Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Properties of Ru-PPP and Ru-PPP-S
2.2. Catalytic Performance of Ru-PPP and Ru-PPP-S in Hydrogenation of LA to GVL
3. Materials and Methods
3.1. Materials
3.2. Synthetic Procedures
3.2.1. Preparation of the Ru-PPP
3.2.2. Preparation of the Ru-PPP-S
3.3. Catalytic Study
3.4. Recycling Experiment
3.5. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, S.M.; Fu, J.X.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Xu, W.P.; Chen, X.F.; Guo, H.J.; Li, H.L.; Zhang, H.R.; Xiong, L.; Chen, X.D. Conversion of levulinic acid to valuable chemicals: A review. J. Chem. Technol. Biotechnol. 2021, 96, 3009–3024. [Google Scholar] [CrossRef]
- Yan, K.; Jarvis, C.; Gu, J.; Yan, Y. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew. Sustain. Energy Rev. 2015, 51, 986–997. [Google Scholar] [CrossRef]
- Dutta, S.; Yu, I.K.M.; Tsang, D.C.W.; Ng, Y.H.; Ok, Y.S.; Sherwood, J.; Clark, J.H. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem. Eng. J. 2019, 372, 992–1006. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Louis, H.; Akakuru, O.U.; Joseph, I.; Enudi, O.C.; Michael, D.P. A Review on the conversion of levulinic acid and its esters to various useful chemicals. Aims Energy 2019, 7, 165–185. [Google Scholar] [CrossRef]
- Omoruyi, U.; Page, S.; Hallett, J.; Miller, P.W. Homogeneous Catalyzed Reactions of Levulinic Acid: To -Valerolactone and Beyond. ChemSusChem 2016, 9, 2037–2047. [Google Scholar] [CrossRef]
- Yu, Z.H.; Lu, X.B.; Xiong, J.; Ji, N. Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. ChemSusChem 2019, 12, 3915–3930. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Ouma, C.N.M.; du Preez, S.P.; Modisha, P.; Engelbrecht, N.; Bessarabov, D.G.; Ghimire, A. Application of nanoparticles in biofuels: An overview. Fuel 2019, 237, 380–397. [Google Scholar] [CrossRef]
- Yan, K.; Yang, Y.; Chai, J.; Lu, Y. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl. Catal. B Environ. 2015, 179, 292–304. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, S.; Dong, M.; Wang, J.; Fan, W. Ru nanoparticles deposited on ultrathin TiO2 nanosheets as highly active catalyst for levulinic acid hydrogenation to γ-valerolactone. Appl. Catal. B Environ. 2019, 259, 118076. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Wang, Y.; Cao, Q.; Xie, X.; Fang, W. Hydrogenation of levulinic acid to γ-valerolactone over bifunctional Ru/(AlO)(ZrO)n catalyst: Effective control of Lewis acidity and surface synergy. Mol. Catal. 2020, 493, 111097. [Google Scholar] [CrossRef]
- Ruiz-Bernal, Z.; Lillo-Ródenas, M.Á.; Román-Martínez, M.D. Ru Catalysts Supported on Commercial and Biomass-Derived Activated Carbons for the Transformation of Levulinic Acid into γ-Valerolactone under Mild Conditions. Catalysts 2021, 11, 559. [Google Scholar] [CrossRef]
- Seretis, A.; Diamantopoulou, P.; Thanou, I.; Tzevelekidis, P.; Fakas, C.; Lilas, P.; Papadogianakis, G. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Front. Chem. 2020, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Maximov, A.L.; Zolotukhina, A.V.; Mamedli, A.A.; Kulikov, L.A.; Karakhanov, E.A. Selective Levulinic Acid Hydrogenation in the Presence of Hybrid Dendrimer-Based Catalysts. Part I: Monometallic. ChemCatChem 2018, 10, 222–233. [Google Scholar] [CrossRef]
- Murugesan, K.; Alshammari, A.S.; Sohail, M.; Jagadeesh, R.V. Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of γ-Valerolactone. ACS Sustain. Chem. Eng. 2019, 7, 14756–14764. [Google Scholar] [CrossRef]
- Nemanashi, M.; Noh, J.-H.; Meijboom, R. Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: An alternative method for the production of renewable biofuels. Appl. Catal. A Gen. 2018, 550, 77–89. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, Q.; Yin, D.; Liu, S.; Li, L.; Xie, C.; Yu, S. One-Pot Synthesis of Stable Pd@mSiO2 Core–Shell Nanospheres and Their Application to the Hydrogenation of Levulinic Acid. Catal. Lett. 2020, 150, 3437–3446. [Google Scholar] [CrossRef]
- He, D.; He, Q.; Jiang, P.; Zhou, G.; Hu, R.; Fu, W. Novel Cu/Al2O3-ZrO2 composite for selective hydrogenation of levulinic acid to γ-valerolactone. Catal. Commun. 2019, 125, 82–86. [Google Scholar] [CrossRef]
- Yanase, D.; Yoshida, R.; Kanazawa, S.; Yamada, Y.; Sato, S. Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst. Catal. Commun. 2020, 139, 105967. [Google Scholar] [CrossRef]
- Song, S.; Yao, S.; Cao, J.; Di, L.; Wu, G.; Guan, N.; Li, L. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B Environ. 2017, 217, 115–124. [Google Scholar] [CrossRef]
- Luo, L.; Han, X.; Zeng, Q. Hydrogenative Cyclization of Levulinic Acid to γ-Valerolactone with Methanol and Ni-Fe Bimetallic Catalysts. Catalysts 2020, 10, 1096. [Google Scholar] [CrossRef]
- Villa, A.; Schiavoni, M.; Chan-Thaw, C.E.; Fulvio, P.F.; Mayes, R.T.; Dai, S.; More, K.L.; Veith, G.M.; Prati, L. Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production. ChemSusChem 2015, 8, 2520–2528. [Google Scholar] [CrossRef]
- Nikoshvili, L.Z.; Protsenko, I.I.; Abusuek, D.A.; Zaykovskaya, A.O.; Bykov, A.V.; Matveeva, V.; Sulman, E. Hydrogenation of Biomass-Derived Levulinic Acid to Gamma—Valerolactone Using Polymer-Based Metal-Containing Catalysts. Chem. Eng. Trans. 2017, 61, 895–900. [Google Scholar] [CrossRef]
- Grigorev, M.E.; Mikhailov, S.P.; Bykov, A.V.; Sidorov, A.I.; Tiamina, I.Y.; Vasiliev, A.L.; Nikoshvili, L.Z.; Matveeva, V.G.; Plentz Meneghetti, S.M.; Sulman, M.G.; et al. Mono- and bimetallic (Ru-Co) polymeric catalysts for levulinic acid hydrogenation. Catal. Today 2021, 378, 167–175. [Google Scholar] [CrossRef]
- Piskun, A.; Winkelman, J.G.M.; Tang, Z.; Heeres, H.J. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts. Catalysts 2016, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, A.M.; Grams, J.; Jędrzejczyk, M.; Matras-Michalska, J.; Keller, N.; Ostojska, K.; Sautet, P. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. ChemSusChem 2015, 8, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Deka, U.; Beale, A.M.; van Eck, E.R.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. J. Catal. 2013, 301, 175–186. [Google Scholar] [CrossRef]
- Tan, J.; Cui, J.; Deng, T.; Cui, X.; Ding, G.; Zhu, Y.; Li, Y. Water-Promoted Hydrogenation of Levulinic Acid to γ-Valerolactone on Supported Ruthenium Catalyst. ChemCatChem 2015, 7, 508–512. [Google Scholar] [CrossRef]
- Upare, P.P.; Lee, J.-M.; Hwang, D.W.; Halligudi, S.B.; Hwang, Y.K.; Chang, J.-S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts. J. Ind. Eng. Chem. 2011, 17, 287–292. [Google Scholar] [CrossRef]
- Primo, A.; Concepción, P.; Corma, A. Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chem. Commun. 2011, 47, 3613–3615. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Z.; Zhao, S.; Wang, D.; Wu, Z.; Zhang, M. A stable and effective Ru/polyethersulfone catalyst for levulinic acid hydrogenation to γ-valerolactone in aqueous solution. Catal. Today 2014, 234, 245–250. [Google Scholar] [CrossRef]
- Galletti, A.M.R.; Antonetti, C.; De Luise, V.; Martinelli, M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem. 2012, 14, 688–694. [Google Scholar] [CrossRef]
- Kumar, V.V.; Naresh, G.; Deepa, S.; Bhavani, P.G.; Nagaraju, M.; Sudhakar, M.; Chary, K.V.R.; Tardio, J.; Bhargava, S.K.; Venugopal, A. Influence of W on the reduction behaviour and Brønsted acidity of Ni/TiO2 catalyst in the hydrogenation of levulinic acid to valeric acid: Pyridine adsorbed DRIFTS study. Appl. Catal. A Gen. 2017, 531, 169–176. [Google Scholar] [CrossRef]
- Kumar, V.V.; Naresh, G.; Sudhakar, M.; Tardio, J.; Bhargava, S.K.; Venugopal, A. Role of Brønsted and Lewis acid sites on Ni/TiO2 catalyst for vapour phase hydrogenation of levulinic acid: Kinetic and mechanistic study. Appl. Catal. A Gen. 2015, 505, 217–223. [Google Scholar] [CrossRef]
- Abdelrahman, O.A.; Luo, H.Y.; Heyden, A.; Román-Leshkov, Y.; Bond, J.Q. Toward rational design of stable, supported metal catalysts for aqueous-phase processing: Insights from the hydrogenation of levulinic acid. J. Catal. 2015, 329, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Gundeboina, R.; Velisoju, V.K.; Gutta, N.; Medak, S.; Aytam, H.P. Influence of surface Lewis acid sites for the selective hydrogenation of levulinic acid to γ-valerolactone over Ni–Cu–Al mixed oxide catalyst. React. Kinet. Mech. Catal. 2019, 127, 601–616. [Google Scholar] [CrossRef]
- Kuchkina, N.V.; Zinatullina, M.S.; Serkova, E.S.; Vlasov, P.S.; Peregudov, A.S.; Shifrina, Z.B. Hyperbranched pyridylphenylene polymers based on the first-generation dendrimer as a multifunctional monomer. RSC Adv. 2015, 5, 99510–99516. [Google Scholar] [CrossRef]
- Baird, N.; Dittmar, J.W.; Losovyj, Y.B.; Morgan, D.G.; Stein, B.D.; Pink, M.; Kuchkina, N.V.; Serkova, E.S.; Lependina, O.L.; Grigoriev, M.E.; et al. Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. ACS Appl. Mater. Interfaces 2017, 9, 2285–2294. [Google Scholar] [CrossRef]
- Alibegovic, K.; Morgan, D.G.; Losovyj, Y.; Pink, M.; Stein, B.D.; Kuchkina, N.V.; Serkova, E.S.; Salnikova, K.E.; Shifrina, Z.B.; Matveeva, V.G.; et al. Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter? Chem. Sel. 2017, 2, 5485–5491. [Google Scholar] [CrossRef]
- Basaveni, S.; Kuchkina, N.V.; Shifrina, Z.B.; Pal, M.; Rajadurai, M. Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation. J. Nanopart. Res. 2019, 21, 91. [Google Scholar] [CrossRef]
- Miyazawa, T.; Koso, S.; Kunimori, K.; Tomishige, K. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl. Catal. A Gen. 2007, 329, 30–35. [Google Scholar] [CrossRef]
- Osada, M.; Hiyoshi, N.; Sato, O.; Arai, K.; Shirai, M. Subcritical Water Regeneration of Supported Ruthenium Catalyst Poisoned by Sulfur. Energy Fuels 2008, 22, 845–849. [Google Scholar] [CrossRef]
- Heeres, H.; Handana, R.; Chunai, D.; Borromeus Rasrendra, C.; Girisuta, B.; Jan Heeres, H. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem. 2009, 11, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Panicker, C.Y.; Varghese, H.T.; Philip, D.; Nogueira, H.I. FT-IR, FT-Raman and SERS spectra of pyridine-3-sulfonic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 744–747. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.Y.; Deivaraj, T.C.; Too, H.P. A highly efficient phase transfer method for preparing alkylamine-stabilized Ru, Pt, and Au nanoparticles. J. Colloid Interf. Sci. 2004, 277, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Naoya, S.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. J. Am. Chem. Soc. 2013, 135, 5493–5496. [Google Scholar] [CrossRef]
- Barber, M.; Connor, J.A.; Guest, M.F.; Hillier, I.H.; Schwarz, M.; Stacey, M. Bonding in some donor–acceptor complexes involving boron trifluoride. Study by means of ESCA and molecular orbital calculations. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1973, 69, 551–558. [Google Scholar] [CrossRef]
- Rusanov, A.L.; Bulycheva, E.G.; Bugaenko, M.G.; Voytekunas, V.Y.; Abadie, M.J. Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells. Russ. Chem. Rev. 2009, 78, 53–75. [Google Scholar] [CrossRef]
- Palkovits, R. Pentenoic Acid Pathways for Cellulosic Biofuels. Angew. Chem. Int. Ed. 2010, 49, 4336–4338. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, O.A.; Heyden, A.; Bond, J.Q. Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid To Form γ-Valerolactone over Ru/C. ACS Catal. 2014, 4, 1171–1181. [Google Scholar] [CrossRef]
- Corbel-Demailly, L.; Ly, B.-K.; Minh, D.-P.; Tapin, B.; Especel, C.; Epron, F.; Cabiac, A.; Guillon, E.; Besson, M.; Pinel, C. Heterogeneous Catalytic Hydrogenation of Biobased Levulinic and Succinic Acids in Aqueous Solutions. ChemSusChem 2013, 6, 2388–2395. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Wright, W.R.H.; Palkovits, R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem. 2012, 14, 1260–1263. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Lu, Y.-M.; Liu, Y.-X.; Wu, Z.-B.; Hu, D.-Y.; Yang, S. Cascade catalytic transfer hydrogenation–cyclization of ethyl levulinate to γ-valerolactone with Al–Zr mixed oxides. Appl. Catal. A Gen. 2016, 510, 11–19. [Google Scholar] [CrossRef]
- Wright, W.R.H.; Palkovits, R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone. ChemSusChem 2012, 5, 1657–1667. [Google Scholar] [CrossRef]
- Ortiz-Cervantes, C.; García, J.J. Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles. Inorg. Chim. Acta 2013, 397, 124–128. [Google Scholar] [CrossRef]
- Wei, Z.; Lou, J.; Su, C.; Guo, D.; Liu, Y.; Deng, S. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. ChemSusChem 2017, 10, 1720–1732. [Google Scholar] [CrossRef] [PubMed]
- Piskun, A.S.; de Haan, J.E.; Wilbers, E.; van de Bovenkamp, H.H.; Tang, Z.; Heeres, H.J. Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor. ACS Sustain. Chem. Eng. 2016, 4, 2939–2950. [Google Scholar] [CrossRef]
- Yan, K.; Liao, J.; Wu, X.; Xie, X. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv. 2013, 3, 3853–3856. [Google Scholar] [CrossRef]
- Lange, J.-P.; Price, R.; Ayoub, P.M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Valeric Biofuels: A Platform of Cellulosic Transportation Fuels. Angew. Chem. Int. Ed. 2010, 49, 4479–4483. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Magatani, Y.; Yamashita, H. Ru nanoparticles confined in Zr-containing spherical mesoporous silica containers for hydrogenation of levulinic acid and its esters into γ-valerolactone at ambient conditions. Catal. Today 2015, 258, 262–269. [Google Scholar] [CrossRef]
- Lange, J.-P. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation. Angew. Chem. Int. Ed. 2015, 54, 13186–13197. [Google Scholar] [CrossRef] [PubMed]
- Ftouni, J.; Genuino, H.C.; Muñoz-Murillo, A.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. ChemSusChem 2017, 10, 2891–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.D.; Rigs, W.M. Handbook of X-ray Photoelectron Spectroscopy. NIST X-ray Photoelectron Spectroscopy Database; Perkin-Elmer Corporation: Akron, OH, USA, 2017. [Google Scholar]
Catalyst | Reaction Conditions | LA Conversion (%) | GVL Yield (%) |
---|---|---|---|
Ru-PPP | 100 °C, 2 MPa, 4 h | 32.0 | 32 |
Ru-PPP | 120 °C, 2 MPa, 4 h | 68.2 | 68.2 |
Ru-PPP | 130 °C, 2 MPa, 4 h | 74.5 | 73.8 |
Ru-PPP | 150 °C, 2 MPa, 4 h | 83.5 | 81.8 |
Ru-PPP | 100 °C, 3 MPa, 4 h | 61.0 | 61.0 |
Ru-PPP | 100 °C, 5 MPa, 4 h | 77.5 | 77.5 |
Ru-PPP-S | 100 °C, 2 MPa, 3 h 4 h | 94.8 99.9 | 94.8 99.9 |
Ru-PPP-S | 120 °C, 2 MPa, 3 h | 98.9 | 98.9 |
Ru-PPP-S | 130 °C, 2 MPa, 2 h 3 h | 96.8 100 | 94.9 100 |
Ru-PPP-S | 150 °C, 2 MPa, 1.5 h 2 h | 94.8 99.9 | 92.9 98.9 |
Ru-PPP-S | 100 °C, 3 MPa, 3 h | 98.8 | 98.8 |
Ru-PPP-S | 100 °C, 5 MPa, 2 h 3 h | 95.4 100 | 94.4 99.8 |
Catalyst | Solvent | Reaction Conditions | LA Conversion (%) | GVL Yield (%) | Ref. |
---|---|---|---|---|---|
5% Ru/C | dioxane | 265 °C, H2 1 bar, 1 g catalyst, 50 h | 100 | 98.6 | [29] |
1% Ru/TiO2 | H2O | 70 °C, H2 5 MPa, 0.3 g catalyst, 1 h | 99 | 95 | [26] |
1% Ru/TiO2 | H2O | 150 °C, H2 3.2 MPa, 0.4 mol% catalyst, 5 h | 100 | 93 | [30] |
0.5% Ru/SiO2 | H2O | 130 °C, H2 4 MPa, 0.1 g catalyst, 3 h | 80 | 79 | [28] |
Ru/SiO2 | H2O | 90 °C, H2 4.5 MPa, 0.4 mol% catalyst, 6 h | 26 | 14 | [57] |
Cu-Al | H2O | 200 °C, H2 6 MPa, 0.2 g catalyst, 10 h | 98 | 95 | [58] |
1% Pt/TiO2 | GVL | 200 °C, H2 4 MPa, 1 wt% catalyst, 100 h | 98 | 93 | [59] |
Ru40-DENs | H2O | 150 °C, H2 1 MPa, 0.5 mol% Ru, 5 h | 100 | 99 | [16] |
Ru40@Meso-SiO2 | H2O | 150 °C, H2 1 MPa, 0.5 mol% Ru, 5 h | 94 | 94 | [16] |
Ru40@Meso-TiO2 | H2O | 150 °C, H2 1 MPa, 0.5 mol% Ru, 5 h | 92 | 90 | [16] |
1% Ru/zeolite-β | 2-ethyl-hexanoic acid | 200 °C, H2 4 MPa, 0.3 g catalyst, 4 h | 100 | 88 | [27] |
1% Ru/ZSM-5 | 2-ethyl-hexanoic acid | 200 °C, H2 4 MPa, 0.3 g catalyst, 4 h | 100 | 90 | [27] |
1% Ru/Nb2O5 | 2-ethyl-hexanoic acid | 200 °C, H2 4 MPa, 0.3 g catalyst, 5 h | 95 | 93 | [27] |
5% Ru/SiO2 | H2O | 70 °C, H2 0.5 MPa, 0.5 mol% Ru, 4 h | 88 | 84 | [60] |
5% Ru/ZrO2 | H2O | 70 °C, H2 0.5 MPa, 0.5 mol% Ru, 4 h | 69 | 67 | [60] |
5% Ru/MCM-41 | H2O | 70 °C, H2 0.5 MPa, 0.5 mol% Ru, 4 h | 89 | 84 | [60] |
1% Ru/OMC/H3PO4 | H2O | 70 °C, H2 0.7 MPa, 0.1 mol% Ru, 6 h | 98 | 92 | [22] |
1% Ru/OMC/H3PO4 | H2O | 200 °C, H2 4 MPa, 0.1 mol% Ru, 6 h | 99 | 67 | [22] |
3.5% G2-dendr-SiO2-Ru | H2O | 120 °C, H2 3 MPa, 2 h | 84 | 78 | [14] |
Ru-PPP-S | H2O | 100 °C, 2 MPa, 0.016 mol% Ru, 3 h 4 h | 94.8 99.9 | 94.8 99.9 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokina, S.A.; Mikhailov, S.P.; Kuchkina, N.V.; Bykov, A.V.; Vasiliev, A.L.; Ezernitskaya, M.G.; Golovin, A.L.; Nikoshvili, L.Z.; Sulman, M.G.; Shifrina, Z.B. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Int. J. Mol. Sci. 2022, 23, 799. https://doi.org/10.3390/ijms23020799
Sorokina SA, Mikhailov SP, Kuchkina NV, Bykov AV, Vasiliev AL, Ezernitskaya MG, Golovin AL, Nikoshvili LZ, Sulman MG, Shifrina ZB. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. International Journal of Molecular Sciences. 2022; 23(2):799. https://doi.org/10.3390/ijms23020799
Chicago/Turabian StyleSorokina, Svetlana A., Stepan P. Mikhailov, Nina V. Kuchkina, Alexey V. Bykov, Alexander L. Vasiliev, Mariam G. Ezernitskaya, Andrey L. Golovin, Linda Zh. Nikoshvili, Mikhail G. Sulman, and Zinaida B. Shifrina. 2022. "Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support" International Journal of Molecular Sciences 23, no. 2: 799. https://doi.org/10.3390/ijms23020799
APA StyleSorokina, S. A., Mikhailov, S. P., Kuchkina, N. V., Bykov, A. V., Vasiliev, A. L., Ezernitskaya, M. G., Golovin, A. L., Nikoshvili, L. Z., Sulman, M. G., & Shifrina, Z. B. (2022). Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. International Journal of Molecular Sciences, 23(2), 799. https://doi.org/10.3390/ijms23020799