Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models
Abstract
:1. Introduction
Biology of Palate Development
2. Development of the Mandible
3. Orofacial Cleft—Clinical Features and Manifestations
4. Mandibular Prognathism (MP)—Clinical Features and Manifestation
5. Mandibular Prognathism—Genetic Background
6. Contribution of Animal Models in Orofacial Clefting Research
6.1. Zebrafish
6.1.1. crispld2
6.1.2. hdac4
6.1.3. Non-Canonical WNT Signaling
6.1.4. irf6
6.1.5. Hypoxia
6.2. Mice
6.2.1. Retinoic Acid
6.2.2. Esrp1
6.2.3. Sonic Hedgehog Signaling
6.2.4. Pbx1/Pbx2/Pbx3
6.2.5. Tbx1/Tbx3
6.3. Chicken
6.3.1. Coloboma Mutant
6.3.2. Cleft Primary Palate Mutant
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Q.; Li, L.; Jin, C.; Lee, J.-M.; Jung, H.-S. Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation. Cell Tissue Res. 2015, 361, 857–868. [Google Scholar] [CrossRef]
- Manlove, A.E.; Romeo, G.; Venugopalan, S.R. Craniofacial Growth: Current Theories and Influence on Management. Oral Maxillofac. Surg. Clin. N. Am. 2020, 32, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Shkoukani, M.A.; Lawrence, L.A.; Liebertz, D.J.; Svider, P.F. Cleft palate: A clinical review. Birth Defects Res. Part. C Embryo Today Rev. 2014, 102, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Woon, S.C.; Thiruvenkatachari, B. Early orthodontic treatment for Class III malocclusion: A systematic review and meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 28–52. [Google Scholar] [CrossRef]
- Leslie, E.J.; Marazita, M.L. Genetics of cleft lip and cleft palate. Am. J. Med. Genet. Part C Semin. Med. Genet. 2013, 163, 246–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.; Cs, P.; Srinath, N.M. Genetic Factors in Nonsyndromic Orofacial Clefts. Glob. Med. Genet. 2020, 07, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Doraczynska-Kowalik, A.; Nelke, K.H.; Pawlak, W.; Sasiadek, M.; Gerber, H. Genetic Factors Involved in Mandibular Prognathism. J. Craniofacial Surg. 2017, 28, e422–e431. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.O.; Jiang, R. Palatogenesis: Morphogenetic and molecular mechanisms of secondary palate development. Development 2012, 139, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Mao, J.; Tenzen, T.; Kottmann, A.H.; McMahon, A.P. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 2004, 18, 937–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, Y.; Jiang, R. Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development 2009, 136, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Zhang, N.; Liu, H.; Xu, J.; Jiang, R. Golgb1 regulates protein glycosylation and is crucial for mammalian palate development. Development 2016, 143, 2344–2355. [Google Scholar] [CrossRef] [Green Version]
- Chiquet, M.; Blumer, S.; Angelini, M.; Mitsiadis, T.A.; Katsaros, C. Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns. Front. Physiol. 2016, 7, 392. [Google Scholar] [CrossRef] [Green Version]
- Nik, A.M.; Johansson, J.A.; Ghiami, M.; Reyahi, A.; Carlsson, P. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme. Dev. Biol. 2016, 415, 14–23. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Lan, Y.; Jia, S.; Jiang, R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013, 140, 4709–4718. [Google Scholar] [CrossRef] [Green Version]
- Almaidhan, A.; Cesario, J.; Malt, A.L.; Zhao, Y.; Sharma, N.; Choi, V.; Jeong, J. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. BMC Dev. Biol. 2014, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Xiong, W.; Yu, X.; Espinoza-Lewis, R.; Liu, C.; Gu, S.; Nishita, M.; Suzuki, K.; Yamada, G.; Minami, Y.; et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 2008, 135, 3871–3879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrard-Janvid, M.; Leslie, E.J.; Kousa, Y.A.; Smith, T.L.; Dunnwald, M.; Magnusson, M.; Lentz, B.A.; Unneberg, P.; Fransson, I.; Koillinen, H.K.; et al. Dominant Mutations in GRHL3 Cause van der Woude Syndrome and Disrupt Oral Periderm Development. Am. J. Hum. Genet. 2014, 94, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, B.; Dixon, J.; Malhotra, S.; Hardman, M.; Knowles, L.; Boot-Handford, R.; Shore, P.; Whitmarsh, A.; Dixon, M.J. Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat. Genet. 2006, 38, 1329–1334. [Google Scholar] [CrossRef]
- Ingraham, C.R.; Kinoshita, A.; Kondo, S.; Yang, B.; Sajan, S.; Trout, K.J.; Malik, M.I.; Dunnwald, M.; Goudy, S.L.; Lovett, M.; et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat. Genet. 2006, 38, 1335–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, L.M.; Lan, Y.; Cho, E.-S.; Maltby, K.M.; Gridley, T.; Jiang, R. Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Dev. Dyn. 2006, 235, 1830–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kousa, Y.A.; Schutte, B.C. Toward an orofacial gene regulatory network. Dev. Dyn. 2015, 245, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B.; Hammond, N.L.; Coulombe, P.A.; Saloranta, C.; Nousiainen, H.O.; Salonen, R.; Berry, A.J.; Hanley, N.; Headon, D.; Karikoski, R.; et al. Periderm prevents pathological epithelial adhesions during embryogenesis. J. Clin. Investig. 2014, 124, 3891–3900. [Google Scholar] [CrossRef] [Green Version]
- Nawshad, A. Palatal seam disintegration: To die or not to die? that is no longer the question. Dev. Dyn. 2008, 237, 2643–2656. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Li, X.; McEvilly, R.J.; Rosenfeld, M.G.; Lufkin, T.; Rubenstein, J.L.R. Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs. Development 2008, 135, 2905–2916. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, H.; Lan, Y.; Adam, M.; E Clouthier, D.; Potter, S.; Jiang, R. Hedgehog signaling patterns the oral-aboral axis of the mandibular arch. eLife 2019, 8, e40315. [Google Scholar] [CrossRef]
- Billmyre, K.K.; Klingensmith, J. Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev. Dyn. 2015, 244, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wlodarczyk, B.J.; Niederreither, K.; Venugopalan, S.; Florez, S.; Finnell, R.; Amendt, B.A. Fuz Regulates Craniofacial Development through Tissue Specific Responses to Signaling Factors. PLoS ONE 2011, 6, e24608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada, C.; Chai, Y. Mandible and Tongue Development. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 115, pp. 31–58. [Google Scholar]
- Yang, R.-T.; Zhang, C.; Liu, Y.; Zhou, H.-H.; Li, Z.-B. Autophagy Prior to Chondrocyte Cell Death During the Degeneration of Meckel’s Cartilage. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Tsuzurahara, F.; Soeta, S.; Kawawa, T.; Baba, K.; Nakamura, M. The role of macrophages in the disappearance of Meckel’s cartilage during mandibular development in mice. Acta Histochem. 2011, 113, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Sugito, H.; Shibukawa, Y.; Kinumatsu, T.; Yasuda, T.; Nagayama, M.; Yamada, S.; Minugh-Purvis, N.; Pacifici, M.; Koyama, E. Ihh Signaling Regulates Mandibular Symphysis Development and Growth. J. Dent. Res. 2011, 90, 625–631. [Google Scholar] [CrossRef]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef]
- Marazita, M.L. The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate. Annu. Rev. Genom. Hum. Genet. 2012, 13, 263–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starbuck, J.M.; Ghoneima, A.; Kula, K. A Multivariate Analysis of Unilateral Cleft Lip and Palate Facial Skeletal Morphology. J. Craniofacial Surg. 2015, 26, 1673–1678. [Google Scholar] [CrossRef]
- Gritli-Linde, A. Chapter 2 The Etiopathogenesis of Cleft Lip and Cleft Palate. Curr. Top. Dev. Biol. 2008, 84, 37–138. [Google Scholar] [CrossRef]
- Wantia, N.; Rettinger, G. The Current Understanding of Cleft Lip Malformations. Facial Plast. Surg. 2002, 18, 147–154. [Google Scholar] [CrossRef]
- Gritli-Linde, A. Molecular control of secondary palate development. Dev. Biol. 2007, 301, 309–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shkoukani, M.A.; Echen, M.; Evong, A. Cleft Lip–A Comprehensive Review. Front. Pediatr. 2013, 1, 53. [Google Scholar] [CrossRef]
- Vermeij-Keers, C.; Rozendaal, A.M.; Luijsterburg, A.J.M.; Latief, B.S.; Lekkas, C.; Kragt, L.; Ongkosuwito, E.M. Subphenotyping and Classification of Cleft Lip and Alveolus in Adult Unoperated Patients. Cleft Palate-Craniofacial J. 2018, 55, 1267–1276. [Google Scholar] [CrossRef]
- Alighieri, C.; Bettens, K.; Bonte, K.; Roche, N.; van Lierde, K. Oral habits in Children with Cleft (Lip and) Palate: A Pilot Study. Folia Phoniatr. Logop. 2019, 71, 191–196. [Google Scholar] [CrossRef]
- Duarte, G.A.; Ramos, R.B.; Cardoso, M.C.D.A.F. Feeding methods for children with cleft lip and/or palate: A systematic review. Braz. J. Otorhinolaryngol. 2016, 82, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgievska-Jancheska, T. The Relationship between the Type of Cleft and Nasal Air Emission in Speech of Children with Cleft Palate or Cleft Lip and Palate. Open Access Maced. J. Med. Sci. 2019, 7, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, D. Genomic expression in non syndromic cleft lip and palate patients: A review. J. Oral Biol. Craniofacial Res. 2015, 5, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Diah, E.; Lo, L.-J.; Huang, C.-S.; Sudjatmiko, G.; Susanto, I.; Chen, Y.-R. Maxillary growth of adult patients with unoperated cleft: Answers to the debates. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 407–413. [Google Scholar] [CrossRef]
- Van Dyck, J.; Pérula, M.C.D.L.; Willems, G.; Verdonck, A. Dental development in cleft lip and palate patients: A systematic review. Forensic Sci. Int. 2019, 300, 63–74. [Google Scholar] [CrossRef]
- Saleem, K.; Zaib, T.; Sun, W.; Fu, S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Heliyon 2019, 5, e03019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, S.S.; Kohli, V.S. A comprehensive review of the genetic basis of cleft lip and palate. J. Oral Maxillofac. Pathol. 2012, 16, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuppia, L.; Capogreco, M.; Marzo, G.; La Rovere, D.; Antonucci, I.; Gatta, V.; Palka, G.; Mortellaro, C.; Tetè, S. Genetics of Syndromic and Nonsyndromic Cleft Lip and Palate. J. Craniofacial Surg. 2011, 22, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, A.C.; Gölz, L.; Kreusch, T.; Kramer, F.-J.; Pötzsch, B.; Nöthen, M.M.; Jäger, A.; Mangold, E.; Knapp, M.; Ludwig, K.U. Investigation of dominant and recessive inheritance models in genome-wide association studies data of nonsyndromic cleft lip with or without cleft palate. Birth Defects Res. 2018, 110, 336–341. [Google Scholar] [CrossRef]
- Marazita, M.L.; Field, L.L.; Cooper, M.E.; Tobias, R.; Maher, B.S.; Peanchitlertkajorn, S.; Liu, Y.-E. Genome Scan for Loci Involved in Cleft Lip With or Without Cleft Palate, in Chinese Multiplex Families. Am. J. Hum. Genet. 2002, 71, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, E.; Yeh, R.-F.; Oberoi, S.; Vargervik, K.; Slavotinek, A. Cleft lip with or without cleft palate: Frequency in different ethnic populations from the UCSF craniofacial clinic. Am. J. Med. Genet. Part A 2007, 143A, 2347–2351. [Google Scholar] [CrossRef]
- Ural, A.; Bilgen, F.; Çakmakli, S.; Bekerecioğlu, M. van der Woude Syndrome With a Novel Mutation in the IRF6 Gene. J. Craniofacial Surg. 2019, 30, e465–e467. [Google Scholar] [CrossRef]
- Venkatesh, R. Syndromes and anomalies associated with cleft. Indian J. Plast. Surg. 2009, 42, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Sawh-Martinez, R.; Forte, A.J.; Wu, R.; Cabrejo, R.; Wilson, A.; Steinbacher, D.M.; Alperovich, M.; Alonso, N.; Persing, J.A. Classification of Subtypes of Apert Syndrome, Based on the Type of Vault Suture Synostosis. Plast. Reconstr. Surg.-Glob. Open 2019, 7, e2158. [Google Scholar] [CrossRef]
- Jackson, O.A.; Kaye, A.E.; Lee, A.; Minugh-Purvis, N.; Cohen, M.A.; Solot, C.B.; McDonald-McGinn, D.; Jawad, A.F.; Zackai, E.H.; Kirschner, R.E. Orofacial Manifestations of Stickler Syndrome. Ann. Plast. Surg. 2020, 84, 665–671. [Google Scholar] [CrossRef]
- Da Silva, P.C.V.; Rangel, P.; Couto, A., Jr. Waardenburg tipo I: Relato de caso. Arq. Bras. Oftalmol. 2011, 74, 209–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidral, A.C.; Murray, J.C. Genetic approaches to identify disease genes for birth defects with cleft lip/palate as a model. Birth Defects Res. Part A Clin. Mol. Teratol. 2004, 70, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Van den Boogaard, M.-J.H.V.D.; Dorland, M.; Beemer, F.A.; van Amstel, H.K.P. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat. Genet. 2000, 24, 342–343. [Google Scholar] [CrossRef]
- Suzuki, K.; Hu, D.; Bustos, T.; Zlotogora, J.; Richieri-Costa, A.; Helms, J.A.; Spritz, R.A. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palate-ectodermal dysplasia. Nat. Genet. 2000, 25, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.J.; Koboldt, D.C.; Kang, C.J.; Ma, L.; Hecht, J.T.; Wehby, G.L.; Christensen, K.; Czeizel, A.E.; Deleyiannis, F.W.-B.; Fulton, R.S.; et al. IRF6 mutation screening in non-syndromic orofacial clefting: Analysis of 1521 families. Clin. Genet. 2015, 90, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, M.; Zhong, W.; Zhang, J.; Huang, W.; Zhang, Y.; Li, W.; Jia, P.; Zhang, T.; Liu, Z.; et al. A novel IRF6 mutation causing non-syndromic cleft lip with or without cleft palate in a pedigree. Mutagenesis 2018, 33, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Nasser, E.; Mangold, E.; Tradowsky, D.C.; Fier, H.; Becker, J.; Boehmer, A.C.; Herberz, R.; Fricker, N.; Barth, S.; Wahle, P.; et al. Resequencing ofVAX1in patients with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 925–933. [Google Scholar] [CrossRef]
- Dai, J.; Xu, C.; Wang, G.; Liang, Y.; Wan, T.; Zhang, Y.; Xu, X.; Yu, L.; Che, Z.; Han, Q.; et al. Novel TBX22 mutations in Chinese nonsyndromic cleft lip/palate families. J. Genet. 2018, 97, 411–417. [Google Scholar] [CrossRef]
- Obermair, F.; Rammer, M.; Burghofer, J.; Malli, T.; Schossig, A.; Wimmer, K.; Kranewitter, W.; Mayrbaeurl, B.; Duba, H.-C.; Webersinke, G. Cleft lip/palate and hereditary diffuse gastric cancer: Report of a family harboring a CDH1 c.687 + 1G > A germline mutation and review of the literature. Fam. Cancer 2018, 18, 253–260. [Google Scholar] [CrossRef]
- Filho, O.G.D.S.; Santamaria, M.; Dalben, G.D.S.; Semb, G. Prevalence of a Simonart’s Band in Patients with Complete Cleft Lip and Alveolus and Complete Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2006, 43, 442–445. [Google Scholar] [CrossRef]
- Arosarena, O.A. Cleft Lip and Palate. Otolaryngol. Clin. N. Am. 2007, 40, 27–60. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.R.; Meara, J.G.; Mulliken, J.B. The Philtrum in Cleft Lip. J. Craniofacial Surg. 2014, 25, 9–13. [Google Scholar] [CrossRef]
- Barillas, I.; Dec, W.; Warren, S.M.; Cutting, C.B.; Grayson, B.H. Nasoalveolar Molding Improves Long-Term Nasal Symmetry in Complete Unilateral Cleft Lip–Cleft Palate Patients. Plast. Reconstr. Surg. 2009, 123, 1002–1006. [Google Scholar] [CrossRef]
- Li, A.-Q.; Sun, Y.-G.; Wang, G.-H.; Zhong, Z.-K.; Cutting, C. Anatomy of the Nasal Cartilages of the Unilateral Complete Cleft Lip Nose. Plast. Reconstr. Surg. 2002, 109, 1835–1838. [Google Scholar] [CrossRef]
- Monroy, P.L.C.; Grefte, S.; Kuijpers-Jagtman, A.M.; Wagener, F.A.; Hoff, J.W.V.D. Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair. Tissue Eng. Part B Rev. 2012, 18, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raina, P.; Kulkarni, N.; Shah, R. A comparative study of sagittal dental relationship using digital method of bite mark evaluation. J. Forensic Dent. Sci. 2019, 11, 125–132. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Ye, X.; Taub, P.J. Review of the Genetic Basis of Jaw Malformations. J. Pediatr. Genet. 2016, 5, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-P.; Tseng, Y.-C.; Chang, H.-F. Treatment of Mandibular Prognathism. J. Formos. Med. Assoc. 2006, 105, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Kantaputra, P.N.; Pruksametanan, A.; Phondee, N.; Hutsadaloi, A.; Intachai, W.; Kawasaki, K.; Ohazama, A.; Ngamphiw, C.; Tongsima, S.; Cairns, J.R.K.; et al. ADAMTSL1 and mandibular prognathism. Clin. Genet. 2019, 95, 507–515. [Google Scholar] [CrossRef]
- Sun, R.; Wang, Y.; Jin, M.; Chen, L.; Cao, Y.; Chen, F. Identification and Functional Studies of MYO1H for Mandibular Prognathism. J. Dent. Res. 2018, 97, 1501–1509. [Google Scholar] [CrossRef]
- Tassopoulou-Fishell, M.; Deeley, K.; Harvey, E.M.; Sciote, J.; Vieira, A.R. Genetic variation in Myosin 1H contributes to mandibular prognathism. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-M.; Chen, M.Y.-C.; Cheng, J.-H.; Chen, K.-J.; Tseng, Y.-C. Facial profile and frontal changes after bimaxillary surgery in patients with mandibular prognathism. J. Formos. Med. Assoc. 2018, 117, 632–639. [Google Scholar] [CrossRef]
- Chen, C.-M.; Lai, S.; Lee, H.-E.; Chen, K.-K.; Hsu, K.-J. Soft-tissue profile changes after orthognathic surgery of mandibular prognathism. Kaohsiung J. Med. Sci. 2012, 28, 216–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.-T.; Huang, C.-S.; Lo, L.-J. Improvement of Chin Profile after Mandibular Setback and Reduction Genioplasty for Correction of Prognathism and Long Chin. Aesthetic Plast. Surg. 2012, 36, 1198–1206. [Google Scholar] [CrossRef]
- Lee, Y.T.; Chen, M.C.; Chen, H.L.; Wu, C.B. Vertical skeletal and facial profile changes after surgical correction of mandibular prognathism. Chang. Gung Med. J. 2009, 32, 320–329. [Google Scholar] [PubMed]
- Molina-Berlanga, N.; Llopis-Perez, J.; Flores-Mir, C.; Puigdollers, A. Lower incisor dentoalveolar compensation and symphysis dimensions among Class I and III malocclusion patients with different facial vertical skeletal patterns. Angle Orthod. 2013, 83, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baik, H.S. Limitations in Orthopedic and Camouflage Treatment for Class III Malocclusion. Semin. Orthod. 2007, 13, 158–174. [Google Scholar] [CrossRef]
- Kolokitha, O.-E.; Georgiadis, T. Differential Diagnosis of Skeletal Class III. Balk. J. Dent. Med. 2019, 23, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Celik, E.; Polat-Ozsoy, O.; Memikoglu, T.U.T. Comparison of cephalometric measurements with digital versus conventional cephalometric analysis. Eur. J. Orthod. 2009, 31, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Alhummayani, F. Pseudo Class III malocclusion. Saudi Med. J. 2016, 37, 450–456. [Google Scholar] [CrossRef]
- Joshi, N.; Hamdan, A.M.; Fakhouri, W.D. Skeletal Malocclusion: A Developmental Disorder With a Life-Long Morbidity. J. Clin. Med. Res. 2014, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, H.; Almeida, F.R.; Tsuda, T.; Moritsuchi, Y.; Lowe, A.A. Craniofacial Changes After 2 Years of Nasal Continuous Positive Airway Pressure Use in Patients With Obstructive Sleep Apnea. Chest 2010, 138, 870–874. [Google Scholar] [CrossRef]
- Brevi, B.; di Blasio, A.; di Basio, C.; Piazza, F.; d’Ascanio, L.; Sesenna, E. Quale analisi cefalometrica per la chirurgia maxillo-mandibolare in pazienti con sindrome delle apnee ostruttive notturne? Acta Otorhinolaryngol. Ital. 2015, 35, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Qamaruddin, I.; Alam, M.K.; Shahid, F.; Tanveer, S.; Umer, M.; Amin, E. Comparison of popular sagittal cephalometric analyses for validity and reliability. Saudi Dent. J. 2018, 30, 43–46. [Google Scholar] [CrossRef]
- Al-Jabaa, A.H.; Aldrees, A.M. Wits and Molar Relationship, Do They Correlate In Orthodontic Patients? Dentistry 2014, 04, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Janiszewska-Olszowska, J.; Gawrych, E.; Wędrychowska-Szulc, B.; Stepien, P.; Konury, J.; Wilk, G. Effect of primary correction of nasal septal deformity in complete unilateral cleft lip and palate on the craniofacial morphology. J. Cranio-Maxillofac. Surg. 2013, 41, 468–472. [Google Scholar] [CrossRef]
- Xue, F.; Wong, R.W.K.; Rabie, A. Genes, genetics, and Class III malocclusion. Orthod. Craniofacial Res. 2010, 13, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, K.; Kajii, T.S.; Oka, A.; Inoko, H.; Ishikawa, H.; Iida, J. Microsatellite genome-wide association study for mandibular prognathism. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 757–762. [Google Scholar] [CrossRef]
- Murshed, M. Mechanism of Bone Mineralization. Cold Spring Harb. Perspect. Med. 2018, 8, a031229. [Google Scholar] [CrossRef]
- Taketani, T.; Onigata, K.; Kobayashi, H.; Mushimoto, Y.; Fukuda, S.; Yamaguchi, S. Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch. Dis. Child. 2013, 99, 211–215. [Google Scholar] [CrossRef]
- Martinez, J.R.; Dhawan, A.; Farach-Carson, M.C. Modular Proteoglycan Perlecan/HSPG2: Mutations, Phenotypes, and Functions. Genes 2018, 9, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Ryoo, H.M.; Shin, H.; Choi, J.; Kwon, T.-G.; Park, E.; Kim, T.; Jang, J.; Park, H. Polymorphisms in the Matrilin-1 Gene and Risk of Mandibular Prognathism in Koreans. J. Dent. Res. 2010, 89, 1203–1207. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Wong, R.W.K.; Rabie, A.B.M. Identification of SNP markers on 1p36 and association analysis of EPB41 with mandibular prognathism in a Chinese population. Arch. Oral Biol. 2010, 55, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Balkhande, P.B.; Lakkakula, B.V.; Chitharanjan, A.B. Relationship between matrilin-1 gene polymorphisms and mandibular retrognathism. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 255–261.e1. [Google Scholar] [CrossRef]
- Hyde, G.; Dover, S.; Aszodi, A.; Wallis, G.A.; Boot-Handford, R.P. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev. Biol. 2007, 304, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Tang, N.L.S.; Cao, X.; Qiao, D.; Yi, L.; Cheng, J.; Qiu, Y. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur. J. Hum. Genet. 2008, 17, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Rabie, A.B.M.; Luo, G. Analysis of the association ofCOL2A1andIGF-1with mandibular prognathism in a Chinese population. Orthod. Craniofacial Res. 2014, 17, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Frazier-Bowers, S.; Rincon-Rodriguez, R.; Zhou, J.; Alexander, K.; Lange, E. Evidence of Linkage in a Hispanic Cohort with a Class III Dentofacial Phenotype. J. Dent. Res. 2009, 88, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Hibiya, K.; Katsumoto, T.; Kondo, T.; Kitabayashi, I.; Kudo, A. Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev. Biol. 2009, 329, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Feitosa, M.F.; Rice, T.; Borecki, I.B.; Rankinen, T.; Leon, A.S.; Skinner, J.S.; Després, J.-P.; Blangero, J.; Bouchard, C.; Rao, D.C.; et al. Pleiotropic QTL on Chromosome 12q23-q24 Influences Triglyceride and High-Density Lipoprotein Cholesterol Levels: The HERITAGE Family Study. Hum. Biol. 2006, 78, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Sutter, N.B.; Bustamante, C.D.; Chase, K.; Gray, M.M.; Zhao, K.; Zhu, L.; Padhukasahasram, B.; Karlins, E.; Davis, S.; Jones, P.G.; et al. A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs. Science 2007, 316, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, X.; Song, Y.; Ott, J.; Zhang, Y.; Li, C.; Xin, T.; Li, Z.; Gan, Y.; Li, J.; Zhou, S.; et al. The ADAMTS1 Gene Is Associated with Familial Mandibular Prognathism. J. Dent. Res. 2015, 94, 1196–1201. [Google Scholar] [CrossRef]
- Perillo, L.; Monsurrò, A.; Bonci, E.; Torella, A.; Mutarelli, M.; Nigro, V. Genetic Association of ARHGAP21 Gene Variant with Mandibular Prognathism. J. Dent. Res. 2015, 94, 569–576. [Google Scholar] [CrossRef]
- Küchler, E.C.; Reis, C.L.B.; Carelli, J.; Scariot, R.; Nelson-Filho, P.; Coletta, R.D.; Paza, A.O.; Matsumoto, M.A.N.; Proff, P.; Kirschneck, C. Potential interactions among single nucleotide polymorphisms in bone- and cartilage-related genes in skeletal malocclusions. Orthod. Craniofacial Res. 2021, 24, 277–287. [Google Scholar] [CrossRef]
- Fabik, J.; Kovacova, K.; Kozmik, Z.; Machon, O. Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway. Biol. Open 2020, 9. [Google Scholar] [CrossRef]
- Heusinkveld, H.J.; Schoonen, W.G.; Hodemaekers, H.M.; Nugraha, A.; Sirks, J.-J.; Veenma, V.; Sujan, C.; Pennings, J.L.; Wackers, P.F.; Palazzolo, L.; et al. Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod. Toxicol. 2020, 96, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, R.; Chen, H.; Du, X.; Chen, S.; Huang, J.; Liu, M.; Xu, M.; Luo, F.; Jin, M.; et al. Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/β-catenin signaling. Theranostics 2020, 10, 7111–7130. [Google Scholar] [CrossRef]
- Swartz, M.E.; Sheehan-Rooney, K.; Dixon, M.J.; Eberhart, J.K. Examination of a palatogenic gene program in zebrafish. Dev. Dyn. 2011, 240, 2204–2220. [Google Scholar] [CrossRef] [Green Version]
- Robb, E.A.; Antin, P.B.; Delany, M.E. Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation. PLoS ONE 2013, 8, e60267. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Shi, Q.-M.; Ding, Z.; Ju, Q.; Wang, H.; Wang, Q.; Li, M.-X.; Chen, G.; Wang, H.-X.; Xu, L.-C. Association Between CRISPLD2 Polymorphisms and the Risk of Nonsyndromic Clefts of the Lip and/or Palate. Cleft Palate-Craniofacial J. 2017, 55, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Gowans, L.J.J.; Adeyemo, W.; Eshete, M.; Mossey, P.; Busch, T.; Aregbesola, B.; Donkor, P.; Arthur, F.K.N.; Bello, S.; Martinez, A.; et al. Association Studies and Direct DNA Sequencing Implicate Genetic Susceptibility Loci in the Etiology of Nonsyndromic Orofacial Clefts in Sub-Saharan African Populations. J. Dent. Res. 2016, 95, 1245–1256. [Google Scholar] [CrossRef]
- Yuan, Q.; Chiquet, B.T.; DeVault, L.; Warman, M.L.; Nakamura, Y.; Swindell, E.; Hecht, J.T. Craniofacial abnormalities result from knock down of nonsyndromic clefting gene,crispld2, in zebrafish. Genesis 2012, 50, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Swindell, E.C.; Yuan, Q.; Maili, L.E.; Tandon, B.; Wagner, D.S.; Hecht, J.T. Crispld2 is required for neural crest cell migration and cell viability during zebrafish craniofacial development. Genesis 2015, 53, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qin, G.; Zhao, T.C. HDAC4: Mechanism of regulation and biological functions. Epigenomics 2014, 6, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W.; Cai, J.; McIntosh, I.; Jabs, E.W.; Fallin, M.D.; Ingersoll, R.; Hetmanski, J.B.; Vekemans, M.; Attie-Bitach, T.; Lovett, M.; et al. High throughput SNP and expression analyses of candidate genes for non-syndromic oral clefts. J. Med. Genet. 2005, 43, 598–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.; Aldred, M.A.; der Kaloustian, V.M.; Halal, F.; Gowans, G.; McLeod, D.R.; Zondag, S.; Toriello, H.V.; Magenis, R.E.; Elsea, S. Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems. Am. J. Hum. Genet. 2010, 87, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLaurier, A.; Nakamura, Y.; Braasch, I.; Khanna, V.; Kato, H.; Wakitani, S.; Postlethwait, J.H.; Kimmel, C.B. Histone deacetylase-4 is required during early cranial neural crest development for generation of the zebrafish palatal skeleton. BMC Dev. Biol. 2012, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, R.S.; Roszko, I.; Solnica-Krezel, L. Planar Cell Polarity: Coordinating Morphogenetic Cell Behaviors with Embryonic Polarity. Dev. Cell 2011, 21, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Sisson, B.E.; Dale, R.M.; Mui, S.R.; Topczewska, J.M.; Topczewski, J. A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis. Mech. Dev. 2015, 138, 279–290. [Google Scholar] [CrossRef]
- Topczewski, J.; Dale, R.M.; Sisson, B.E. Planar cell polarity signaling in craniofacial development. Organogenesis 2011, 7, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Rochard, L.; Monica, S.D.; Ling, I.T.C.; Kong, Y.; Roberson, S.; Harland, R.; Halpern, M.; Liao, E.C. Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during palate morphogenesis. Development 2016, 143, 2541–2547. [Google Scholar] [CrossRef] [Green Version]
- LeClair, E.E.; Mui, S.R.; Huang, A.; Topczewska, J.M.; Topczewski, J. Craniofacial skeletal defects of adult zebrafishGlypican 4 (knypek)mutants. Dev. Dyn. 2009, 238, 2550–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Zhang, W.; Wan, X.; Hong, Z.; Zhao, H.; Liang, W.; Shi, L.; Chen, J.; Zhou, J.; Tang, S. Association Between an Interferon Regulatory Factor 6 Gene Polymorphism and Nonsyndromic Cleft Palate Risk. Genet. Test. Mol. Biomark. 2019, 23, 652–663. [Google Scholar] [CrossRef]
- Thompson, J.; Mendoza, F.; Tan, E.; Bertol, J.W.; Gaggar, A.S.; Jun, G.; Biguetti, C.; Fakhouri, W.D. A cleft lip and palate gene,Irf6, is involved in osteoblast differentiation of craniofacial bone. Dev. Dyn. 2019, 248, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, M.; Kamel, G.; Grimaldi, M.; Gfrerer, L.; Shubinets, V.; Ethier, R.; Hickey, G.; Cornell, R.; Liao, E.C. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development 2013, 140, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Küchler, E.C.; Da Silva, L.A.; Nelson-Filho, P.; Sabóia, T.M.; Rentschler, A.M.; Granjeiro, J.M.; Oliveira, D.; Tannure, P.N.; Da Silva, R.A.; Antunes, L.; et al. Assessing the association between hypoxia during craniofacial development and oral clefts. J. Appl. Oral Sci. 2018, 26, e20170234. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W. Dose-Dependent Antiteratogenic Effects of Folic Acid on All-Trans Retinoic Acid-Induced Cleft Palate in Fetal Mice. Cleft Palate-Craniofacial J. 2016, 53, 720–726. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Gao, Z.; Li, Z.; Yu, Z.; Yin, J.; Tao, Y.; Cui, L. Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling. Anim. Cells Syst. 2016, 21, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Kurosaka, H.; Kikuchi, M.; Nakaya, A.; Trainor, P.A.; Yamashiro, T. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis. Model. Mech. 2019, 12, dmm040279. [Google Scholar] [CrossRef] [Green Version]
- Bebee, T.W.; Park, J.W.; Sheridan, K.I.; Warzecha, C.; Cieply, B.W.; Rohacek, A.; Xing, Y.; Carstens, R.P. The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development. eLife 2015, 4, e08954. [Google Scholar] [CrossRef]
- Jin, Y.-R.; Han, X.H.; Taketo, M.M.; Yoon, J.K. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 2012, 139, 1821–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, R.J.; Song, C.; Sulik, K.K.; Everson, J.; Gipp, J.J.; Yan, D.; Bushman, W.; Rowland, I.J. Cleft lip and palate results from Hedgehog signaling antagonism in the mouse: Phenotypic characterization and clinical implications. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 232–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Sears, M.J.; Zhang, Z.; Li, H.; Salhab, I.; Krebs, P.; Xing, Y.; Nah, H.-D.; Williams, T.; Carstens, R.P. Cleft lip and cleft palate (CL/P) in Esrp1 KO mice is associated with alterations in epithelial-mesenchymal crosstalk. Development 2020, 147. [Google Scholar] [CrossRef] [PubMed]
- Ohki, S.; Oka, K.; Ogata, K.; Okuhara, S.; Rikitake, M.; Toda-Nakamura, M.; Tamura, S.; Ozaki, M.; Iseki, S.; Sakai, T. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Paiva, K.B.S.; Maas, C.S.; Dos Santos, P.M.; Granjeiro, J.M.; Letra, A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front. Cell Dev. Biol. 2019, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Dworkin, S.; Boglev, Y.; Owens, H.; Goldie, S.J. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J. Dev. Biol. 2016, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Everson, J.; Fink, D.M.; Yoon, J.W.; Leslie, E.J.; Kietzman, H.; Ansen-Wilson, L.J.; Chung, H.M.; Walterhouse, D.O.; Marazita, M.L.; Lipinski, R.J. Sonic Hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Development 2017, 144, 2082–2091. [Google Scholar] [CrossRef] [Green Version]
- Hammond, N.; Brookes, K.; Dixon, M. Ectopic Hedgehog Signaling Causes Cleft Palate and Defective Osteogenesis. J. Dent. Res. 2018, 97, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, H.; Lan, Y.; Aronow, B.J.; Kalinichenko, V.V.; Jiang, R. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. PLoS Genet. 2016, 12, e1005769. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yin, B.; Shi, J.Y.; Lin, Y.-S.; Duan, S.-J.; Shi, B.; Jia, Z.-L. Exon sequencing reveals that missense mutation of PBX1 gene may increase the risk of non-syndromic cleft lip/palate. Int. J. Clin. Exp. Pathol. 2019, 12, 2691–2698. [Google Scholar] [PubMed]
- Ferretti, E.; Li, B.; Zewdu, R.; Wells, V.; Hebert, J.M.; Karner, C.; Anderson, M.J.; Williams, T.; Dixon, J.; Dixon, M.J.; et al. A Conserved Pbx-Wnt-p63-Irf6 Regulatory Module Controls Face Morphogenesis by Promoting Epithelial Apoptosis. Dev. Cell 2011, 21, 627–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maili, L.; Letra, A.; Silva, R.; Buchanan, E.P.; Mulliken, J.B.; Greives, M.R.; Teichgraeber, J.F.; Blackwell, S.J.; Ummer, R.; Weber, R.; et al. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defects Res. 2019, 112, 234–244. [Google Scholar] [CrossRef]
- Brock, L.J.; Economou, A.D.; Cobourne, M.T.; Green, J.B. Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity. J. Anat. 2016, 228, 464–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funato, N.; Nakamura, M.; Richardson, J.A.; Srivastava, D.; Yanagisawa, H. Tbx1 regulates oral epithelial adhesion and palatal development. Hum. Mol. Genet. 2012, 21, 2524–2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudy, S.; Law, A.; Sanchez, G.; Baldwin, H.S.; Brown, C. Tbx1 is necessary for palatal elongation and elevation. Mech. Dev. 2010, 127, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Bjork, B.C.; Turbe-Doan, A.; Prysak, M.; Herron, B.J.; Beier, D.R. Prdm16 is required for normal palatogenesis in mice. Hum. Mol. Genet. 2010, 19, 774–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Yang, X.; Bao, M.; Cao, H.; Miao, X.; Zhang, X.; Gan, L.; Qiu, M.; Zhang, Z. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence. J. Biol. Chem. 2016, 291, 7107–7118. [Google Scholar] [CrossRef] [Green Version]
- López, S.H.; Avetisyan, M.; Wright, C.M.; Mesbah, K.; Kelly, R.G.; Moon, A.M.; Heuckeroth, R.O. Loss of Tbx3 in murine neural crest reduces enteric glia and causes cleft palate, but does not influence heart development or bowel transit. Dev. Biol. 2018, 444, S337–S351. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, A.; Trainor, P. Neural crest stem cells: Discovery, properties and potential for therapy. Cell Res. 2012, 22, 288–304. [Google Scholar] [CrossRef] [Green Version]
- Robb, E.A.; Gitter, C.L.; Cheng, H.H.; Delany, M.E. Chromosomal Mapping and Candidate Gene Discovery of Chicken Developmental Mutants and Genome-Wide Variation Analysis of MHC Congenics. J. Hered. 2011, 102, 141–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngworth, I.A.; Delany, M.E. Mapping of the chicken cleft primary palate mutation on chromosome 11 and sequencing of the 4.9 Mb linked region. Anim. Genet. 2020, 51, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Warzecha, C.C.; Sato, T.K.; Nabet, B.; Hogenesch, J.B.; Carstens, R.P. ESRP1 and ESRP2 Are Epithelial Cell-Type-Specific Regulators of FGFR2 Splicing. Mol. Cell 2009, 33, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiong, K.H.; Mah, L.Y.; Leong, C.-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 2013, 18, 1447–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, T.; Wu, T.; Hetmanski, M.J.B.; Ruczinski, I.; Schwender, H.; Liang, K.Y.; Murray, T.; Fallin, M.D.; Redett, R.J.; et al. The FGF and FGFR Gene Family and Risk of Cleft Lip with or Without Cleft Palate. Cleft Palate-Craniofacial J. 2013, 50, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chromosomal Localization | Biological Function * | Mutation | Number of Patients | Additional Phenotype | References |
---|---|---|---|---|---|
MSX1 chr4:4,859,665-4,863,936 | Encodes a member of the muscle segment homeobox gene family. MSX1 acts as a repressor during embryogenesis and plays a role in craniofacial development, limb-formation, and odontogenesis. | Ser104stop (exon 1) | 2 | Tooth agenesis | [58] |
PVRL1 (NECTIN-1) chr11:119,623,408-119,729,200 | Encodes an adhesion protein that takes part in the organization of adherens junctions and tight junctions in epithelial and endothelial cells. | Trp185TGG- > TAG | 4 | Margarita Island ectodermal dysplasia | [59] |
Gly323GGT- > GGTT | 1 | Złotogór-Ogur syndrome | |||
IRF6 chr1:209,785,617-209,806,175 | Encodes a member of the interferon regulatory transcription factor family. Determines keratinocyte proliferation–differentiation switch (vital in appropriate epidermal development). | c.250C > T; p.Arg84Cys. | Family A–1 affected | N/A | [60] |
c.1060 + 1G > T; p. N/A | Family B–1 affected | N/A | |||
c.379delG; p.Gly127Valfs *43 | Family C–1 affected | N/A | |||
c.39G > A; p.Trp13 * | Family D–4 affected | Upper lateral incisor bilateral lower lip pits extra right maxillary molar | |||
c.254G>; p.Cys85Phe | Family E–3 affected | N/A | |||
c.165delC; p.Ile56Phefs*7 | Family F–1 affected | N/A | |||
c.1289_1297del; p.Asp430_Ile432del | Family G–5 affected | Presence of a single pit on the lower lip in the proband | |||
c.26G > A; p.Arg9Gln | 2 | Absence of both upper second incisors | [61] | ||
VAX1 chr10:117,128,520-117,138,301 | Encodes a homeo-domain containing proteins from a class of homeobox transcription factors. Plays a role in regulation of body development and morphogenesis. | c.3890G > A; p.Ala201Thr | Family 1–1 affected | N/A | [62] |
c.3828G > C; p.Arg180Pro | Family 2–2 affected | N/A | |||
c.1676C > T; p.Pro92Leu | Family 3–3 affected | N/A | |||
TBX22 chrX:80,014,753-80,031,774 | Encodes member of genes family that share a common DNA-binding domain, the T-box. Major determinant for palatogenesis. | IVS6-1G > C splice site mutation | Family 1–6 affected (X-linked cleft palate) Family 2–2 affected (cleft lip, cleft palate, cleft alveolar) 200 healthy controls | N/A | [63] |
CDH1 chr16:68,737,292-68,835,537 | Encodes a member of cadherin superfamily that is involved in mechanisms regulating cell–cell adhesions, mobility, and proliferation of epithelial cells. | c.687 + 1G > A | Family 1–3 affected | Hereditary diffuse gastric cancer (HDGC) | [64] |
Chromosomal Localization | Biological Function * | Mutation | No of Affected Patients | Additional Phenotype | References |
---|---|---|---|---|---|
MATN1 1p36 | Cartilage matrix protein. Major component of the extracellular matrix of non-articular cartilage. | 7987 G > A 8572 C > T | 164 patients | N/A | [98] |
EPB41 1p36 | Together with spectrin and actin, plays critical role in formation of erythrocyte membrane skeleton. | rs2788890 rs2788888 rs2254241 rs2249138 | 158 patients | N/A | [99] |
ADAMTS1 21q21.3 | Cleaves aggrecan, a cartilage proteoglycan, and may be involved in its turnover. | 742 I > T rs2738 rs229038 | 9 patients 230 patients | N/A | [108] |
176 C > A | Family 1 (3 patients) | Supernumerary tooth (mandible premolar) | [75] | ||
670 C > G 2 of 4 affected patients had additional COL1A2 mutation | Family 2 (4 patients) | Osteogenesis imperfecta, Dentinogenesis imperfecta | |||
670 C > G | Family 3 (1 patient) | N/A | |||
670 C > G WNT10B additional mutation | Family 4 (1 patient) | N/A | |||
ARHGAP21 10p12.1 | Regulates the ARP2/3 complex and F-actin dynamics at the Golgi apparatus through the control of CDC42 activity. | 3361 G > A | 59 patients | N/A | [109] |
COL2A1 12q13 | Encodes the alpha-1 chain of type II collagen, a fibrillar collagen found in cartilage and the vitreous humor of the eye. | rs1793953 G > A | 211 patients | N/A | [103] |
MYO1H 12q24.11 | Actin-based motor molecule with ATPase activity. Serves in intracellular movements. | rs3825393 C > T | 199 patients | N/A | [76] |
SMAD6 15q22.31 | Involved in the mesodermal commitment pathway and BMP signaling. Associated with aortic valve disease 2 and craniosynostosis 7. | rs3934908 C > T | 50 patients | N/A | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaruga, A.; Ksiazkiewicz, J.; Kuzniarz, K.; Tylzanowski, P. Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models. Int. J. Mol. Sci. 2022, 23, 953. https://doi.org/10.3390/ijms23020953
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models. International Journal of Molecular Sciences. 2022; 23(2):953. https://doi.org/10.3390/ijms23020953
Chicago/Turabian StyleJaruga, Anna, Jakub Ksiazkiewicz, Krystian Kuzniarz, and Przemko Tylzanowski. 2022. "Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models" International Journal of Molecular Sciences 23, no. 2: 953. https://doi.org/10.3390/ijms23020953
APA StyleJaruga, A., Ksiazkiewicz, J., Kuzniarz, K., & Tylzanowski, P. (2022). Orofacial Cleft and Mandibular Prognathism—Human Genetics and Animal Models. International Journal of Molecular Sciences, 23(2), 953. https://doi.org/10.3390/ijms23020953