Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Materials Preparation
3.2.2. Materials Characterization
3.2.3. Thermal Analysis
3.2.4. X-ray Diffraction Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Claverie, M.; McReynolds, C.; Petitpas, A.; Thomas, M.; Fernandes, S.C.M. Marine-Derived Polymeric Materials and Biomi-metics: An Overview. Polymers 2020, 12, 1002. [Google Scholar] [CrossRef]
- Senni, K.; Pereira, J.; Gueniche, F.; Delbarre-Ladrat, C.; Sinquin, C.; Ratiskol, J.; Godeau, G.; Fischer, A.-M.; Helley, D.; Col-liec-Jouault, S. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering. Mar. Drugs 2011, 9, 1664–1681. [Google Scholar] [CrossRef] [Green Version]
- Ale, M.T.; Meyer, A.S. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef] [Green Version]
- Ale, M.T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J.D.; Meyer, A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011, 49, 331–336. [Google Scholar] [CrossRef]
- Akter, R.; Afrose, A.; Rahman, M.R.; Chowdhury, R.; Nirzhor, S.S.R.; Khan, R.I.; Kabir, M.T. A Comprehensive Analysis into the Therapeutic Application of Natural Products as SIRT6 Modulators in Alzheimer’s Disease, Aging, Cancer, Inflammation, and Diabetes. Int. J. Mol. Sci. 2021, 22, 4180. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.G.; Venkatesan, J.; Shim, M.S. Selective Anticancer Therapy Using Pro-Oxidant Drug-Loaded Chitosan–Fucoidan Nanoparticles. Int. J. Mol. Sci. 2019, 20, 3220. [Google Scholar] [CrossRef] [Green Version]
- Moga, M.A.; Dima, L.; Balan, A.; Blidaru, A.; Dimienescu, O.G.; Podasca, C.; Toma, S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?—A Review. Int. J. Mol. Sci. 2021, 22, 629. [Google Scholar] [CrossRef]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhaes, K.D.; Costa, L.S.; Fidelis, G.P.; Oliveira, R.M.; Nobre, L.T.D.B.; Dantas-Santos, N.; Camara, R.B.G.; Albuquerque, I.R.L.; Cordeiro, S.L.; Sabry, D.A.; et al. Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopteris delicatula. Int. J. Mol. Sci. 2011, 12, 3352–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [Green Version]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.-R.S.; Ulber, R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Structure and Biological Activity Analysis of Fucoidan Isolated from Sargassum siliquosum. ACS Omega 2020, 5, 32447–32455. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowska, A.; Deryło-Marczewska, A. Mesoporous silica/protein biocomposites: Surface, topography, thermal properties. Int. J. Biol. Macromol. 2019, 139, 531–542. [Google Scholar] [CrossRef]
- Gupta, A.D.; Rene, E.R.; Giri, B.S.; Pandey, A.; Singh, H. Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. J. Environ. Chem. Eng. 2021, 9, 106376. [Google Scholar] [CrossRef]
- Walpole, A.R.; Xia, Z.; Wilson, C.W.; Triffitt, J.T.; Wilshaw, P.R. A novel nano-porous alumina biomaterial with potential for loading with bioactive materials. J. Biomed. Mater. Res. Part A 2009, 90, 46–54. [Google Scholar] [CrossRef]
- McMaster, W.A.; Wang, X.; Caruso, R.A. Collagen-Templated Bioactive Titanium Dioxide Porous Networks for Drug Delivery. ACS Appl. Mater. Interfaces 2012, 4, 4717–4725. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent Advances in Zinc Oxide Nano-particles (ZnO-NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef]
- Limo, M.J.; Sola-Rabada, A.; Boix, E.; Thota, V.; Westcott, Z.C.; Puddu, V.; Perry, C.C. Interactions between Metal Oxides and Biomolecules: From Fundamental Understanding to Applications. Chem. Rev. 2018, 118, 11118–11193. [Google Scholar] [CrossRef] [Green Version]
- Terescenco, D.; Hucher, N.; Picard, C.; Savary, G. Sensory perception of textural properties of cosmetic Pickering Emulsions. Int. J. Cosmet. Sci. 2020, 42, 198–207. [Google Scholar] [CrossRef]
- Nguyen, H.; Tinet, E.; Chauveau, T.; Geinguenaud, F.; Lalatonne, Y.; Michel, A.; Aid-Launais, R.; Journé, C.; Lefèbvre, C.; Simon-Yarza, T.; et al. Bimodal Fucoidan-Coated Zinc Oxide/Iron Oxide-Based Na-noparticles for the Imaging of Atherothrombosis. Molecules 2019, 24, 962. [Google Scholar] [CrossRef] [Green Version]
- Phull, A.-R.; Ali, A.; Dhong, K.R.; Zia, M.; Mahajan, P.G.; Park, H.-J. Synthesis, characterization, anticancer activity assessment and apoptosis signaling of fucoidan mediated copper oxide nanoparticles. Arab. J. Chem. 2021, 14, 103250. [Google Scholar] [CrossRef]
- Matusiak, J.; Grządka, E.; Bastrzyk, A.; Pasieczna-Patkowska, S. The influence of fucoidan on stability, adsorption and elec-trokinetic properties of ZnO and TiO2 suspensions. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Matusiak, J.; Grządka, E.; Bastrzyk, A. Stabilizing properties of fucoidan for the alumina suspension containing the cationic surfactant. Carbohydr. Polym. 2020, 245, 116523. [Google Scholar] [CrossRef]
- Monsur, H.A.; Jaswir, I.; Simsek, S.; Amid, A.; Alam, Z. Chemical structure of sulfated polysaccharides from brown seaweed (Turbinaria turbinata). Int. J. Food Prop. 2016, 20, 1457–1469. [Google Scholar] [CrossRef] [Green Version]
- Perumal, R.K.; Perumal, S.; Thangam, R.; Gopinath, A.; Ramadass, S.K.; Madhan, B.; Sivasubramanian, S. Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. Int. J. Biol. Macromol. 2018, 106, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compound, 7th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Risoluti, R.; Piazzese, D.; Napoli, A.; Materazzi, S. Study of [2-(2′-pyridyl)imidazole] complexes to confirm two main char-acteristic thermoanalytical behaviors of transition metal complexes based on imidazole derivatives. J. Anal. Appl. Pyrolysis 2016, 117, 82–87. [Google Scholar] [CrossRef]
- Kosińska-Pezda, M.; Zapała, L.; Maciołek, U.; Byczyński, Ł.; Woźnicka, E.; Zapała, W. Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative decomposition of novel ternary complexes of light lanthanides with mefenamic acid and 1, 10-phenanthroline. J. Anal. Appl. Pyrolysis 2021, 159, 105293. [Google Scholar] [CrossRef]
- FTIR Spectrum of Formaldehyde, NIST Chemistry WebBook. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C50000&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 11 December 2021).
- Zhong, L.; Parker, S.F. Structure and vibrational spectroscopy of methanesulfonic acid. R. Soc. Open Sci. 2018, 5, 181363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MS Spectrum of Formaldehyde, NIST Chemistry WebBook. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C50000&Mask=200#Mass-Spec (accessed on 11 December 2021).
- Vacher, J.R.; Jorand, F.; Blin-Simiand, N.; Pasquiers, S. Electron impact ionization of formaldehyde. Chem. Phys. Lett. 2009, 476, 178–181. [Google Scholar] [CrossRef]
- Bombach, R.; Dannacher, J.; Stadelmann, J.-P.; Vogt, J. Fragmentation of formaldehyde molecular cations. Int. J. Mass Spectrom. Ion Phys. 1981, 40, 275–285. [Google Scholar] [CrossRef]
- MS Spectrum of Methanesulfonic Acid, NIST Chemistry WebBook. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C75752&Units=SI&Mask=200#Mass-Spec (accessed on 11 December 2021).
- Glinka, A.; Pacewska, B.; Michałowski, S. Investigation of thermal decomposition of hydrated aluminium oxide. J. Therm. Anal. 1984, 29, 953–957. [Google Scholar] [CrossRef]
- Zuo, C.; Li, Q.; Peng, G.; Xing, G. Manufacture of biomorphic Al2O3 ceramics using filter paper as template. Prog. Nat. Sci. Mater. Int. 2011, 21, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, K.W.; Ahmad, S.; Ahamad, N.; Naqvi, A.H. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles. AIP Conf. Proc. 2015, 1661, 080001. [Google Scholar] [CrossRef]
- Banfield, J.B.; Veblen, D.R.; Smith, D.J. The identification of naturally occurring TiO2(B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares-refinement. Am. Mineral. 1991, 76, 343–353. [Google Scholar]
- Pulišová, P.; Boháček, J.; Šubrt, J.; Szatmáry, L.; Bezdiáka, P.; Večerníková, E.; Balek, V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J. Therm. Anal. Calorim. 2010, 101, 607–613. [Google Scholar] [CrossRef]
- Yang, X.; Pierre, A.C.; Uhlmann, D.R. TEM study of boehmite gels and their transformation to α-Alumina. J. Non-Cryst. Solids 1988, 100, 331–337. [Google Scholar] [CrossRef]
- Bodaghi, M.; Mirhabibi, A.R.; Zolfonoon, H.; Salehie, M.; Tahriri, M. Preparation and characterisation of α-Al2O3 powder from γ-Al2O3 powder using mechanical milling technique. Mater. Res. Innov. 2013, 12, 157–161. [Google Scholar] [CrossRef]
- Caires, F.J.; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M. Thermal investigation and infrared evolved gas analysis of solid tri-valent lanthanide and yttrium α−hydroxyisobutyrates in atmospheres of N2 and CO2. J. Anal. Appl. Pyrolysis 2014, 107, 313–322. [Google Scholar] [CrossRef]
- Matusiak, J.; Grządka, E.; Bastrzyk, A. Removal of hazardous oxide nanoparticles by the biopolymer flocculation in the presence of divalent salt. Chem. Eng. J. 2021, 423, 130264. [Google Scholar] [CrossRef]
Al2O3 | Al2O3-FD | TiO2 | TiO2-FD | ZnO | ZnO-FD | |
---|---|---|---|---|---|---|
Hydrodynamic diameter, Z-average [nm] | 344.8 ± 16.5 | 676.1 ± 42.9 | 173.8 ± 15.6 | 225.1 ± 2.7 | 289.8 ± 26.6 | 322.60 ± 11.6 |
Polydispersity index, PDI | 0.226 | 0.399 | 0.224 | 0.250 | 0.239 | 0.298 |
Parameter | Value | |||||
---|---|---|---|---|---|---|
Al2O3 | Al2O3-FD | TiO2 | TiO2-FD | ZnO | ZnO-FD | |
BET specific surface area [m2 g−1] | 171.3 | 134.2 | 50.3 | 47.5 | 13.6 | 9.8 |
Micropore area [m2 g−1] | 20.17 | 11.37 | 3.97 | 2.89 | 2.78 | 1.94 |
External surface area [m2 g−1] | 151.16 | 122.87 | 46.35 | 44.59 | 10.76 | 7.87 |
Micropore volume [cm3 g−1] | 0.007638 | 0.004288 | 0.001460 | 0.000936 | 0.001223 | 0.000889 |
Stage | Tpeak [°C] | Thermogravimetry | ||
---|---|---|---|---|
Temp. Range; Tmax, [°C] | Δm [%] Found | Residue [%] Found | ||
FD | ||||
I | 97(-) | 25–200; 100 | 4.38 | |
II | 255(+) | 200–275; 249 | 20.57 | |
III | 343(+) | 275–375; 305 | 35.88 | |
IV | 406(+) | 375–1000; 454, 479 | 21.47 | 17.7 |
455(+) | ||||
482(+) | ||||
Al2O3 | ||||
I | 93(-) | 25–210; 87 | 2.93 | |
II | 276(-) | 210–1000; 273 | 12.43 | |
840(-) | 84.64 | |||
Al2O3-FD | ||||
I | 93(-) | 25–175; 84 | 2.40 | |
II | 279(-) | 175–1000; 276 | 17.69 | |
305(+) | ||||
475(+) | ||||
762(-) | 79.91 | |||
TiO2 | ||||
I | 93(-) | 25–150; 90 | 0.53 | |
II | 192(-) | 125–1000; 187 | 0.77 | 98.70 |
TiO2-FD | ||||
I | 95(-) | 25–150; 95 | 0.69 | |
II | 282(+) | 150–1000; 266 | 5.38 | |
430(+) | 93.93 | |||
780(+) | ||||
ZnO | ||||
I | 70(-) | 25–175; 55 | 0.10 | |
II | 259(-) | 175–285; 255 | 0.49 | |
III | 468(-) | 285–1000; 459 | 0.32 | |
99.09 | ||||
ZnO-FD | ||||
I | 95(-) | 25–150; 83 | 0.34 | |
II | 336(+) | 150–1000; 270 | 5.93 | |
433(+) | 93.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusiak, J.; Maciołek, U.; Kosińska-Pezda, M.; Sternik, D.; Orzeł, J.; Grządka, E. Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential. Int. J. Mol. Sci. 2022, 23, 805. https://doi.org/10.3390/ijms23020805
Matusiak J, Maciołek U, Kosińska-Pezda M, Sternik D, Orzeł J, Grządka E. Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential. International Journal of Molecular Sciences. 2022; 23(2):805. https://doi.org/10.3390/ijms23020805
Chicago/Turabian StyleMatusiak, Jakub, Urszula Maciołek, Małgorzata Kosińska-Pezda, Dariusz Sternik, Jolanta Orzeł, and Elżbieta Grządka. 2022. "Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential" International Journal of Molecular Sciences 23, no. 2: 805. https://doi.org/10.3390/ijms23020805
APA StyleMatusiak, J., Maciołek, U., Kosińska-Pezda, M., Sternik, D., Orzeł, J., & Grządka, E. (2022). Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential. International Journal of Molecular Sciences, 23(2), 805. https://doi.org/10.3390/ijms23020805