The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases
Abstract
:1. Introduction
2. Mitochondrial Genome Organization, Functions and Dynamics
3. Mitochondrial DNA Mutations
Mutation | Gene | Other Notes | References |
---|---|---|---|
Mt3970 (C > T) | MT-ND1 | Chinese MIEH patients | [50] |
Mt4048 (G > A) | |||
Mt4071 (C > T) | |||
Mt4086 (C > T) | |||
Mt4164 (A > G) | |||
Mt4248 (T > C) | |||
Mt4386 (T > C) | tRNAGln | ||
Mt4394 (C > T) | |||
Mt8414 (C > T) | MT-ATP8 | [51] | |
Mt8701 (A > G) | MT-ATP6 | ||
Mt8584 (G > A) | |||
Mt8273_8281del | |||
Mt8701 (A > G) | MT-ATP6 | A Chinese family with MIEH cases | [52] |
Mt5587 (T > C) | tRNAAla | [53] | |
Mt12280 (A > G) | tRNALeu(CUN) | ||
Mt5512 (A > G) | tRNATrp | [54] | |
Mt15077 (G > A) | MT-CYB | [55] | |
Mt15992 (A > G) | tRNAPro | ||
Mt10410 (T > C) | tRNAArg | [56] | |
Mt10454 (T > C) | |||
Mt3253 (T > C) | tRNALeu(UUR) | Chinese Han EH patients | [57] |
Mt15910 (C > T) | tRNAThr | [58] | |
Mt5655 (T > C) | tRNAAla | Han Chinese family with EH | [59] |
Mt4401 (A > G) | Between tRNAMet and tRNAGln | ||
Mt7471 delC | tRNASer(UCN) | [60] | |
Mt4467 (C > A) | tRNAMet | [61] | |
Mt4263 (A > G) | tRNAIle | [62] | |
Mt15909 (A > G) | tRNAThr | [63] | |
Mt4363 (T > C) | tRNAGln | [64] | |
Mt5601 (C > T) | tRNAAla | [65] | |
Mt4435 (A > G) | tRNAMet |
Mutation | Gene | Other Notes | References |
---|---|---|---|
Mt4216 (T > C) | MT-ND1 | Associated with the most severe BrS phenotype among Caucasian BrS patients | [72] |
Mt11251 (A > G) | MT-ND4 | ||
Mt15452 (C > A) | MT-CYB | ||
Mt16126 (T > C) | D-loop | ||
Mt4377 (T > A) | tRNAGln | Associated with BrS in Iranian patients | [73] |
Mt4407 (G > A) | tRNAMet | ||
Mt4456 (C > T) | |||
Mt5580 (T > C) | junction region between tRNATrp and tRNAAla | ||
m.16145G > A | D-loop | Genetic risk factors for IS | [76] |
m.16311T > C | |||
Mt195 (T > C) | D-loop | Protective factors of IS in Chinese patient cohort | [77] |
Mt311 (C > T) | D-loop | ||
Mt12338 (T > C) | MT-ND5 |
4. Molecular Mechanisms of mtDNA Mutations
4.1. Mutations in tRNA Genes
4.2. Mitochondrial Oxidative Stress
4.3. Mitochondrial Energy Synthesis
4.4. Mitochondrial Ca2+ Regulation
4.5. MtDNA Copy Number
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAA | abdominal aortic aneurysm |
ATP | adenosine triphosphate |
BrS | Brugada syndrome |
CAD | coronary artery disease |
CHD | coronary heart disease |
CVD | cardiovascular diseases |
ECs | endothelial cells |
EH | essential hypertension |
ER | endoplasmic reticulum |
GWAS | genome-wide association study |
HTN | hypertension |
IS | ischemic stroke |
LDL | low-density lipoprotein |
LDLC | low-density lipoprotein cholesterol |
LHON | Leber hereditary optic neuropathy |
LTL | leucocyte telomere length |
LVEF | left ventricular ejection fraction |
MACEs | major adverse cardiovascular events |
MIEH | maternally inherited essential hypertension |
mtDNA | mitochondrial DNA |
mtDNA-CN | mitochondrial DNA copy number |
NADH | nicotine amide adenine dinucleotide |
OXPHOS | oxidative phosphorylation complexes |
PAD | peripheral arterial disease |
ROS | reactive oxygen species |
rRNAs | ribosomal RNAs |
SCD | sudden cardiac death |
TC | total cholesterol |
TG | triglyceride |
tRNAs | transport RNAs |
UPR | unfolded protein response |
VSMC | vascular smooth muscle cells |
References
- Kobiyama, K.; Ley, K. Atherosclerosis: A chronic inflammatory disease with an autoimmune component. Circ. Res. 2018, 123, 1118–1120. [Google Scholar] [CrossRef]
- Sazonovs, A.; Barrett, J.C. Rare-variant studies to complement genome-wide association studies. Annu. Rev. Genom. Hum. Genet. 2018, 19, 97–112. [Google Scholar] [CrossRef]
- Schunkert, H.; von Scheidt, M.; Kessler, T.; Stiller, B.; Zeng, L.; Vilne, B. Genetics of coronary artery disease in the light of genome-wide association studies. Clin. Res. Cardiol. 2018, 107, 2–9. [Google Scholar] [CrossRef]
- Erdmann, J.; Kessler, T.; Munoz Venegas, L.; Schunkert, H. A Decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondrial genetic medicine. Nat. Genet. 2018, 50, 1642–1649. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Veloso, C.D.; Belew, G.D.; Ferreira, L.L.; Grilo, L.F.; Jones, J.G.; Portincasa, P.; Sardão, V.A.; Oliveira, P.J. A Mitochondrial Approach to cardiovascular risk and disease. Curr. Pharm. Des. 2019, 25, 3175–3194. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis—No longer a theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, V.A.; Di Minno, A.; Songia, P.; Massaiu, I.; Alfieri, V.; Valerio, V.; Moschetta, D.; Andreini, D.; Alamanni, F.; Pepi, M.; et al. Sex-specific differences in age-related aortic valve calcium load: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 61, 101077. [Google Scholar] [CrossRef] [PubMed]
- Basu, U.; Bostwick, A.M.; Das, K.; Dittenhafer-Reed, K.E.; Patel, S.S. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J. Biol. Chem. 2020, 295, 18406–18425. [Google Scholar] [CrossRef] [PubMed]
- Aryaman, J.; Johnston, I.G.; Jones, N.S. Mitochondrial heterogeneity. Front. Genet. 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Poulton, J.; Finsterer, J.; Yu-Wai-Man, P. Genetic counselling for maternally inherited mitochondrial disorders. Mol. Diagn. Ther. 2017, 21, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.B.; Turnbull, D.M.; Minczuk, M.; Gammage, P.A. Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Mol. Med. 2020, 26, 698–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.B.; Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 2015, 16, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Lobo-Jarne, T.; Ugalde, C. Respiratory chain supercomplexes: Structures, function and biogenesis. Semin. Cell Dev. Biol. 2018, 76, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Durand, A.; Duburcq, T.; Dekeyser, T.; Neviere, R.; Howsam, M.; Favory, R.; Preau, S. Involvement of mitochondrial disorders in septic cardiomyopathy. Oxid. Med. Cell. Longev. 2017, 2017, 4076348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belosludtsev, K.N.; Belosludtseva, N.V.; Dubinin, M.V. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int. J. Mol. Sci. 2020, 21, 6559. [Google Scholar] [CrossRef]
- Kim, H.-E.; Grant, A.R.; Simic, M.S.; Kohnz, R.A.; Nomura, D.K.; Durieux, J.; Riera, C.E.; Sanchez, M.; Kapernick, E.; Wolff, S.; et al. Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell 2016, 166, 1539–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 2018, 62, 341–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hattab, A.W.; Suleiman, J.; Almannai, M.; Scaglia, F. Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases. Mol. Genet. Metab. 2018, 125, 315–321. [Google Scholar] [CrossRef]
- Morales, P.E.; Arias-Durán, C.; Ávalos-Guajardo, Y.; Aedo, G.; Verdejo, H.E.; Parra, V.; Lavandero, S. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol. Asp. Med. 2020, 71, 100822. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.A.; Cicalese, S.; Preston, K.J.; Kawai, T.; Okuno, K.; Choi, E.T.; Kasahara, S.; Uchida, H.A.; Otaka, N.; Scalia, R.; et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc. Res. 2021, 117, 971–982. [Google Scholar] [CrossRef]
- Rusecka, J.; Kaliszewska, M.; Bartnik, E.; Tońska, K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J. Appl. Genet. 2018, 59, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Yapa, N.M.B.; Lisnyak, V.; Reljic, B.; Ryan, M.T. Mitochondrial dynamics in health and disease. FEBS Lett. 2021, 595, 1184–1204. [Google Scholar] [CrossRef]
- Ghezzi, D.; Zeviani, M. Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem. 2018, 62, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial diseases: Hope for the future. Cell 2020, 181, 168–188. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Zarante, A.M.; Almannai, M.; Scaglia, F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab. 2017, 122, 1–9. [Google Scholar] [CrossRef]
- Park, A.; Oh, M.; Lee, S.J.; Oh, K.-J.; Lee, E.-W.; Lee, S.C.; Bae, K.-H.; Han, B.S.; Kim, W.K. Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int. J. Mol. Sci. 2021, 22, 4793. [Google Scholar] [CrossRef]
- Singh, A.; Faccenda, D.; Campanella, M. Pharmacological advances in mitochondrial therapy. EBioMedicine 2021, 65, 103244. [Google Scholar] [CrossRef]
- Kowalska, M.; Piekut, T.; Prendecki, M.; Sodel, A.; Kozubski, W.; Dorszewska, J. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol. 2020, 39, 1410–1420. [Google Scholar] [CrossRef]
- DeBalsi, K.L.; Hoff, K.E.; Copeland, W.C. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res. Rev. 2017, 33, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Copeland, W.C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 2019, 15, 40–52. [Google Scholar] [CrossRef]
- Heidari, M.M.; Derakhshani, M.; Sedighi, F.; Foruzan-Nia, S.K. Mutation Analysis of the mitochondrial tRNA genes in iranian coronary atherosclerosis patients. Iran. J. Public Health 2017, 46, 1379–1385. [Google Scholar]
- Wang, Z.; Chen, H.; Qin, M.; Liu, C.; Ma, Q.; Chen, X.; Zhang, Y.; Lai, W.; Zhang, X.; Zhong, S. Associations of mitochondrial variants with lipidomic traits in a chinese cohort with coronary artery disease. Front. Genet. 2021, 12, 630359. [Google Scholar] [CrossRef]
- Heidari, M.M.; Mirfakhradini, F.S.; Tayefi, F.; Ghorbani, S.; Khatami, M.; Hadadzadeh, M. Novel point mutations in mitochondrial MT-CO2 gene may be risk factors for coronary artery disease. Appl. Biochem. Biotechnol. 2020, 191, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Xu, L.; Shen, J.; Wei, Y.; Xu, H.; Shi, J.; Jia, Z.; Zhao, X.; Liu, C.; Zhong, Q.; et al. Detecting rare variants and heteroplasmy of mitochondrial DNA from high-throughput sequencing in patients with coronary artery disease. Med. Sci. Monit. 2020, 26, e925401. [Google Scholar] [CrossRef] [PubMed]
- Vecoli, C.; Borghini, A.; Pulignani, S.; Mercuri, A.; Turchi, S.; Picano, E.; Andreassi, M.G. Independent and combined effects of telomere shortening and mtDNA4977 deletion on long-term outcomes of patients with coronary artery disease. Int. J. Mol. Sci. 2019, 20, 5508. [Google Scholar] [CrossRef] [Green Version]
- Vecoli, C.; Borghini, A.; Pulignani, S.; Mercuri, A.; Turchi, S.; Carpeggiani, C.; Picano, E.; Andreassi, M.G. Prognostic Value of mitochondrial DNA4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease. Atherosclerosis 2018, 276, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-B.; Cui, N.-H.; Liu, X.; Liu, X. Joint effects of mitochondrial DNA4977 deletion and serum folate deficiency on coronary artery disease in type 2 diabetes mellitus. Clin. Nutr. 2020, 39, 3771–3778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, M.; He, J.; Zhang, X.; Chen, Y.; Li, H. Maternally inherited coronary heart disease is associated with a novel mitochondrial tRNA Mutation. BMC Cardiovasc. Disord. 2019, 19, 293. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Peng, Q.; Lan, C.; Chi Liu, B. Variations in mitochondrial tRNAThr gene may not be associated with coronary heart disease. Mitochondrial DNA 2016, 27, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Hypertension—Key Facts. WHO Fact Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 23 November 2021).
- Zinner, S.H.; Levy, P.S.; Kass, E.H. Familial aggregation of blood pressure in childhood. N. Engl. J. Med. 1971, 284, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, M.; Li, H.; Wang, H.; Jiang, F.; Hou, L.; Geng, J.; Lin, Z.; Peng, Y.; Zhou, H.; et al. Mitochondrial tRNA mutations in 2070 chinese han subjects with hypertension. Mitochondrion 2016, 30, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Wang, X.; Ma, Q.; Zhu, C.; Li, Z.; Yin, T.; Yang, J.; Chen, Y.; Guan, M. Mitochondrial tRNA mutations in chinese hypertensive individuals. Mitochondrion 2016, 28, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, X.; Li, H.; Zhu, C.; Li, Y.; Liu, Y. Mitochondrial genome mutations in 13 subunits of respiratory chain complexes in chinese han and mongolian hypertensive individuals. Mitochondrial DNA Part A 2018, 29, 1090–1099. [Google Scholar] [CrossRef]
- Yang, Q.; Kim, S.K.; Sun, F.; Cui, J.; Larson, M.G.; Vasan, R.S.; Levy, D.; Schwartz, F. Maternal influence on blood pressure suggests involvement of mitochondrial DNA in the pathogenesis of hypertension: The framingham heart study. J. Hypertens. 2007, 25, 2067–2073. [Google Scholar] [CrossRef]
- Weiwei, C.; Runlin, G.; Lisheng, L.; Manlu, Z.; Wen, W.; Yongjun, W.; Zhaosu, W.; Huijun, L.; Zhe, Z.; Lixin, J.; et al. Outline of the report on cardiovascular diseases in China, 2014. Eur. Heart J. Suppl. 2016, 18, F2–F11. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; You, J.; Xu, C.; Gu, X. Associations of mitochondrial DNA 3777–4679 region mutations with maternally inherited essential hypertensive subjects in China. BMC Med. Genet. 2020, 21, 105. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, X.; Xu, C. Mitochondrial DNA 7908–8816 region mutations in maternally inherited essential hypertensive subjects in China. BMC Med. Genom. 2018, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Gu, X.; Xu, C. A Mitochondrial DNA A8701G mutation associated with maternally inherited hypertension and dilated cardiomyopathy in a chinese pedigree of a consanguineous marriage. Chin. Med. J. 2016, 129, 259–266. [Google Scholar] [CrossRef]
- Lin, L.; Cui, P.; Qiu, Z.; Wang, M.; Yu, Y.; Wang, J.; Sun, Q.; Zhao, H. The mitochondrial tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be associated with hypertension in a chinese family. Exp. Ther. Med. 2018, 17, 1855–1862. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Yuan, Y.; Bi, R. Mitochondrial DNA mutation m.5512A > G in the acceptor-stem of mitochondrial tRNATrp causing maternally inherited essential hypertension. Biochem. Biophys. Res. Commun. 2016, 479, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, L.; Yuan, Y.; Liang, X.-Y.; Bi, R. Co-occurrence of m.15992A>G and m.15077G>A is associated with a high penetrance of maternally inherited hypertension in a chinese pedigree. Am. J. Hypertens. 2021, 36, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yu, J.; Guo, Q.; Gao, B.; Huang, J. Molecular characterization of two chinese pedigrees with maternally inherited hypertension. J. Gene Med. 2021, 23, e3328. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, M.; Xue, L.; Lin, Z.; He, Q.; Shi, W.; Chen, Y.; Jin, X.; Li, H.; Jiang, P.; et al. A hypertension-associated mitochondrial DNA mutation alters the tertiary interaction and function of tRNALeu(UUR). J. Biol. Chem. 2017, 292, 13934–13946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Ma, Q.; Lan, Y.; Chen, Y.; Ma, S.; Li, J.; Liu, C.; Fu, Z.; Lu, X.; Huang, Y.; et al. Mitochondrial tRNA mutation and regulation of the adiponectin pathway in maternally inherited hypertension in chinese han. Front. Cell Dev. Biol. 2021, 8, 623450. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, X.; Huang, H.; Liu, W. The mitochondrial tRNAAla T5655C mutation may modulate the phenotypic expression of tRNAMet and tRNAGln A4401G mutation in a han chinese family with essential hypertension. Int. Heart J. 2017, 58, 95–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Wu, P.; Liu, X.; Feng, J.; Zheng, S.; Wang, Y.; Fan, Z. Mitochondrial tRNASer(UCN) 7471delC may be a novel mutation associated with maternally transmitted hypertension. Ir. J. Med. Sci. 2020, 189, 489–496. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhu, C.; Tian, L.; Guan, M.; Chen, Y. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNAMet 4467 C>A mutation in a han chinese family with maternally inherited hypertension. Sci. Rep. 2017, 7, 3034. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Y.; Xu, B.; Cai, Z.; Wang, L.; Tian, J.; Liu, Y.; Li, Y. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA Ile A4263G mutation. Int. J. Biochem. Cell Biol. 2016, 78, 307–314. [Google Scholar] [CrossRef]
- Li, H.; Geng, J.; Yu, H.; Tang, X.; Yang, X.; Xue, L. Mitochondrial tRNAThr 15909A>G mutation associated with hypertension in a chinese han pedigree. Biochem. Biophys. Res. Commun. 2018, 495, 574–581. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Z.; Lin, W.; Gao, R.; Chen, C.; Xu, J. Molecular characterization of a pedigree carrying the hypertension-associated mitochondrial tRNAGln T4363C mutation. Mol. Med. Rep. 2017, 16, 6029–6033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.; Li, S.; Liu, C.; Zha, Z.; Wei, X.; Yuan, Y. Mitochondrial tRNAAla C5601T mutation may modulate the clinical expression of tRNAMet A4435G mutation in a han chinese family with hypertension. Clin. Exp. Hypertens. 2018, 40, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Brugada, P.; Brugada, J. Right Bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome. J. Am. Coll. Cardiol. 1992, 20, 1391–1396. [Google Scholar] [CrossRef]
- Gourraud, J.-B.; Barc, J.; Thollet, A.; Le Marec, H.; Probst, V. Brugada syndrome: Diagnosis, risk stratification and management. Arch. Cardiovasc. Dis. 2017, 110, 188–195. [Google Scholar] [CrossRef]
- Chen, C.; Tan, Z.; Zhu, W.; Fu, L.; Kong, Q.; Xiong, Q.; Yu, J.; Hong, K.; Fu, L. Brugada syndrome with SCN5A mutations exhibits more pronounced electrophysiological defects and more severe prognosis: A meta-analysis. Clin. Genet. 2020, 97, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijeyeratne, Y.D.; Tanck, M.W.; Mizusawa, Y.; Batchvarov, V.; Barc, J.; Crotti, L.; Bos, J.M.; Tester, D.J.; Muir, A.; Veltmann, C.; et al. SCN5A mutation type and a genetic risk score associate variably with brugada syndrome phenotype in SCN5A families. Circ: Genom. Precis. Med. 2020, 13, e002911. [Google Scholar] [CrossRef]
- Monasky, M.M.; Micaglio, E.; Ciconte, G.; Pappone, C. Brugada syndrome: Oligogenic or mendelian disease? Int. J. Mol. Sci. 2020, 21, 1687. [Google Scholar] [CrossRef] [Green Version]
- Brugada, R.; Campuzano, O.; Sarquella-Brugada, G.; Brugada, J.; Brugada, P. Brugada syndrome. Methodist DeBakey Cardiovasc. J. 2014, 10, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, L.; Polidori, E.; Potenza, L.; Rocchi, M.B.L.; Calcabrini, C.; Busacca, P.; Capalbo, M.; Potenza, D.; Amati, F.; Mango, R.; et al. Mutational analysis of mitochondrial DNA in brugada syndrome. Cardiovasc. Pathol. 2016, 25, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Tafti, M.F.; Khatami, M.; Rezaei, S.; Heidari, M.M.; Hadadzadeh, M. Novel and heteroplasmic mutations in mitochondrial tRNA genes in brugada syndrome. Cardiol. J. 2018, 25, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurford, R.; Sekhar, A.; Hughes, T.A.T.; Muir, K.W. Diagnosis and management of acute ischaemic stroke. Pract. Neurol. 2020, 20, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-L.; Mukda, S.; Chen, S.-D. Diverse roles of mitochondria in ischemic stroke. Redox. Biol. 2018, 16, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Umbria, M.; Ramos, A.; Aluja, M.P.; Santos, C. The role of control region mitochondrial DNA mutations in cardiovascular disease: Stroke and myocardial infarction. Sci. Rep. 2020, 10, 2766. [Google Scholar] [CrossRef] [Green Version]
- Luan, Y.; Yang, D.; Zhang, Z.; Bie, X.; Zhao, H.; Wang, Y.; Liu, Y.; Yang, S.; Zhou, B.; Xu, Y.; et al. Association study between genetic variation in whole mitochondrial genome and ischemic stroke. J. Mol. Neurosci. 2021, 71, 2152–2162. [Google Scholar] [CrossRef]
- Watson, B.; Khan, M.A.; Desmond, R.A.; Bergman, S. Mitochondrial DNA mutations in black americans with hypertension-associated end-stage renal disease. Am. J. Kidney Dis. 2001, 38, 529–536. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, C.-H.; Kuo, H.-C.; Ro, L.-S.; Liou, C.-W.; Wei, Y.-H.; Huang, C.-C. Prognosis of symptomatic patients with the A3243G mutation of mitochondrial DNA. J. Formos. Med. Assoc. 2012, 111, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Baccarelli, A.A.; Byun, H.-M. Platelet mitochondrial DNA methylation: A potential new marker of cardiovascular disease. Clin. Epigenet. 2015, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Corsi, S.; Iodice, S.; Vigna, L.; Cayir, A.; Mathers, J.C.; Bollati, V.; Byun, H.-M. Platelet mitochondrial DNA methylation predicts future cardiovascular outcome in adults with overweight and obesity. Clin. Epigenetics 2020, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Byun, H.-M.; Colicino, E.; Trevisi, L.; Fan, T.; Christiani, D.C.; Baccarelli, A.A. Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of Heart Rate Variability. J. Am. Heart Assoc. 2016, 5, e003218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, B.G.; Byun, H.-M.; Gyselaers, W.; Lefebvre, W.; Baccarelli, A.A.; Nawrot, T.S. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics 2015, 10, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Bordoni, L.; Sawicka, A.K.; Szarmach, A.; Winklewski, P.J.; Olek, R.A.; Gabbianelli, R. A pilot study on the effects of l-carnitine and trimethylamine-n-oxide on platelet mitochondrial DNA methylation and CVD biomarkers in aged women. Int. J. Mol. Sci. 2020, 21, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beetch, M.; Harandi-Zadeh, S.; Shen, K.; Lubecka, K.; Kitts, D.D.; O’Hagan, H.M.; Stefanska, B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br. J. Pharmacol. 2020, 177, 1382–1408. [Google Scholar] [CrossRef] [Green Version]
- Westerman, K.E.; Ordovás, J.M. DNA methylation and incident cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mei, J.; Li, J.; Zhang, Y.; Zhou, Q.; Xu, F. DNA methylation in atherosclerosis: A new perspective. Evid.-Based Complement Alternat. Med. 2021, 2021, 6623657. [Google Scholar] [CrossRef]
- Frazier, A.E.; Thorburn, D.R.; Compton, A.G. Mitochondrial energy generation disorders: Genes, mechanisms, and clues to pathology. J. Biol. Chem. 2019, 294, 5386–5395. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, D.; Thrush, A.B.; Nguygen, M.-A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-MiR33 in atherosclerosis. Circ. Res. 2015, 117, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Wu, J.; Sun, H. CoenzymeQ10-induced activation of AMPK-YAP-OPA1 pathway alleviates atherosclerosis by improving mitochondrial function, inhibiting oxidative stress and promoting energy metabolism. Front. Pharmacol. 2020, 11, 1034. [Google Scholar] [CrossRef]
- Sun, Y.; Rawish, E.; Nording, H.M.; Langer, H.F. Inflammation in metabolic and cardiovascular disorders-role of oxidative stress. Life 2021, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Peng, R.; Jin, L.; Ma, J.; Yang, Q.; Sun, D.; Wu, W. Recent advances in ROS-sensitive nano-formulations for atherosclerosis applications. Pharmaceutics 2021, 13, 1452. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Fettermann, A.; Li, Z.; Qian, Y.; Liu, Y.; Wang, X.; Zhou, A.; Mo, J.Q.; Yang, L.; et al. Maternally Inherited Essential Hypertension Is Associated With the Novel 4263A>G Mutation in the Mitochondrial tRNAIle gene in a large han chinese family. Circ. Res. 2011, 108, 862–870. [Google Scholar] [CrossRef] [Green Version]
- Boczonadi, V.; Meyer, K.; Gonczarowska-Jorge, H.; Griffin, H.; Roos, A.; Bartsakoulia, M.; Bansagi, B.; Ricci, G.; Palinkas, F.; Zahedi, R.P.; et al. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum. Mol. Genet. 2018, 27, 2187–2204. [Google Scholar] [CrossRef]
- Modesti, L.; Danese, A.; Vitto, V.A.M.; Ramaccini, D.; Aguiari, G.; Gafà, R.; Lanza, G.; Giorgi, C.; Pinton, P. Mitochondrial Ca2+ signaling in health, disease and therapy. Cells 2021, 10, 1317. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell. Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Chaanine, A.H.; Gordon, R.E.; Kohlbrenner, E.; Benard, L.; Jeong, D.; Hajjar, R.J. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: Mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ. Heart Fail. 2013, 6, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Chaanine, A.H.; Kohlbrenner, E.; Gamb, S.I.; Guenzel, A.J.; Klaus, K.; Fayyaz, A.U.; Nair, K.S.; Hajjar, R.J.; Redfield, M.M. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am. J. Physiol.-Heart Circ. Physiol. 2016, 311, H1540–H1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanks, J.; Herring, N.; Johnson, E.; Liu, K.; Li, D.; Paterson, D.J. Overexpression of sarcoendoplasmic reticulum calcium ATPase 2a promotes cardiac sympathetic neurotransmission via abnormal endoplasmic reticulum and mitochondria Ca2+ regulation. Hypertension 2017, 69, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zheng, S.; Leng, J.; Wang, S.; Zhao, T.; Liu, J. Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy. Neurosci. Lett. 2016, 628, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ashar, F.N.; Moes, A.; Moore, A.Z.; Grove, M.L.; Chaves, P.H.M.; Coresh, J.; Newman, A.B.; Matteini, A.M.; Bandeen-Roche, K.; Boerwinkle, E.; et al. Association of mitochondrial DNA levels with frailty and all-cause mortality. J. Mol. Med. 2015, 93, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Mengel-From, J.; Thinggaard, M.; Dalgård, C.; Kyvik, K.O.; Christensen, K.; Christiansen, L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Qual. Life Res. 2014, 133, 1149–1159. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-P.; Cheng, K.; Ning, M.-A.; Li, H.-H.; Wang, H.-C.; Li, F.; Chen, S.-Y.; Qu, F.-L.; Guo, W.-Y. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis 2017, 261, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Koller, A.; Fazzini, F.; Lamina, C.; Rantner, B.; Kollerits, B.; Stadler, M.; Klein-Weigel, P.; Fraedrich, G.; Kronenberg, F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J. Intern. Med. 2020, 287, 569–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, P.; Jing, S.; Liu, L.; Ma, F.; Zhang, Y.; Wang, C.; Duan, H.; Zhou, K.; Hua, Y.; Wu, G.; et al. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS ONE 2018, 13, e0206003. [Google Scholar] [CrossRef]
- Zhang, Y.; Guallar, E.; Ashar, F.N.; Longchamps, R.J.; Castellani, C.A.; Lane, J.; Grove, M.L.; Coresh, J.; Sotoodehnia, N.; Ilkhanoff, L.; et al. Association between mitochondrial DNA copy number and sudden cardiac death: Findings from the atherosclerosis risk in communities study (ARIC). Eur. Heart J. 2017, 38, 3443–3448. [Google Scholar] [CrossRef] [PubMed]
- Ashar, F.N.; Zhang, Y.; Longchamps, R.J.; Lane, J.; Moes, A.; Grove, M.L.; Mychaleckyj, J.C.; Taylor, K.D.; Coresh, J.; Rotter, J.I.; et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017, 2, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
Mutation | Gene | Other Notes | References | |
---|---|---|---|---|
Mt5568 (A > G) | tRNATrp | Iranian CAD Patients | [34] | |
Mt5711 (T > A) | tRNAAsn | |||
Mt5725 (T > G) | tRNAAsn | |||
Mt12308 (A > G) | tRNALeu (CUN) | |||
Mt16089 (T > C) | D-loop | TG | Association with CVD risk factors in Chinese Han CAD patients | [35] |
Mt16145 (G > A) | D-loop | TG; LVEF | ||
Mt16089 (T > C) | D-loop | PC | ||
Mt14178 (T > C) | MT-ND6 | TC | ||
Mt215 (A > G) | D-loop | LDLC | ||
Mt8231 (C > A) | MT-CO2 | Iranian CAD Patients | [36] | |
Mt8376 (T > A) | MT-ATP8 | |||
Mt15928 (G > A) | tRNAThr | |||
Mt5628 (T > C) | tRNAAla | Chinese CAD patients | [37] | |
Mt681 (T > C) | 12S rRNA | |||
Mt5592 (A > G) | tRNAAla | |||
mtDNA4977 Deletion | Alone or in combination with LTL associated with recurrent MACEs and all-cause mortality in Caucasian CAD patients | [38] | ||
Associated with MACEs and all-cause mortality in Italian CAD patients | [39] | |||
In combination with low folate level associated with high CAD risk among Chinese diabetic patients | [40] | |||
Mt15910 (C > T) | tRNAThr | Han Chinese patients withLHON, signs of maternally inherited CHD | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabravolski, S.A.; Khotina, V.A.; Sukhorukov, V.N.; Kalmykov, V.A.; Mikhaleva, L.M.; Orekhov, A.N. The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 952. https://doi.org/10.3390/ijms23020952
Dabravolski SA, Khotina VA, Sukhorukov VN, Kalmykov VA, Mikhaleva LM, Orekhov AN. The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. International Journal of Molecular Sciences. 2022; 23(2):952. https://doi.org/10.3390/ijms23020952
Chicago/Turabian StyleDabravolski, Siarhei A., Victoria A. Khotina, Vasily N. Sukhorukov, Vladislav A. Kalmykov, Liudmila M. Mikhaleva, and Alexander N. Orekhov. 2022. "The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases" International Journal of Molecular Sciences 23, no. 2: 952. https://doi.org/10.3390/ijms23020952
APA StyleDabravolski, S. A., Khotina, V. A., Sukhorukov, V. N., Kalmykov, V. A., Mikhaleva, L. M., & Orekhov, A. N. (2022). The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. International Journal of Molecular Sciences, 23(2), 952. https://doi.org/10.3390/ijms23020952