Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor
Abstract
:1. Introduction
2. Results
2.1. Primary Structures of Cavβ of D. destructor
2.2. Homology and Phylogenetic Analysis of DdCavβ
2.3. Tissue Localization of DdCavβ
2.4. Expression of DdCavβ in Nematodes at Different Stages
2.5. Efficacy of Silencing HVA Cavα1 and Cavβ Genes by dsRNA Soaking
2.6. Analysis of the Knockdown Phenotype
2.6.1. Observation of Locomotion Activity after RNAi
2.6.2. Attraction Rate Assay of D. destructor after RNAi
2.6.3. Stylet Thrusting of D. destructor after RNAi
2.6.4. Detection of Secreted Proteins of D. destructor after RNAi
2.6.5. Reproduction Rate of D. destructor after RNAi
3. Discussion
4. Materials and Methods
4.1. Nematode Culture
4.2. RNA Extraction
4.3. Cloning the Cavβ of D. destructor
4.4. Gene Expression Analysis by qPCR
4.5. In Situ Hybridization of Cavβ in D. destructor
4.6. In Vitro RNA Interference Targeting VGCCs in D. destructor
4.7. Analysis of Knockdown Phenotypes
4.8. Bioinformatic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arikkath, J.; Campbell, K.P. Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 2003, 13, 298–307. [Google Scholar] [CrossRef]
- Karunasekara, Y.; Dulhunty, A.F.; Casarotto, M.G. The voltage-gated calcium-channel β subunit: More than just an accessory. Eur. Biophys. J. 2009, 39, 75–81. [Google Scholar] [CrossRef]
- Buraei, Z.; Yang, J. Structure and function of the β subunit of voltage-gated Ca2+ channels. Biochim. Biophys. Acta (BBA) Biomembr. 2012, 1828, 1530–1540. [Google Scholar] [CrossRef] [Green Version]
- Catterall, W.A. Structure and Regulation of Voltage-Gated Ca2+ Channels. Annu. Rev. Cell Dev. Biol. 2000, 16, 521–555. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-Gated Calcium Channels. Cold Spring Harb. Perspect. Biol. 2011, 3, a003947. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, P.; Neely, A. Multiplicity of protein interactions and functions of the voltage-gated calcium channel β-subunit. Cell Calcium 2007, 42, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Pragnell, M.; De Waard, M.; Mori, Y.; Tanabe, T.; Snutch, T.P.; Campbell, K. Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit. Nature 1994, 368, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Van Petegem, F.; Duderstadt, K.E.; Clark, K.A.; Wang, M.; Minor, D.L. Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation. Structure 2008, 16, 280–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.-L.; Zhang, Y.; Chen, Y.-H.; Yamada, Y.; Yang, J. Functional Modularity of the β-Subunit of Voltage-Gated Ca2+ Channels. Biophys. J. 2007, 93, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Rima, M.; Daghsni, M.; Fajloun, Z.; M’Rad, R.; Brusés, J.L.; Ronjat, M.; De Waard, M. Protein partners of the calcium channel β subunit highlight new cellular functions. Biochem. J. 2016, 473, 1831–1844. [Google Scholar] [CrossRef]
- Dolphin, A.C. Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond. Nat. Rev. Neurosci. 2012, 13, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Buraei, Z.; Yang, J. The β Subunit of Voltage-Gated Ca2+ Channels. Physiol. Rev. 2010, 90, 1461–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargmann, C.I. Neurobiology of the Caenorhabditis elegans Genome. Science 1998, 282, 2028–2033. [Google Scholar] [CrossRef]
- Lainé, V.; Frøkjær-Jensen, C.; Couchoux, H.; Jospin, M. The α1 Subunit EGL-19, the α2/δ Subunit UNC-36, and the β Subunit CCB-1 Underlie Voltage-dependent Calcium Currents in Caenorhabditis elegans Striated Muscle. J. Biol. Chem. 2011, 286, 36180–36187. [Google Scholar] [CrossRef] [Green Version]
- Sturhan, D.; Brzeski, M.W. Stem and bulb nematodes, Ditylenchus spp. In Manual of Agricultural Nematology, 1st ed.; Nickle, W.R., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 423–464. [Google Scholar]
- Faulkner, L.R.; Darling, H.M. Pathological histology, hosts, and culture of the potato rot nematode. Phytopathology 1961, 51, 778–786. [Google Scholar]
- Xu, Z.; Zhao, Y.-Q.; Yang, D.-J.; Sun, H.-J.; Zhang, C.-L.; Xie, Y.-P. Attractant and repellent effects of sweet potato root exudates on the potato rot nematode, Ditylenchus destructor. Nematology 2015, 17, 117–124. [Google Scholar] [CrossRef]
- Fan, W.; Wei, Z.; Zhang, M.; Ma, P.; Liu, G.; Zheng, J.; Guo, X.; Zhang, P. Resistance to Ditylenchus destructor Infection in Sweet Potato by the Expression of Small Interfering RNAs Targeting unc-15, a Movement-Related Gene. Phytopathology 2015, 105, 1458–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, S.; Zeng, R.; Zhou, J.; An, M.; Ding, Z. Molecular characterization of Ditylenchus destructor voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie 2020, 171–172, 91–102. [Google Scholar] [CrossRef]
- Masler, E. Responses of Heterodera glycines and Meloidogyne incognita to exogenously applied neuromodulators. J. Helminthol. 2007, 81, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Boas, S.; Schroeder, N.E. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans. Phytopathology 2017, 107, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Crisford, A.; Calahorro, F.; Ludlow, E.; Marvin, J.M.C.; Hibbard, J.K.; Lilley, C.J.; Kearn, J.; Keefe, F.; Johnson, P.; Harmer, R.; et al. Identification and characterisation of serotonin signalling in the potato cyst nematode Globodera pallida reveals new targets for crop protection. PLoS Pathog. 2020, 16, e1008884. [Google Scholar] [CrossRef]
- Jaubert, S.; Laffaire, J.B.; Piotte, C.; Abad, P.; Rosso, M.-N.; Ledger, T.N. Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach. Mol. Biochem. Parasitol. 2002, 121, 205–211. [Google Scholar] [CrossRef]
- Bellafiore, S.; Shen, Z.; Rosso, M.-N.; Abad, P.; Shih, P.; Briggs, S.P. Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential. PLoS Pathog. 2008, 4, e1000192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Peng, D.; Chen, L.; Liu, H.; Chen, F.; Xu, M.; Ju, S.; Ruan, L.; Sun, M. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes. Proc. R. Soc. B Boil. Sci. 2016, 283, 20160942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herndon, L.A.; Schmeissner, P.J.; Dudaronek, J.M.; Brown, P.A.; Listner, K.M.; Sakano, Y.; Paupard, M.C.; Hall, D.H.; Driscoll, M. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002, 419, 808–814. [Google Scholar] [CrossRef]
- Han, Z.; Thapa, S.; Reuter-Carlson, U.; Reed, H.; Gates, M.; Lambert, K.N.; Schroeder, N.E. Immobility in the sedentary plant-parasitic nematode H. glycines is associated with remodeling of neuromuscular tissue. PLoS Pathog. 2018, 14, e1007198. [Google Scholar] [CrossRef]
- Ruth, P.; Röhrkasten, A.; Biel, M.; Bosse, E.; Regulla, S.; Meyer, H.E.; Flockerzi, V.; Hofmann, F. Primary Structure of the β Subunit of the DHP-Sensitive Calcium Channel from Skeletal Muscle. Science 1989, 245, 1115–1118. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Seagar, M.J.; Jones, J.F.; Reber, B.F.; Catterall, W.A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA 1987, 84, 5478–5482. [Google Scholar] [CrossRef] [Green Version]
- Castellano, A.; Wei, X.; Birnbaumer, L.; Perez-Reyes, E. Cloning and expression of a neuronal calcium channel beta subunit. J. Biol. Chem. 1993, 268, 12359–12366. [Google Scholar] [CrossRef]
- Lee, R.Y.; Lobel, L.; Hengartner, M.; Horvitz, H.; Avery, L. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 1997, 16, 6066–6076. [Google Scholar] [CrossRef] [Green Version]
- Jospin, M.; Jacquemond, V.; Mariol, M.-C.; Ségalat, L.; Allard, B. The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J. Cell Biol. 2002, 159, 337–348. [Google Scholar] [CrossRef]
- Avery, L.; You, Y.-J. WormBook. WormBook 2012, 1–23. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Dutta, T.K.; Curtis, R.H.C.; Powers, S.J.; Gaur, H.S.; Kerry, B.R. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 2010, 8, 568–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanimoto, Y.; Yamazoe-Umemoto, A.; Fujita, K.; Kawazoe, Y.; Miyanishi, Y.; Yamazaki, S.J.; Fei, X.; Busch, K.E.; Gengyo-Ando, K.; Nakai, J.; et al. Calcium dynamics regulating the timing of decision-making in C. elegans. eLife 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Schafer, W.; Kenyon, C.J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 1995, 375, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Ferkey, D.M.; Sengupta, P.; L’Etoile, N.D. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021, 217. [Google Scholar] [CrossRef]
- Choi, J.I.; Yoon, K.-H.; Kalichamy, S.S.; Yoon, S.-S.; Lee, J.I. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME J. 2015, 10, 558–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worthy, S.E.; Haynes, L.; Chambers, M.; Bethune, D.; Kan, E.; Chung, K.; Ota, R.; Taylor, C.J.; Glater, E.E. Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PLoS ONE 2018, 13, e0201158. [Google Scholar] [CrossRef]
- Liu, Q.; Kidd, P.B.; Dobosiewicz, M.; Bargmann, C.I. C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell 2018, 175, 57–70.e17. [Google Scholar] [CrossRef] [Green Version]
- Horvitz, H.R.; Chalfie, M.; Trent, C.; Sulston, J.E.; Evans, P.D. Serotonin and Octopamine in the Nematode Caenorhabditis elegans. Science 1982, 216, 1012–1014. [Google Scholar] [CrossRef]
- Loer, C.M.; Kenyon, C.J. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J. Neurosci. 1993, 13, 5407–5417. [Google Scholar] [CrossRef] [Green Version]
- Sawin, E.R.; Ranganathan, R.; Horvitz, H.C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway. Neuron 2000, 26, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Song, B.-M.; Avery, L. Serotonin Activates Overall Feeding by Activating Two Separate Neural Pathways in Caenorhabditis elegans. J. Neurosci. 2012, 32, 1920–1931. [Google Scholar] [CrossRef] [Green Version]
- Steger, K.A.; Shtonda, B.B.; Thacker, C.; Snutch, T.P.; Avery, L. The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J. Exp. Biol. 2005, 208, 2191–2203. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.B.; Hall, D.H.; Avery, L.; Lockery, S.R. Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons. Neuron 1998, 20, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Hobert, O. The neuronal genome of Caenorhabditis elegans. In WormBook: The Online Review of C. Elegans Biology; 2013; pp. 1–106. Available online: http://www.wormbook.org/index.html (accessed on 24 November 2021). [CrossRef]
- Shtonda, B.; Avery, L. CCA-1, EGL-19 and EXP-2 currents shape action potentials in theCaenorhabditis eleganspharynx. J. Exp. Biol. 2005, 208, 2177–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viglierchio, D.R.; Schmitt, R.V. On the methodology of nematode extraction from field samples: Baermann funnel modifica-tions. J. Nematol. 1983, 15, 438–444. [Google Scholar] [PubMed]
- Schaad, N.W.; Walker, J.T. The Use of Density-Gradient Centrifugation for the Purification of Eggs of Meloidogyne spp. J. Nematol. 1975, 7, 203–204. [Google Scholar]
- Blaxter, M.; Liu, L. Nematode spliced leaders–ubiquity, evolution and utility. Int. J. Parasitol. 1996, 26, 1025–1033. [Google Scholar] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.M.; Yan, Y.; Smant, G.; Davis, E.L.; Baum, T.J. In-situ Hybridization to Messenger RNA in Heterodera glycines. J. Nematol. 1998, 30, 309–312. [Google Scholar]
- Urwin, P.E.; Lilley, C.J.; Atkinson, H.J. Ingestion of Double-Stranded RNA by Preparasitic Juvenile Cyst Nematodes Leads to RNA Interference. Mol. Plant-Microbe Interact. 2002, 15, 747–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Halloran, D.M.; Burnell, A.M. An investigation of chemotaxis in the insect parasitic nematodeHeterorhabditis bacteriophora. Parasitology 2003, 127, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.K.; Powers, S.J.; Gaur, H.S.; Birkett, M.; Curtis, R.H. Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola. Nematology 2012, 14, 309–320. [Google Scholar] [CrossRef]
Species | Molecule Name/Accession Number | Identity (%) |
---|---|---|
Brugia malayi | BMA-CCB-1/CRZ23597.1 | 67.5 |
Loa loa | beta 2a/XP_020301925.1 | 67.2 |
Caenorhabditis elegans | CCB-1/NP_491193.2 | 68.5 |
CCB-2/NP_001293380.1 | 13.3 | |
Ditylenchus destructor | MN867027 | |
Drosophila melanogaster | AAF21096.1 | 49.2 |
Heterololigo bleekeri | BAB88219.1 | 50.2 |
Lymnaea stagnalis | AAO83844.1 | 50.5 |
Homo sapiens | beta-1/NP_954856.1 | 44.8 |
beta-2/NP_000715.2 | 46.5 | |
beta3/NP_000716.2 | 47.92 | |
beta-4/NP_000717.2 | 48.7 | |
Oryctolagus cuniculus | beta-subunit/AAA31180.1 | 44.9 |
CaB2b/CAA45576.1 | 43.9 | |
CaB3/CAA45578.1 | 46.6 | |
Rattus norvegicus | beta4/A45982 | 48.6 |
Xenopus laevis | AAA75519.1 | 46.4 |
Name of Primer | Sequence (5′-3′) | Purpose |
---|---|---|
MF | GATGGCAAAGTATAACCGAAG | Primers used for DdCavβ cloning |
MR | TTATCGGAAATCTTCTTCGTCGTAG | |
3′ RACE outer primer | TACCGTCGTTCCACTAGTGATTT | |
3′ RACE inner primer | CGCGGATCCTCCACTAGTGATTTCACTATAGG | |
3′ β-F1 | ACCTCACTTGCTCCTATTCATGTAT | |
3′ β-F2 | CCGTCCAGTCCACGATATGGCGAT | |
SL1 | GGTTTAATTACCCAAGTTTGAG | |
5′ β-R1 | TTTGGAGCTCTTAGAGGTTTG | |
5′ β-R2 | TTAGAGGTTTGCTGTCGAATG | |
18SF | CTGATTAGCGATTCTTACGGA | Primers for real-time PCR analysis |
18SR | AGAAGCATGCCACCTTTGA | |
q-β-F | AGCCGCTCAGCAATTGGACA | |
q-β-R | TGAAAGACACTGCGCAGCCA | |
q-L-F | GACCCGTTATTGTTGAGCCA | |
q-L-R | ACGTTCCTTCGAGATGAGA | |
q-NL-F | TAGAAAACAGGCGAGACTTCC | |
q-NL-R | CTCATCCGTTGTTCGATCCTC | |
BamHI F | CGGGATCCGGAACGAGCAAACTCCAGGTC | Primers for ISH analysis |
HindⅢ R | CCCAAGCTTATGCTCACATGCGTCCTCAAG | |
dβ-F | TAATACGACTCACTATAGGGAAGTTCCCCGAAAGTTCTCCAG | Primers used for synthesizing dsRNA |
dβ-R | TAATACGACTCACTATAGGGAGGTCCGCCCTTGTCATAATC | |
dL-F | TAATACGACTCACTATAGGGAGGAAGATGACCTCTTGTTAG | |
dL-R | TAATACGACTCACTATAGGGCCCAATATATGACCGTCTTTG | |
dNL-F | TAATACGACTCACTATAGGGCGCAACACGTACCAAACTC | |
dNL-R | TAATACGACTCACTATAGGGCTCATCTGAATCGCTAAGAGG | |
GFP-F | TAATACGACTCACTATAGGGTACATCGCTCTTTCTTCACCG | |
GFP-R | TAATACGACTCACTATAGGGACCAACAAGATGAAGAGCACC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, M.; Chen, X.; Yang, Z.; Zhou, J.; Ye, S.; Ding, Z. Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor. Int. J. Mol. Sci. 2022, 23, 784. https://doi.org/10.3390/ijms23020784
An M, Chen X, Yang Z, Zhou J, Ye S, Ding Z. Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor. International Journal of Molecular Sciences. 2022; 23(2):784. https://doi.org/10.3390/ijms23020784
Chicago/Turabian StyleAn, Mingwei, Xueling Chen, Zhuhong Yang, Jianyu Zhou, Shan Ye, and Zhong Ding. 2022. "Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor" International Journal of Molecular Sciences 23, no. 2: 784. https://doi.org/10.3390/ijms23020784
APA StyleAn, M., Chen, X., Yang, Z., Zhou, J., Ye, S., & Ding, Z. (2022). Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor. International Journal of Molecular Sciences, 23(2), 784. https://doi.org/10.3390/ijms23020784