Selective Recovery of Palladium (II) from Metallurgical Wastewater Using Thiadiazole-Based Chloromethyl Polystyrene-Modified Adsorbent
Abstract
:1. Introduction
2. Experiments
2.1. Reagents
2.2. Synthesis of 2,5-bis-polystyrene-1,3,4-thiadiazole (PS-DMTD) and 2,5-bis(benzylthio)-1,3,4-thiadiazole (DTTD)
2.3. Adsorption Experiments
2.4. Physical and Chemical Analysis
3. Results and Discussion
3.1. Characterization of PS-DMTD
3.2. The Effect of HCl Concentration
3.3. Adsorption Kinetics Studies
3.4. Adsorption Isotherm Studies
3.5. Adsorption Thermodynamics for Pd (II)
3.6. Application in Metallurgical Wastewater
3.7. Regeneration and Recovery
4. Adsorption Mechanism
4.1. DFT Results
4.1.1. Protonation of PS-DMTD
4.1.2. Chlorophilic Property of Metal Cations
4.1.3. Coordination Strength of PS-DMTD with Metal Ions
4.1.4. Low Absorption via an Anion-Exchange Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Wang, Y.; Weng, H.Q.; Wu, Z.; He, K.; Zhang, P.; Guo, Z.; Lin, M. Selective separation of Pd (II) on pyridine-functionalized graphene oxide prepared by radiation-induced simultaneous grafting polymerization and reduction. ACS Appl. Mater. Interfaces 2019, 11, 24560–24570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.P.; Ma, X.Y.; Huang, Q.L.; Zhao, L.L.; Zhang, R.; Yang, X.J.; Wang, S.X. A High-Performance Guanidinium-Based Aqueous Biphasic System for Green Separation of Palladium from Acid Solution. ACS Sustain. Chem. Eng. 2022, 10, 1633–1643. [Google Scholar] [CrossRef]
- Lee, J.C.; Hong, H.J.; Chung, K.W.; Kim, S. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Sep. Purif. Technol. 2020, 246, 116896. [Google Scholar] [CrossRef]
- Lin, S.; Reddy, D.H.K.; Bediako, J.K.; Song, M.H.; Wei, W.; Kim, J.A.; Yun, Y.S. Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal–organic frameworks from strongly acidic solutions. J. Mater. Chem. A 2017, 5, 13557–13564. [Google Scholar] [CrossRef]
- Tu, S.Y.; Yusuf, S.; Muehlfeld, M.; Bauman, R.; Vanchura, B. The Destiny of Palladium: Development of Efficient Palladium Analysis Techniques in Enhancing Palladium Recovery. Org. Process Res. Dev. 2019, 23, 2175–2180. [Google Scholar] [CrossRef]
- Yang, X.J.; Chen, J.F.; Hu, L.S.; Wei, J.Y.; Shuai, M.B.; Huang, D.S.; Yue, G.Z.; Astruc, D.; Zhao, P.X. Palladium Separation by Pd-Catalyzed Gel Formation via Alkyne Coupling. Chem. Mat. 2019, 31, 7386–7394. [Google Scholar] [CrossRef]
- Chen, M.; Li, S.; Jin, C.; Shao, M.; Huang, Z.; Xie, X. Removal of metal-cyanide complexes and recovery of Pt (II) and Pd (II) from wastewater using an alkali–tolerant metal-organic resin. J. Hazard. Mater. 2021, 406, 124315. [Google Scholar] [CrossRef]
- Mosai, A.K.; Johnson, R.H.; Tutu, H. Modelling of palladium (II) adsorption onto amine-functionalised zeolite using a generalised surface complexation approach. J. Environ. Manag. 2021, 277, 111416. [Google Scholar] [CrossRef]
- Chen, M.H.; Li, S.L.; Luo, G.T.; Fan, M.; Chen, J.; Huang, Z.J.; Xie, X.G. Selective recovery of palladium and rhodium by combined extraction and photocatalytic reduction. Sep. Purif. Technol. 2021, 274, 119006. [Google Scholar] [CrossRef]
- Moussaoui, S.A.; Lelias, A.; Braibant, B.; Meyer, D.; Bourgeois, D. Solvent extraction of palladium(II) using diamides: A performing molecular system established through a detailed study of extraction kinetics. Sep. Purif. Technol. 2021, 276, 119293. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.; Liu, Y.; Xu, Z. An integrated capture of copper scrap and electrodeposition process to enrich and prepare pure palladium for recycling of spent catalyst from automobile. Waste Manag. 2020, 108, 172–182. [Google Scholar] [CrossRef]
- Zhang, S.; Ning, S.; Liu, H.; Wang, X.; Wei, Y.; Yin, X. Preparation of ion-exchange resin via in-situ polymerization for highly selective separation and continuous removal of palladium from electroplating wastewater. Sep. Purif. Technol. 2021, 258, 117670. [Google Scholar] [CrossRef]
- Liu, H.F.; Ning, S.Y.; Zhang, S.C.; Wang, X.P.; Chen, L.F.; Fujita, T.; Wei, Y.Z. Preparation of a mesoporous ion-exchange resin for efficient separation of palladium from simulated electroplating wastewater. J. Environ. Chem. Eng. 2022, 10, 106966. [Google Scholar] [CrossRef]
- Xiao, Q.; Song, L.J.; Wang, X.Y.; Xu, H.W.; He, L.L.; Li, Q.J.; Ding, S.D. Highly efficient extraction of palladium (II) in nitric acid solution by a phenanthroline-derived diamide ligand. Sep. Purif. Technol. 2022, 280, 119805. [Google Scholar] [CrossRef]
- Ianăşi, C.; Picioruş, E.M.; Nicola, R.; Putz, A.M.; Negrea, A.; Ciopec, M.; Len, A.; Almásy, L. Synthesis and characterization of magnetic iron oxide-silica nanocomposites used for adsorptive recovery of palladium (II). Soft Mater. 2021, 1–8. [Google Scholar] [CrossRef]
- Wu, H.; Kim, S.-Y.; Miwa, M.; Matsuyama, S. Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste. J. Hazard. Mater. 2021, 411, 125136. [Google Scholar] [CrossRef]
- Wei, W.; Lin, S.; Reddy, D.H.K.; Bediako, J.K.; Yun, Y.S. Poly(styrenesulfonic acid)-impregnated alginate capsule for the selective sorption of Pd(II) from a Pt(IV)-Pd(II) binary solution. J. Hazard. Mater. 2016, 318, 79–89. [Google Scholar] [CrossRef]
- Di Natale, F.; Orefice, M.; La Motta, F.; Erto, A.; Lancia, A. Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Sep. Purif. Technol. 2017, 174, 183–193. [Google Scholar] [CrossRef]
- Yamada, M.; Kimura, S.; Gandhi, M.; Shibayama, A. Environmentally friendly Pd(II) recovery from spent automotive catalysts using resins impregnated with a pincer-type extractant. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Pincus, L.N.; Petrovic, P.V.; Gonzalez, I.S.; Stavitski, E.; Fishman, Z.S.; Rudel, H.E.; Anastas, P.T.; Zimmerman, J.B. Selective adsorption of arsenic over phosphate by transition metal cross-linked chitosan. Chem. Eng. J. 2021, 412, 128582. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Artyushin, O.I.; Sharova, E.V.; Genkina, G.K. Adsorption of palladium(II) from hydrochloric acid solutions using polymeric resins impregnated with novel N-substituted 2-(diphenylthiophosphoryl)acetamides. Sep. Purif. Technol. 2017, 187, 355–364. [Google Scholar] [CrossRef]
- Tang, J.L.; Zhao, J.L.; Wang, S.X.; Zhang, L.B.; Zhao, M.H.; Huang, Z.; Hu, Y.T. Pre-modification strategy to prepare a novel Zr-based MOF for selective adsorption of Palladium(II) from solution. Chem. Eng. J. 2021, 407, 127223. [Google Scholar] [CrossRef]
- Xiong, C.H.; Zheng, Y.Q.; Feng, Y.J.; Yao, C.P.; Ma, C.A.; Zheng, X.M.; Jiang, J.X. Preparation of a novel chloromethylated polystyrene-2-amino-1,3,4-thiadiazole chelating resin and its adsorption properties and mechanism for separation and recovery of Pt(IV) from aqueous solutions. J. Mater. Chem. A 2014, 2, 5379–5386. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.J.; Meng, X.; Xian, M.; Xu, C. Adsorption behavior study and mechanism insights into novel isothiocyanate modified material towards Pd2+. Sep. Purif. Technol. 2021, 277, 119514. [Google Scholar] [CrossRef]
- Sharma, S.; Rajesh, N. Augmenting the adsorption of palladium from spent catalyst using a thiazole ligand tethered on an amine functionalized polymeric resin. Chem. Eng. J. 2016, 283, 999–1008. [Google Scholar] [CrossRef]
- Feng, S.P.; Huang, K. Enhanced separation of Pd(II) and Pt(IV) from hydrochloric acid aqueous solution using 2-((2-methoxyethyl)thio)-1H-benzimidazole. Rare Met. 2020, 39, 1473–1482. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zhao, Y.L.; Wang, P.Y.; Yan, X.Q.; Cai, M.M.; Yang, Y. Extraction of Pt(IV), Pt(II), and Pd(II) from Acidic Chloride Media Using Imidazolium-Based Task-Specific Polymeric Ionic Liquid. Ind. Eng. Chem. Res. 2019, 58, 1779–1786. [Google Scholar] [CrossRef]
- Kou, X.; Huang, Y.; Yang, Y. Effect of the length and aromaticity of N3-substituent on adsorption performance of imidazolium-based poly (ionic liquids) towards Pd (II). J. Hazard. Mater. 2021, 420, 126623. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Hou, B.S.; Zhang, G.A. Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturated oilfield produced water: Effect of substituent group on efficiency. J. Colloid Interface Sci. 2020, 572, 91–106. [Google Scholar] [CrossRef]
- Fu, K.L.; Yao, M.Y.; Qin, C.G.; Cheng, G.W.; Li, Y.; Cai, M.; Yang, S.; Nie, J.P. Study on the removal of oxidized mercury (Hg2+) from flue gas by thiol chelating resin. Fuel Process. Technol. 2016, 148, 28–34. [Google Scholar] [CrossRef]
- Huang, L.; Shen, J.; Ren, J.; Meng, Q.J.; Yu, T. The adsorption of 2,5-dimer-capto-1,3,4-thiadiazole (DMTD) on copper surface and its binding behavior. Sci. Bull. 2001, 46, 387–389. [Google Scholar] [CrossRef]
- Su, Y.Z.; Xiao, K.; Liao, Z.J.; Zhong, Y.H.; Li, N.; Chen, Y.B.; Liu, Z.Q. Directed electrochemical synthesis of ZnO/PDMcT core/shell nanorod arrays with enhanced photoelectrochemical properties. Int. J. Hydrog. Energy 2013, 38, 15019–15026. [Google Scholar] [CrossRef]
- Zhao, R.; Zheng, H.L.; Zhong, Z.; Zhao, C.; Sun, Y.J.; Huang, Y.Y.; Zheng, X.Y. Efficient removal of diclofenac from surface water by the functionalized multilayer magnetic adsorbent: Kinetics and mechanism. Sci. Total Environ. 2021, 760, 144307. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Yang, C.T.; Liu, Y.; Hu, S.; Ye, G.; Chen, J. Novel polyazamacrocyclic receptor impregnated macroporous polymeric resins for highly efficient capture of palladium from nitric acid media. Sep. Purif. Technol. 2020, 233, 115953. [Google Scholar] [CrossRef]
- Hasegawa, G.; Deguchi, T.; Kanamori, K.; Kobayashi, Y.; Kageyama, H.; Abe, T.; Nakanishi, K. High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chem. Mat. 2015, 27, 4703–4712. [Google Scholar] [CrossRef]
- Love, J.C.; Wolfe, D.B.; Haasch, R.; Chabinyc, M.L.; Paul, K.E.; Whitesides, G.M.; Nuzzo, R.G. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 2003, 125, 2597–2609. [Google Scholar] [CrossRef]
- Zhong, L.J.; Zhang, J.Y.; Zhang, Q.; Chen, M.H.; Huang, Z.J. Novel poly(aniline-co-3-amino-4-methoxybenzoic acid) copolymer for the separation and recovery of Pd(II) from the leaching liquor of automotive catalysts. RSC Adv. 2017, 7, 39244–39257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Kaziz, S.; Li, H.; Wodka, D.; Malola, S.; Safonova, O.; Nachtegaal, M.; Mazet, C.; Dolamic, I.; Llorca, J. Pd2Au36(SR)24 cluster: Structure studies. Nanoscale 2015, 7, 17012–17019. [Google Scholar] [CrossRef] [PubMed]
- Hasik, M.; Bernasik, A.; Drelinkiewicz, A.; Kowalski, K.; Wenda, E.; Camra, J. XPS studies of nitrogen-containing conjugated polymers–palladium systems. Surf. Sci. 2002, 507, 916–921. [Google Scholar] [CrossRef]
- Huang, J.H.; Jin, X.Y.; Deng, S.G. Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions. Chem. Eng. J. 2012, 192, 192–200. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, J.H.; Wang, J.J.; Fan, J. Highly Salt Resistant Polymer Supported Ionic Liquid Adsorbent for Ultrahigh Capacity Removal of p-Nitrophenol from Water. ACS Sustain. Chem. Eng. 2019, 7, 8195–8205. [Google Scholar] [CrossRef]
- Liu, F.L.; Wang, S.Y.; Chen, S.X. Adsorption behavior of Au(III) and Pd(II) on persimmon tannin functionalized viscose fiber and the mechanism. Int. J. Biol. Macromol. 2020, 152, 1242–1251. [Google Scholar] [CrossRef]
- Lin, Y.Q.; Jin, X.Y.; Khan, N.I.; Owens, G.; Chen, Z.L. Efficient removal of As (III) by calcined green synthesized bimetallic Fe/Pd nanoparticles based on adsorption and oxidation. J. Clean. Prod. 2021, 286, 124987. [Google Scholar] [CrossRef]
- Zheng, D.; Wu, M.; Zheng, E.; Wang, Y.; Feng, C.; Zou, J.; Juan, M.; Bai, X.; Wang, T.; Shi, Y. Parallel adsorption of low concentrated ciprofloxacin by a CoFe-LDH modified sludge biochar. J. Environ. Chem. Eng. 2022, 10, 108381. [Google Scholar] [CrossRef]
- Lima, E.C.; Sher, F.; Guleria, A.; Saeb, M.R.; Anastopoulos, I.; Tran, H.N.; Hosseini-Bandegharaei, A. Is one performing the treatment data of adsorption kinetics correctly? J. Environ. Chem. Eng. 2021, 9, 104813. [Google Scholar] [CrossRef]
- Manyatshe, A.; Cele, Z.E.; Balogun, M.O.; Nkambule, T.T.; Msagati, T.A. Chitosan modified sugarcane bagasse biochar for the adsorption of inorganic phosphate ions from aqueous solution. J. Environ. Chem. Eng. 2022, 10, 108243. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yu, J.G. Nitrogen-containing graphene oxide composite with acid resistance and high adsorption selectivity for Nd3+. J. Environ. Chem. Eng. 2022, 10, 108348. [Google Scholar] [CrossRef]
- Luo, G.; Bi, Z.; Liu, C.; Wan, Z.; Chen, Z.; Chen, M.; Huang, Z. Regenerable neodymium-doped zirconium-based MOF adsorbents for the effective removal of phosphate from water. J. Environ. Chem. Eng. 2022, 10, 108610. [Google Scholar] [CrossRef]
- Cai, J.G.; Li, A.M.; Shi, H.Y.; Fei, Z.H.; Chao, L.; Zhang, Q.H. Adsorption characteristics of aniline and 4-methylaniline onto bifunctional polymeric adsorbent modified by sulfonic groups. J. Hazard. Mater. 2005, 124, 173–180. [Google Scholar] [CrossRef]
- Gao, X.P.; Guo, C.; Hao, J.J.; Zhao, Z.; Long, H.M.; Li, M.Y. Selective adsorption of Pd (II) by ion-imprinted porous alginate beads: Experimental and density functional theory study. Int. J. Biol. Macromol. 2020, 157, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Cieszynska, A.; Wieczorek, D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 2018, 175, 359–366. [Google Scholar] [CrossRef]
- Benguerel, E.; Demopoulos, G.P.; Harris, G.B. Speciation and separation of rhodium(III) from chloride solutions: A critical review. Hydrometallurgy 1996, 40, 135–152. [Google Scholar] [CrossRef]
- Bernardis, F.L.; Grant, R.A.; Sherrington, D.C. A review of methods of separation of the platinum-group metals through their chloro-complexes. React. Funct. Polym. 2005, 65, 205–217. [Google Scholar] [CrossRef]
Specific Surface Area m2/g | Total Pore Volume cm3/g | |
---|---|---|
PS-Cl | 417.65 | 1.65 |
PS-DMTD | 364.03 | 1.54 |
Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | |||
---|---|---|---|---|
k1 (min−1) | R2 | k2 (g·mmol−1·min−1) | R2 | |
PS-DMTD | 0.0205 | 0.8737 | 0.00143 | 0.9987 |
Isotherm Models | Parameters | |
---|---|---|
Non-linear Langmuir model | qm, cal (mg/g) | 176.3 |
qm, exp (mg/g) | 155.2 | |
KL (L/mg) | 0.0061 | |
R2adj | 0.9962 | |
RSS | 105.10 | |
BIC | 16.93 | |
Non-linear Freundlich model | KF (mg L1/n g−1 mg−1/n) | 9.724 |
n−1 | 0.4060 | |
R2adj | 0.9648 | |
RSS | 985.95 | |
BIC | 21.36 |
T | ΔG | ΔH | ΔS | |
---|---|---|---|---|
(K) | (kJ·mol−1) | (kJ·mol−1) | (J·mol−1·K−1) | |
PS-DMTD | 293.15 | −14.84 | 36.53 | 175.22 |
298.15 | −15.71 | |||
303.15 | −16.59 | |||
308.15 | −17.47 | |||
313.15 | −18.34 |
Parameters | ΔG (kcal/mol) | ΔH (kcal/mol) | ΔS (Cal/T·mol) |
---|---|---|---|
Reaction (1) | −59.59 | −59.81 | −0.37 |
Reaction (2) | 40.35 | 43.43 | 5.17 |
Anion | PdCl42− | RhCl63− | PtCl62− |
---|---|---|---|
ACE | 172.24 | 211.29 | 405.24 |
Coordination Complex | DE | CE | ACE |
---|---|---|---|
(kcal·mol−1) | (kcal·mol−1) | (kcal·mol−1) | |
[PdCl2]-L | 6.51 | 350.99 | 344.48 |
[Pd2Cl4]−-L | 13.33 | 351.14 | 344.48 |
[RhCl4]−-L | 0.41 | 422.99 | 422.58 |
[RhCl4]−·H2O-L | 52.14 | 263.42 | 211.29 |
[PtCl4]−-L | −10.51 | 799.97 | 810.48 |
[Pt2Cl8]-L | −51.20 | 784.88 | 810.48 |
Species | Molecular Volume (Å−3) | Average Charge Density (10−3e. Å−3) |
---|---|---|
PtCl62− | 225.440 | 8.87 |
PdCl42− | 178.460 | 11.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, Z.; Wan, Z.; Liu, C.; He, R.; Xie, X.; Huang, Z. Selective Recovery of Palladium (II) from Metallurgical Wastewater Using Thiadiazole-Based Chloromethyl Polystyrene-Modified Adsorbent. Int. J. Mol. Sci. 2022, 23, 12158. https://doi.org/10.3390/ijms232012158
Zhang X, Chen Z, Wan Z, Liu C, He R, Xie X, Huang Z. Selective Recovery of Palladium (II) from Metallurgical Wastewater Using Thiadiazole-Based Chloromethyl Polystyrene-Modified Adsorbent. International Journal of Molecular Sciences. 2022; 23(20):12158. https://doi.org/10.3390/ijms232012158
Chicago/Turabian StyleZhang, Xiaoguo, Zhihong Chen, Zhaoneng Wan, Chali Liu, Renze He, Xiaoguang Xie, and Zhangjie Huang. 2022. "Selective Recovery of Palladium (II) from Metallurgical Wastewater Using Thiadiazole-Based Chloromethyl Polystyrene-Modified Adsorbent" International Journal of Molecular Sciences 23, no. 20: 12158. https://doi.org/10.3390/ijms232012158
APA StyleZhang, X., Chen, Z., Wan, Z., Liu, C., He, R., Xie, X., & Huang, Z. (2022). Selective Recovery of Palladium (II) from Metallurgical Wastewater Using Thiadiazole-Based Chloromethyl Polystyrene-Modified Adsorbent. International Journal of Molecular Sciences, 23(20), 12158. https://doi.org/10.3390/ijms232012158