390/ijms23020772