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Abstract: Cell surface receptors play essential roles in perceiving and processing external and inter-
nal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and
receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration,
play a crucial role in plant development and disease defense. Although RLPs and RLKs share a
similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions
instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes
sequence comparison algorithms from being used for high-throughput predictions of the RLP family
in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we
developed the RLPredictiOme, implemented with machine learning models in combination with
Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were
simultaneously trained using six types of features, along with three stages to distinguish RLPs from
non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models
achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high
probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets,
two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one
consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests,
more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting
previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis
genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP,
glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP
subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular
evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying
selection with a predominance of synonymous substitutions. Expression analyses revealed that
predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic
signals. The results of these biological assays indicate that these subfamily members have maintained
functional domains during evolution and may play relevant roles in development and plant defense.
Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily
as a foundation to rationalize functional studies of surface receptors and their relationships with
different biological processes.
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1. Introduction

The capacity to transiently regulate cellular processes in response to external envi-
ronmental signals is crucial to all living organisms. While the downstream regulatory
events in a signaling cascade can involve biochemical modifications, including protein
phosphorylation, ligand binding, and allosteric regulation, as well as changes in the tran-
scription/translation profiles, the initial sensing event is predominantly mediated by
membrane receptors. In plants, two major classes of proteins with membrane receptor
structural configuration co-exist, namely receptor-like kinases (RLK) and receptor-like
proteins (RLP) [1,2]. The receptor-like kinases comprise a large family with more than
420 family members in Arabidopsis [3]. These transmembrane receptors harbor a diver-
gent extracellular domain (ectodomain, ECD) at the N-terminal region, followed by a
transmembrane segment (TM) and a C-terminal cytoplasmic signaling domain. This con-
figuration of a single-pass transmembrane kinase receptor invokes a mechanism of ligand
binding-induced homo or hetero oligomerization of RLKs as the essential early event for
signaling and transducing from the receptor, similarly to the receptor-tyrosine kinases
(RTK) of mammalian cells [4,5]. In this scenario, ECD is the stimulus-sensing, ligand
recognition domain that induces multimerization, and the kinase domain functions as the
phosphorylation-dependent transducing module that relays the signal intracellularly.

Phylogenetic analyses based on the RLK kinase domains organized their ectodomain
into clusters of conserved motifs and classified the RLKs into 15 subfamilies. Among them,
the leucine-rich repeat (LRR)-RLK subfamily is further subdivided into 13 subfamilies
(LRRI-XIII) according to the LRR motif organization ranging from 3 to 26 LRRs [6,7]. The
RLK family size has been determined in other plant species, which revealed even larger
RLK gene families in the genome of soybean, rice, and tomato [3,8–10]. The complexity of
the RLK superfamily may reflect the intricate coordination of plant responses to external
signals during plant development and interactions with the biotic and abiotic environ-
ment. Accordingly, several RLKs have been functionally characterized in development,
environmental stresses, and plant defenses (for more details, see references [11–22]).

RLKs are also involved in plant immunity and function as pattern recognition recep-
tors (PRRs), which perceive pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) presented, respectively, by pathogens and plants
during infection. Interaction of PRRs with PAMPs/DAMPs initiates PAMP-triggered im-
munity (PTI), the first layer of the innate immune system in plants [23]. Many examples of
leucine-rich repeat receptor-like kinases (LRR-RLKs) have been functionally characterized
as PRRs (for more details, see references [24–42]).

The second class of plant transmembrane proteins, RLPs, are built into an N-terminal
extracellular domain, which shares similar motifs with RLK ectodomains, an internal single
transmembrane segment followed by a short cytoplasmic domain that lacks a transducing-
kinase domain [23]. RLPs are structurally similar to Toll-like receptors (TLRs) involved in
mammalian immunity, which also contain a leucine-rich repeat ectodomain and a short cyto-
plasmic tail [5]. The RLP configuration poses a higher degree of complexity for signaling as
they depend on heterodimerization with RLKs or association with receptor-like cytoplasmic
kinases (RLCK) for transducing a stimulus from the receptor. Accordingly, the leucine-rich
repeat receptor-like protein (LRR-RLP) TOO MANY MOUTHS (TMM) forms complexes
with LRR-RLKs ERECTA and ERECTA-LIKE 1 (ERL1) to perceive the EPIDERMAL PAT-
TERNING FACTOR 1 (EPF1) and EPF2 peptides for the regulation of stomatal pattern-
ing [43], and CLAVATA2 RLP is required for the stability of CLAVATA1 (CLV1) RLK [44].
Likewise, lysine motif (LysM)-RLPs, LYSIN-MOTIF 1 (LYM1), and LYM3 associate with
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the LysM-RLK CERK1 (CHITIN ELICITOR RECEPTOR KINASE 1) to recognize bacterial
peptidoglycans [45], and the LRR-RLP RLP23 forms a complex with the LRR-RLK SUP-
PRESSOR OF BIR1-1 (SOBIR1) that recognizes NECROSIS- AND ETHYLENE-INDUCING
PEPTIDE 1 (NEP1)-LIKE PROTEINS (NLPs) to trigger PTI signaling [46]. In addition to
these Arabidopsis RLPs, the first characterized RLP, Cf-9, was identified in tomato plants as
an LRR-RLP and has been shown to trigger effector-triggered immunity (ETI)-like signaling,
elicited specifically by the Cladosporium fulvum Av9 effector [47]. The tomato LRR-RLP Cf-4
is also required for resistance to C. fulvum expressing the Avr4 gene [48]. Cf-9 and Cf-4
associate with the RLKs SOBIR1 AND BRI1-ASSOCIATED KINASE 1 to initiate receptor
endocytosis and plant immunity [49]. Likewise, N. benthamiana LRR-RLP RESPONSE TO
XEG1 (RXEG1), which recognizes the glycoside hydrolase 12 protein XEG1, and RLP RE02
(Response to VmE02) forms a complex with BAK1 and SOBIR1 to transduce the XEG1- and
VmE02- induced defense signals, respectively [50,51]. The rice RLP, OsRLP1, also interacts
with OsSOBIR1 to induce immune responses against viral infection [52].

Although some progress has been reached in characterizing RLPs, a biological function
has been assigned to only a few plant RLPs, despite their conceptual relevance in cell
signaling events. While 15 RLK subfamilies with distinct ECD have been detected in
Arabidopsis, only three Arabidopsis RLP subfamilies have been identified based on single-
gene identification and functional studies [2]. The only genome-wide study of RLPs was
restricted to the LRR-RLP subfamily [53]. In the case of RLKs, the successful identification
and organization of the superfamily in different subfamilies relied on methods that use
algorithms, such as BLAST and hidden Markov models (HMM), to perform searches
for sequence alignments of conserved regions. One possible explanation for the poor
characterization of RLPs may be the difficulty of assigning members to this family based
on sequence comparison, as they lack the conserved C-terminal serine/threonine kinase
domain, restricting the prediction of novel RLPs. In addition to requiring RLPs to be
associated with a kinase domain-containing receptor for signaling, the lack of a cytoplasmic
transducing kinase domain prevents genome-wide predictions of RLP subfamilies based on
sequence comparisons. Therefore, a complete inventory of the RLP family in the genome of
different plant species is lacking, and, hence, functional studies have been limited.

The limitation of software based on multiple sequence alignments for identifying
RLPs may be overcome with the application of artificial intelligence algorithms developed
based on filters that support the point features of these receptors. In artificial intelligence,
machine learning (ML) has emerged as a potential tool in molecular biology to analyze
massive datasets and extract knowledge from complex biosystems [54]. ML has been
extensively used in all sorts of thematic issues, from medicine to robotics [55–57]. In
plant science, ML has been applied for viral gene identification [58], the diagnosis of
bacterial infection [59], salt stress tolerance [60], and the taxonomy of grapevine [61], in
addition to global analysis of gene expression, in response to hormones and environmental
stresses [62], plant immunity, and miRNA network prediction [54]. Trained models have
also been successfully used for functional protein classification in plant genomes [63].

To provide a framework for identifying and predicting RLP function, we developed
the RLPredictiOme as a machine learning method associated with Bayesian inference
approaches. In addition to six different features to train ML models, the method used
multiple datasets based on RLK ectodomains and the hypothesis that RLP lacks the kinase
domain but retains the same RLK receptor configuration. It is reasonable to suppose that
the RLP family may contain all RLK-identified ectodomains as they may have emerged
during evolution from kinase domain-losing RLKs. So far, five RLK different ectodomains-
containing RLP groups have been identified [53]. Our ML models could distinguish
RLPs from non-RLPs (NRLPs), RLPs from RLKs and classify subfamilies with relatively
high accuracy, precision, sensitivity, and specificity. To prove the capacity to predict RLP
families, we validated the method with biological experiments describing a new RLP family,
designated GDPDL-RLP. The RLPredictiOme may facilitate the prediction and provide
new insights into the role of RLPs in plants.
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2. Results
2.1. Revisiting the Ectodomain of the RLK Superfamily in Plants

We performed a survey in the genome of 80 plant species to identify the functional
ectodomains of RLKs based on in silico models as a first step for defining the datasets. A
total of 40,418 sequences were retrieved. We identified 100 classes of RLK ectodomains
associated with C-terminal kinase domains (Table 1). However, most of these ectodomains
generated subfamilies with less than 10 members. Sequence identities higher than 0.85 were
removed through CD-hit software. Additionally, only sequences with a single membrane
segment were selected. A total of 14,787 amino acid sequences were recovered, and their
ectodomains were used as positive datasets for filtering RLPs versus NRLPs and RLPs
versus RLKs.

Table 1. Number of RLKs harboring the indicated ectodomain type.

Description Total Description Total Description Total

LRR-RLK 14,087 CHASE-RLK 8 CUB-RLK 2
Unknown-RLK 10,020 Cysteine-rich-secretory-RLK 7 DUF1084-RLK 2
S-domain-RLK 3859 GDPDL-RLK 7 DUF726-RLK 2
Malectin-RLK 3299 Universal-stress-RLK 6 Endomembrane-RLK 2

Salt-stress-
response/antifungal-RLK 2345 ACT-RLK 5 GAF-domain 2

L-Lectin-RLK 2213 Probable-lipid-transfer-RLK 5 GTPase-RLK 2
WAK-RLK 1844 Ankyrin-Kinase 4 Glycosyl hydrolases-RLK 2

B-lectin-RLK 549 Chromo-RLK 4 Glycosyltransferase-RLK 2
LysM-RLK 381 PAN-like-Kinase 4 HAD-RLK 2

WAK-EGF-RLK 285 PB1-RLK 4 HAD-hyrolase-like-RLK 2
EGF-like-RLK 212 Sel1-RLK 4 MSP-RLK 2

WAK-EFG-RLK 177 Alpha/beta-hydrolase-RLK 3 NB-ARC-RLK 2
RCC1-RLK 148 Cytochrome P450-RLK 3 PQQ-enzyme-RLK 2

B-Lectin-RLK 145 Helix-loop-helix-DNA-binding-
RLK 3 Peptidase-RLK 2

PAN-RLK 131 Histidine-phosphatase-RLK 3 PfkB-RLK 2
C-Lectin-RLK 90 Major-Facilitator-RLK 3 Wnt-and-FGF-inhibitory-regulator-RLK 2

Glycosyl-hydrolases-RLK 90 MatE-RLK 3 Adenylate-cyclase-associated-(CAP)-N-
terminal-RLK 1

Thaumatin-RLK 86 PPR 3 Alcohol-dehydrogenase-GroES-like-RLK 1
NAF-RLK 79 PPR-RLK 3 Aldose-1-epimerase-RLK 1

Ethylene-responsive-RLK 74 Phospholipase-RLK 3 Ankyrin-RLK 1
EF-hand-RLK 50 Proline-rich-RLK 3 Castor-and-Pollux-RLK 1

Cache-RLK 32 Sugar-(and
other)-transporter-RLK 3 Cyclic nucleotide-binding-RLK 1

Chitinase-RLK 15 Transmembrane-RLK 3 Cyclic-nucleotide-binding-RLK 1
PAS-RLK 12 Alpha-amylase-catalytic-RLK 2 Cytochrome-P450-RLK 1

Plastocyanin-like-RLK 12 Barwin-RLK 2 DEAD/DEAH-box-helicase-RLK 1
Ring-finger-RLK 9 C2-RLK 2 DUF1221-RLK 1

Adenovirus E3-RLK 8

Three datasets were created to represent a higher number of negative examples. The
first dataset contained 14,973 positive examples and 15,993 negative ones. The second and
third ones contained the same examples, 14,973 positives, and 15,973 negative examples.
To distinguish RLPs from NRLPs, we used six types of features (see Methods sections)
from the three datasets, thus implying a total of 18 training sets. On the other hand, to
distinguish RLPs from RLKs, only one dataset with 14,973 positives (ectodomain of the
RLKs) and negative (full-length sequence of the RLKs) examples were used, implied in six
training sets based on the assumed number of features.

The RLP subfamily members were assigned according to the ectodomains of RLKs.
For each training set, 15 classes were considered, and a 16th class, designated Other
RLPs, was defined by grouping the smaller subfamilies (Table 2). In some plant species,
uncharacterized RLK subfamilies have at least one to ten members and were grouped
in the class Other-RLPs. LRR-RLKs, unknown-RLK, S-domain-RLK, and WAK-RLKs are
over-represented RLK subfamilies in plants. In contrast, thaumatin, GDPD, and malectin
are small subfamilies not represented in all plant species [9]. For each super-represented
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subfamily, 500 sequences were randomly selected to compose ten additional datasets;
thereby, considering the previously mentioned six types of features, 60 training sets were
obtained for training.

Table 2. Subfamily size of receptor-like kinase proteins.

No Label Count

1 L-Lectin-RLK 980
2 LRR-RLK 5404
3 S-domain-RLK 1626
4 Malectin-RLK 1313
5 Salt-stress-response/antifungal-RLK 1004
6 WAK-RLK 1362
7 B-Lectin-RLK 362
8 Unknown-RLK 3285

10 PAN-RLK 41
11 Ethylene-responsive-RLK 29
12 Thaumatin-RLK 52
13 RCC1-RLK 65
14 Glycosyl-hydrolases-RLK 40
15 C-Lectin-RLK 21
16 Other-RLKs 192

2.2. Feature Analysis

We implemented the RLPredictiOme method using six distinct types of attributes
(Figure 1). These included (i) the frequency of the chemical properties of amino acid side
chains (CPAASC), which have 9 features, and (ii) CPAASC2 extracted from N-terminal
and C-terminal regions with 18 features; (iii) the amino acid composition with 20 features
and (iv) amino acid composition extracted from N-terminal and C-terminal regions with
40 features (Figure 1B). Furthermore, we used (v) dipeptide and (vi) tripeptide composi-
tions resulting in 400 and 8000 features, respectively. The simultaneous use of six types of
features and multiple datasets provided RLPredictiOme with information to apply Bayesian
inference (see Section 4) as a powerful ensemble method to make robust predictions.

For the classification models for RLPs/NRLPs (first step, Figure 1C), the tripeptide
composition was the feature with the best performance among all tested features of the
models built with the RLPs/NRLPs datasets using the logistic regression algorithm (Table 3).
The three models built with tripeptide composition achieved accuracy (ACC) of 0.953, 0.955,
and 0.953, respectively, and Matthew’s correlation coefficient (MCC) of 0.906, 0.910, and
0.96, respectively. Furthermore, the false discovery rate (FDR) was lower than 0.05.

For the classification models for RLPs/RLKs (second step, Figure 1D), the amino
acid composition of the N-terminus and C-terminus and tripeptide composition were the
features archiving both the best performance, resulting in ACC of 0.97, MCC of 0.95 and
FDR lower than 0.05 (Table 4). In the RLP subfamily models built with RLP subfamily
datasets (third step, Figure 1E), the tripeptide composition outperformed the others, with
ACC and MCC of 0.984 and 0.866, respectively (Table 5).
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nomial conjugated with Beta distribution. (E) The ML models for subfamily classification is the third 
step to classify RLP families. The result (numerical vector) of the classification is submitted to per-
form Bayesian inference through the Multinomial and Dirichlet probability distributions. (F) The 
Bayesian inference for making decisions and final prediction using binary vector resulting from the 
preview inferences. 
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Figure 1. Schematic representation of the RLPredictiOme method. Amino acid sequences are
submitted to the method with the sequential filters A to F. (A) The signal peptide and segment
transmembrane prediction. (B) Attribute vector provided to the ML models. (C) The first step of the
classification to distinguish RLP from NRLP (RLP/NRLP). The result (binary vector) of the classifica-
tion is submitted to perform Bayesian inference using probability distribution Binomial conjugated
with Beta distribution. (D) The second classification step to distinguish RLP from RLK (RLP/RLK).
The result (binary vector) is submitted to perform Bayesian inference using probability distribution
Binomial conjugated with Beta distribution. (E) The ML models for subfamily classification is the
third step to classify RLP families. The result (numerical vector) of the classification is submitted to
perform Bayesian inference through the Multinomial and Dirichlet probability distributions. (F) The
Bayesian inference for making decisions and final prediction using binary vector resulting from the
preview inferences.

Table 3. Summarized results of the evaluation models built with the RLPs/NRLPs datasets.

Data Set Algorithm ACC F1 FDR MCC Precision Sensitivity Specificity

AAComposition_1 Logistic RegressionCV 0.9173 0.9211 0.0878 0.8343 0.9303 0.9303 0.9032
AAComposition_2 Logistic RegressionCV 0.9205 0.9241 0.0839 0.8407 0.9322 0.9322 0.9078
AAComposition_3 Logistic RegressionCV 0.9209 0.9245 0.0831 0.8416 0.9321 0.9321 0.9088

AAComposition_N_C
terminal_1 MLP Classifier 0.9457 0.9478 0.0534 0.8912 0.9490 0.9490 0.9421

AAComposition_N_C
terminal_2 MLP Classifier 0.9468 0.9487 0.0513 0.8934 0.9487 0.9487 0.9446

AAComposition_N_C
terminal_3 MLP Classifier 0.9482 0.9499 0.0457 0.8964 0.9456 0.9456 0.9511

CPAASC_1 Linear Discriminant
Analysis 0.9020 0.9102 0.1315 0.8074 0.9561 0.9561 0.8436

CPAASC_2 Linear Discriminant
Analysis 0.9042 0.9120 0.1282 0.8116 0.9562 0.9562 0.8481

CPAASC_3 Linear Discriminant
Analysis 0.9040 0.9119 0.1288 0.8113 0.9566 0.9566 0.8473

CPAASC_N_C
terminal_1

Linear Discriminant
Analysis 0.9104 0.9172 0.1183 0.8232 0.9558 0.9558 0.8614

CPAASC_N_C
terminal_2

Linear Discriminant
Analysis 0.9132 0.9196 0.1148 0.8284 0.9569 0.9569 0.8660

CPAASC_N_C
terminal_3

Linear Discriminant
Analysis 0.9140 0.9204 0.1137 0.8301 0.9572 0.9572 0.8674

Dipeptide_1 MLP Classifier 0.9439 0.9457 0.0497 0.8878 0.9412 0.9412 0.9468
Dipeptide_2 MLP Classifier 0.9481 0.9500 0.0501 0.8960 0.9500 0.9500 0.9459
Dipeptide_3 MLP Classifier 0.9447 0.9466 0.0497 0.8894 0.9428 0.9428 0.9468
Tripeptide_1 Logistic RegressionCV 0.9535 0.9551 0.0410 0.9069 0.9511 0.9511 0.9561
Tripeptide_2 Logistic RegressionCV 0.9550 0.9565 0.0389 0.9100 0.9519 0.9519 0.9584
Tripeptide_3 Logistic RegressionCV 0.9534 0.9549 0.0404 0.9067 0.9502 0.9502 0.9568

Mean 0.9303 0.9342 0.0784 0.8615 0.9480 0.9480 0.9112
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Table 4. Summarized results of the evaluation models built with the RLPs/RLKs datasets.

Data Set Algorithm ACC F1 FDR MCC Precision Sensitivity Specificity

AAComposition_N_C
terminal Quadratic Discriminant Analysis 0.9775 0.9773 0.0337 0.9552 0.9884 0.9884 0.9670

Tripeptide Gradient Boosting Classifier 0.9762 0.9760 0.0367 0.9527 0.9890 0.9890 0.9639
CPAASC_N_C_terminal Linear Discriminant Analysis 0.9707 0.9706 0.0479 0.9421 0.9899 0.9899 0.9523

CPAASC Linear Discriminant Analysis 0.9647 0.9647 0.0572 0.9304 0.9877 0.9877 0.9426
Dipeptide MLP Classifier 0.9627 0.9617 0.0344 0.9254 0.9579 0.9579 0.9673

AAComposition Quadratic Discriminant Analysis 0.9571 0.9571 0.0627 0.9151 0.9777 0.9777 0.9374
Mean 0.9681 0.9679 0.0454 0.9368 0.9818 0.9818 0.9551

Table 5. Summarized results of the evaluation models built with the RLP subfamily datasets.

Data Set Algorithm ACC F1 MCC Precision Sensitivity

AAComposition_10 Linear Discriminant Analysis 0.984 0.872 0.864 0.872 0.872
AAComposition_1 Calibrated ClassifierCV 0.984 0.869 0.861 0.869 0.869
AAComposition_2 Calibrated ClassifierCV 0.984 0.874 0.866 0.874 0.874
AAComposition_3 Linear Discriminant Analysis 0.984 0.873 0.864 0.873 0.873
AAComposition_4 Linear Discriminant Analysis 0.984 0.870 0.862 0.870 0.870
AAComposition_5 Linear Discriminant Analysis 0.983 0.867 0.858 0.867 0.867
AAComposition_6 Linear Discriminant Analysis 0.984 0.871 0.863 0.871 0.871
AAComposition_7 Calibrated ClassifierCV 0.984 0.869 0.861 0.869 0.869
AAComposition_8 Calibrated ClassifierCV 0.985 0.876 0.868 0.876 0.876
AAComposition_9 Linear Discriminant Analysis 0.984 0.875 0.867 0.875 0.875

Mean 0.984 0.872 0.863 0.872 0.872
AAComposition_N_C_terminal_10 Calibrated ClassifierCV 0.989 0.911 0.905 0.911 0.911
AAComposition_N_C_terminal_1 Calibrated ClassifierCV 0.988 0.904 0.897 0.904 0.904
AAComposition_N_C_terminal_2 Calibrated ClassifierCV 0.989 0.908 0.902 0.908 0.908
AAComposition_N_C_terminal_3 Calibrated ClassifierCV 0.988 0.902 0.896 0.902 0.902
AAComposition_N_C_terminal_4 KNeighbors Classifier 0.989 0.911 0.905 0.911 0.911
AAComposition_N_C_terminal_5 KNeighbors Classifier 0.989 0.909 0.903 0.909 0.909
AAComposition_N_C_terminal_6 KNeighbors Classifier 0.988 0.903 0.896 0.903 0.903
AAComposition_N_C_terminal_7 KNeighbors Classifier 0.988 0.900 0.894 0.900 0.900
AAComposition_N_C_terminal_8 Calibrated ClassifierCV 0.988 0.903 0.897 0.903 0.903
AAComposition_N_C_terminal_9 Calibrated ClassifierCV 0.988 0.907 0.900 0.907 0.907

Mean 0.988 0.906 0.899 0.906 0.906
CPAASC_10 Linear Discriminant Analysis 0.972 0.778 0.764 0.778 0.778
CPAASC_1 AdaBoost Classifier 0.971 0.772 0.757 0.772 0.772
CPAASC_2 AdaBoost Classifier 0.972 0.776 0.761 0.776 0.776
CPAASC_3 AdaBoost Classifier 0.972 0.773 0.759 0.773 0.773
CPAASC_4 Linear Discriminant Analysis 0.971 0.770 0.755 0.770 0.770
CPAASC_5 Linear Discriminant Analysis 0.972 0.773 0.759 0.773 0.773
CPAASC_6 Linear Discriminant Analysis 0.971 0.771 0.756 0.771 0.771
CPAASC_7 AdaBoos tClassifier 0.972 0.773 0.758 0.773 0.773
CPAASC_8 Linear Discriminant Analysis 0.972 0.778 0.763 0.778 0.778
CPAASC_9 AdaBoost Classifier 0.972 0.774 0.759 0.774 0.774

Mean 0.972 0.774 0.759 0.774 0.774
CPAASC_N_C_terminal_10 AdaBoost Classifier 0.975 0.800 0.787 0.800 0.800
CPAASC_N_C_terminal_1 Linear Discriminant Analysis 0.976 0.810 0.797 0.810 0.810
CPAASC_N_C_terminal_2 AdaBoost Classifier 0.975 0.803 0.790 0.803 0.803
CPAASC_N_C_terminal_3 Linear Discriminant Analysis 0.976 0.804 0.792 0.804 0.804
CPAASC_N_C_terminal_4 Linear Discriminant Analysis 0.976 0.805 0.793 0.805 0.805
CPAASC_N_C_terminal_5 AdaBoost Classifier 0.975 0.802 0.789 0.802 0.802
CPAASC_N_C_terminal_6 Linear Discriminant Analysis 0.976 0.808 0.795 0.808 0.808
CPAASC_N_C_terminal_7 Linear Discriminant Analysis 0.976 0.808 0.795 0.808 0.808
CPAASC_N_C_terminal_8 AdaBoost Classifier 0.975 0.802 0.789 0.802 0.802
CPAASC_N_C_terminal_9 Linear Discriminant Analysis 0.976 0.805 0.792 0.805 0.805

Mean 0.976 0.805 0.792 0.805 0.805
Dipeptide_10 KNeighbors Classifier 0.992 0.935 0.931 0.935 0.935
Dipeptide_1 KNeighbors Classifier 0.992 0.937 0.933 0.937 0.937
Dipeptide_2 KNeighbors Classifier 0.992 0.935 0.931 0.935 0.935
Dipeptide_3 KNeighbors Classifier 0.992 0.934 0.930 0.934 0.934
Dipeptide_4 KNeighbors Classifier 0.991 0.932 0.927 0.932 0.932
Dipeptide_5 KNeighbors Classifier 0.992 0.934 0.930 0.934 0.934
Dipeptide_6 KNeighbors Classifier 0.991 0.931 0.926 0.931 0.931
Dipeptide_7 KNeighbors Classifier 0.992 0.933 0.929 0.933 0.933
Dipeptide_8 KNeighbors Classifier 0.991 0.925 0.920 0.925 0.925
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Table 5. Cont.

Data Set Algorithm ACC F1 MCC Precision Sensitivity

Dipeptide_9 KNeighbors Classifier 0.991 0.929 0.925 0.929 0.929
Mean 0.992 0.932 0.928 0.932 0.932

Tripeptide_1 KNeighbors Classifier 0.995 0.957 0.954 0.957 0.957
Tripeptide_2 KNeighbors Classifier 0.994 0.955 0.952 0.955 0.955
Tripeptide_3 KNeighbors Classifier 0.994 0.956 0.953 0.956 0.956
Tripeptide_4 KNeighbors Classifier 0.995 0.958 0.955 0.958 0.958
Tripeptide_5 KNeighbors Classifier 0.995 0.958 0.955 0.958 0.958
Tripeptide_6 KNeighbors Classifier 0.994 0.954 0.951 0.954 0.954
Tripeptide_7 KNeighbors Classifier 0.994 0.955 0.952 0.955 0.955
Tripeptide_8 KNeighbors Classifier 0.994 0.951 0.948 0.951 0.951
Tripeptide_9 KNeighbors Classifier 0.995 0.958 0.955 0.958 0.958
Tripeptide_10 KNeighbors Classifier 0.995 0.959 0.957 0.959 0.959

Mean 0.994 0.956 0.953 0.956 0.956

2.3. ML Model Capacity of Distinguishing RLPs from NRLPs

The ability of the ML models to distinguish RLPs from NRLPs was examined through
the predictive capacity of the models created with the RLPs/NRLPs datasets (Figure 1C).
The models that classify RLPs/NRLPs were evaluated using 10-fold cross-validation based
on the following metrics: ACC, sensitivity, precision, F-measure, specificity, FDR, and MCC.
For each dataset, 21 models (21 algorithms) were selected, and the performance results are
presented in Table 3. In general, the selected models provided average values for ACC,
F-measure, FDR, MCC, precision, sensitivity, and specificity equal to 0.93, 0.934, 0.070,
0.861, 0.948, 0.948, and 0.911, respectively.

2.4. ML Model Abilities to Distinguish RLPs from RLKs

To distinguish RLPs from RLKs, we assessed the generality of models constructed with
RLP/RLK datasets (Figure 1D). The outcome of 10-fold cross-validations and evaluated
metrics for RLPs/RLKs models are shown in Table 4. The quadratic discriminant analy-
sis and gradient boosting classifier with the amino acid composition of the N-terminus,
C-terminus, and tripeptide features outperformed the others (Table 4). The average per-
formance of the six models provided ACC 0.968, F-measure 0.967, FDR 0.04, MCC 0.936,
precision 0.981, sensitivity 0.981, and specificity 0.955, respectively.

2.5. The Ability of ML Models to Classify RLP Subfamilies

To classify the RLP subfamily, we evaluated models built with RLP subfamily datasets
using 10-fold cross-validation. The performance of the models was examined by the
previously mentioned metrics (Figure 1E). The tripeptide and dipeptide composition
features achieved average MCC values higher than 0.90 when using the K-nearest neighbor
algorithm. The N-terminus and C-terminus amino acid composition feature achieved an
average MCC value of 0.899 using a calibrated classifier and linear discriminant analysis
(Table 4). The average performance of the six models provided ACC 0.98, F-measure 0.874,
FDR, MCC, precision 0.877, sensitivity 0.87, while MCC varied from 0.759 to 0.953 (Table 5).

2.6. Validation of RLPredictiOme

For RLPredictiOme validation, we tested the ML models in combination with Bayesian
inference as an ensemble method approach (Figure 1). In the first validation, we submitted
47 near-characterized sequences of RLPs against the RLPredictiOme. The validation data
set comprises thirty-nine LRR-RLPs, six LysM-RLPs, two WAK-RLPs, and one salt stress-
responsive/antifungal-RLP (Table 6). However, six of these RLPs were not characterized
as RLP as they did not have a TM. The test resulted in thirty-seven LRR-RLPs correctly
classified, two LysM-RLPs were correctly classified, and two LysM-RLPs were classified as
undefined due to relative low probability (p) provided by Bayesian inference of the RLP
subfamily. The remaining two LysM-RLPs (Q67UE8.1 LYP4 and Q69T51.1 LYP6), one WAK-
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RLP (AKP45167), and one salt stress-responsive/antifungal- RLP (LOC_Os04g56430.1)
were not classified as RLPs due to the TM absence (Table 6).

In the second validation, we used the data of a genome-wide study of RLPs restricted
to the LRR-RLP subfamily [53]. The 57 LRR-RLPs of Arabidopsis were submitted to the
RLPredictiOme predictor. As a result, 47 LRR-RLPs were classified correctly, although 13
LRR-RLPs did not have a signal peptide (SP). One LRR-RLP harboring SP was undefined,
and the remaining nine LRR-RLPs were not classified as RLP due to the TM absence
(Table 7). Interestingly, the AtRLP4 protein was previously classified as LRR-RLP; however,
the RLPredictiOme classified it as malectin-RLP due to one di-glucose binding domain
within the endoplasmic reticulum-associated LRR domain.

Table 6. Validation of the almost characterized RLPs.

Accession SP TM RLP-NRLP RLP-NRLP
Probability RLP-RLK RLP-RLK

Probability
RLP-

Subfamily

RLP-
Subfamily
Probability

Classification Decision
Probability

NP_001234733.2 Y Y RLP 0.9961 RLP 0.5751 LRR-RLP 0.7666 (LRR-RLP) 0.9894
sQ9LNV9.2_RLP1 Y Y RLP 0.9961 RLP 0.7161 LRR-RLP 0.7671 (LRR-RLP) 0.9891

sp—Q93ZH0.1—LYM1 Y Y RLP 0.8941 RLP 0.9915 LysM-RLP 0.467 (LysM-RLP) 0.989
CAC40826.1_HcrVf2 Y Y RLP 0.9961 RLP 0.9895 LRR-RLP 0.8333 (LRR-RLP) 0.9888

AAA65235.1_Cf-9 Y Y RLP 0.9965 RLP 0.9906 LRR-RLP 0.8331 (LRR-RLP) 0.9887
AAC78594.1_Hcr2-2A Y Y RLP 0.9965 RLP 0.8569 LRR-RLP 0.849 (LRR-RLP) 0.9885

Q9SSD1.1 Y Y RLP 0.9966 RLP 0.991 LRR-RLP 0.4667 (LRR-RLP) 0.9885
AAC15779.1_Cf-2.1 Y Y RLP 0.9965 RLP 0.855 LRR-RLP 0.85 (LRR-RLP) 0.9882

sp—Q7FZR1.1—RLP52 Y Y RLP 0.9966 RLP 0.9903 LRR-RLP 0.8336 (LRR-RLP) 0.9882
QED40966.1 Y Y RLP 0.9962 RLP 0.7168 LRR-RLP 0.8506 (LRR-RLP) 0.9881

CAC40827.1_HcrVf3 Y Y RLP 0.9964 RLP 0.9909 LRR-RLP 0.8501 (LRR-RLP) 0.988
sp—Q9LJS0.1—RLP42 Y Y RLP 0.9966 RLP 0.9911 LRR-RLP 0.8502 (LRR-RLP) 0.988
AAC78593.1_Hcr2-0B Y Y RLP 0.9962 RLP 0.991 LRR-RLP 0.8495 (LRR-RLP) 0.9879

Q9FK66.1_RLP55 Y Y RLP 0.9958 RLP 0.9915 LRR-RLP 0.6669 (LRR-RLP) 0.9879
sQ9SN38.1_RLP5 Y Y RLP 0.9963 RLP 0.9912 LRR-RLP 0.8497 (LRR-RLP) 0.9879

AAC78596.1_Hcr2-5D Y Y RLP 0.9959 RLP 0.9909 LRR-RLP 0.85 (LRR-RLP) 0.9878
BAE95828.1 (LysM) Y Y RLP 0.9964 RLP 0.99 Undefined 0.4169 (Undefined) 0.9878

Q9LJS2.1 Y Y RLP 0.9964 RLP 0.9906 LRR-RLP 0.8505 (LRR-RLP) 0.9878
AJG42080.1_RLM2 Y Y RLP 0.9963 RLP 0.9908 LRR-RLP 0.8493 (LRR-RLP) 0.9877

CAA05269.1_Hcr9-4E Y Y RLP 0.9962 RLP 0.9893 LRR-RLP 0.8332 (LRR-RLP) 0.9877
AJG42091.1_LEPR3 Y Y RLP 0.9967 RLP 0.9911 LRR-RLP 0.8508 (LRR-RLP) 0.9875
Q9M2Y3.1_RLP44 Y Y RLP 0.9962 RLP 0.9902 LRR-RLP 0.7503 (LRR-RLP) 0.9875

CAC40825.1_HcrVf1 Y Y RLP 0.9965 RLP 0.9921 LRR-RLP 0.8166 (LRR-RLP) 0.9874
NP_001234474.2 Y Y RLP 0.9963 RLP 0.991 LRR-RLP 0.8332 (LRR-RLP) 0.9874

Solyc08g016270.1.1 Y Y RLP 0.9961 RLP 0.72 LRR-RLP 0.6335 (LRR-RLP) 0.9874
AAC78595.1_Hcr2-5B Y Y RLP 0.9963 RLP 0.8517 LRR-RLP 0.85 (LRR-RLP) 0.9873

O80809.1_CLV2 Y Y RLP 0.9964 RLP 0.991 LRR-RLP 0.8496 (LRR-RLP) 0.9873
sp—O23006.1—LYM2 Y Y RLP 0.9962 RLP 0.9908 Undefined 0.5005 (Undefined) 0.9873
sp—O48849.1—RLP23 Y Y RLP 0.9959 RLP 0.9906 LRR-RLP 0.7833 (LRR-RLP) 0.9873
AAC78592.1_Hcr2-0A Y Y RLP 0.9966 RLP 0.8518 LRR-RLP 0.8513 (LRR-RLP) 0.9872

sp—Q6NPN4.1—LYM3 Y Y RLP 0.9452 RLP 0.99 LysM-RLP 0.4501 (LysM-RLP) 0.9872
AAC78591.1 Y Y RLP 0.9966 RLP 0.9899 LRR-RLP 0.8507 (LRR-RLP) 0.9871
AJV90937.1 Y Y RLP 0.9968 RLP 0.8507 LRR-RLP 0.8332 (LRR-RLP) 0.9871
AUT14025.1 Y Y RLP 0.9962 RLP 0.8537 LRR-RLP 0.7329 (LRR-RLP) 0.987

AAC15780.1_Cf-2.2 Y Y RLP 0.9961 RLP 0.8555 LRR-RLP 0.8491 (LRR-RLP) 0.9863
AGI92782.1_RLP1.813 Y Y RLP 0.9963 RLP 0.9906 LRR-RLP 0.4005 (LRR-RLP) 0.9862

NP_187187.1 Y Y RLP 0.9964 RLP 0.9913 LRR-RLP 0.6497 (LRR-RLP) 0.986
AKR80573.1_I-7 Y Y RLP 0.9963 RLP 0.8605 LRR-RLP 0.65 (LRR-RLP) 0.9855

NP_001362850.1_EIX2 Y Y RLP 0.9961 RLP 0.8581 LRR-RLP 0.6005 (LRR-RLP) 0.985
sp—Q9SHI4.1—RLP3 N Y RLP 0.9965 RLP 0.9904 LRR-RLP 0.8328 (LRR-RLP) 0.8015

NP_001355132.1 N Y RLP 0.9965 RLP 0.9903 LRR-RLP 0.5163 (LRR-RLP) 0.8012
Q940E8.1_FEA2 Y N RLP 0.9487 RLP 0.8554 LRR-RLP 0.849 NRLP 0.2048

sp—Q67UE8.1—LYP4 Y N RLP 0.7894 RLP 0.8564 Undefined 0.0 NRLP 0.2017
AFB75328.1 Y N RLP 0.9472 RLP 0.857 LRR-RLP 0.5667 NRLP 0.2012
AKP45167.1 Y N RLP 0.9462 RLP 0.8543 Undefined 0.4495 NRLP 0.201

sp—Q69T51.1—LYP6 Y N RLP 0.8422 RLP 0.8544 Undefined 0.0 NRLP 0.2007

LOC_Os04g56430.1 Y N RLP 0.9471 RLP 0.8518

Salt-stress-
response/
antifungal-

RLP

0.4334 NRLP 0.1986
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Table 7. Validation of the RLPs from the genome-wide study of Arabidopsis RLPs restricted to the
LRR-RLP subfamily.

Accession SP TM RLP-NRLP RLP-NRLP
Probability RLP-RLK RLP-RLK

Probability
RLP-

Subfamily
RLP-Subfamily

Probability Classification Decision
Probability

AT1G65380.1 Y Y RLP 0.9962 RLP 0.9907 LRR-RLP 0.8505 (LRR-RLP) 0.9902
AT1G17240.1 Y Y RLP 0.9962 RLP 0.9913 LRR-RLP 0.8497 (LRR-RLP) 0.9886
AT4G13880.1 Y Y RLP 0.9963 RLP 0.9899 LRR-RLP 0.8001 (LRR-RLP) 0.9884
AT5G27060.1 Y Y RLP 0.9962 RLP 0.991 LRR-RLP 0.6669 (LRR-RLP) 0.9884
AT3G23110.1 Y Y RLP 0.9964 RLP 0.9912 LRR-RLP 0.6502 (LRR-RLP) 0.9883
AT1G80080.1 Y Y RLP 0.9961 RLP 0.9911 LRR-RLP 0.5506 (LRR-RLP) 0.9883
AT2G32680.1 Y Y RLP 0.9967 RLP 0.9918 LRR-RLP 0.7838 (LRR-RLP) 0.9882
AT1G74180.1 Y Y RLP 0.9959 RLP 0.858 LRR-RLP 0.8163 (LRR-RLP) 0.988
AT3G05370.1 Y Y RLP 0.9962 RLP 0.8556 LRR-RLP 0.6337 (LRR-RLP) 0.988
AT3G11080.1 Y Y RLP 0.9962 RLP 0.991 LRR-RLP 0.8496 (LRR-RLP) 0.988
AT3G28890.1 Y Y RLP 0.9966 RLP 0.8561 LRR-RLP 0.6336 (LRR-RLP) 0.988
AT2G25440.1 Y Y RLP 0.9962 RLP 0.9902 LRR-RLP 0.4832 (LRR-RLP) 0.9878
AT5G45770.1 Y Y RLP 0.9965 RLP 0.99 LRR-RLP 0.683 (LRR-RLP) 0.9878
AT2G42800.1 Y Y RLP 0.9963 RLP 0.9908 LRR-RLP 0.6665 (LRR-RLP) 0.9876
AT3G05360.1 Y Y RLP 0.9967 RLP 0.9913 LRR-RLP 0.6668 (LRR-RLP) 0.9876
AT5G65830.1 Y Y RLP 0.9966 RLP 0.8566 LRR-RLP 0.667 (LRR-RLP) 0.9876

AT1G28340.1 Y Y RLP 0.8425 RLP 0.9905 Malectin-
RLP 0.4502 (Malectin-

RLP) 0.9875

AT1G74190.1 Y Y RLP 0.9959 RLP 0.8564 LRR-RLP 0.8499 (LRR-RLP) 0.9871
AT2G15080.1 Y Y RLP 0.9965 RLP 0.9904 LRR-RLP 0.8502 (LRR-RLP) 0.987
AT3G05650.1 Y Y RLP 0.9964 RLP 0.9906 LRR-RLP 0.6664 (LRR-RLP) 0.9868
AT1G45616.1 Y Y RLP 0.9961 RLP 0.9913 LRR-RLP 0.7665 (LRR-RLP) 0.9868
AT3G05660.1 Y Y RLP 0.9966 RLP 0.8557 LRR-RLP 0.85 (LRR-RLP) 0.9866
AT1G58190.1 Y Y RLP 0.9962 RLP 0.8521 LRR-RLP 0.6663 (LRR-RLP) 0.9866
AT3G49750.1 Y Y RLP 0.9963 RLP 0.9909 LRR-RLP 0.7502 (LRR-RLP) 0.9865
AT4G13920.1 Y Y RLP 0.9967 RLP 0.9911 LRR-RLP 0.8498 (LRR-RLP) 0.9865
AT5G25910.1 Y Y RLP 0.9964 RLP 0.9899 LRR-RLP 0.8501 (LRR-RLP) 0.9864
AT2G33060.1 Y Y RLP 0.9966 RLP 0.9914 LRR-RLP 0.8332 (LRR-RLP) 0.9863
AT4G04220.1 Y Y RLP 0.9962 RLP 0.9911 LRR-RLP 0.8506 (LRR-RLP) 0.9863
AT2G33050.1 Y Y RLP 0.9964 RLP 0.9915 LRR-RLP 0.7498 (LRR-RLP) 0.986
AT1G71400.1 Y Y RLP 0.996 RLP 0.8563 LRR-RLP 0.6831 (LRR-RLP) 0.9851
AT4G18760.1 Y Y RLP 0.9967 RLP 0.9903 LRR-RLP 0.8495 (LRR-RLP) 0.9885
AT1G71390.1 N Y RLP 0.9966 RLP 0.99 LRR-RLP 0.6667 (LRR-RLP) 0.8021
AT2G25470.1 N Y RLP 0.9964 RLP 0.8556 LRR-RLP 0.8502 (LRR-RLP) 0.8014
AT1G47890.1 N Y RLP 0.9967 RLP 0.9908 LRR-RLP 0.8501 (LRR-RLP) 0.8001
AT4G13810.1 N Y RLP 0.9964 RLP 0.9907 LRR-RLP 0.833 (LRR-RLP) 0.7997
AT3G23010.1 N Y RLP 0.9965 RLP 0.9908 LRR-RLP 0.667 (LRR-RLP) 0.7995
AT1G74170.1 N Y RLP 0.9964 RLP 0.8561 LRR-RLP 0.7164 (LRR-RLP) 0.7994
AT3G24982.1 N Y RLP 0.9963 RLP 0.989 LRR-RLP 0.8512 (LRR-RLP) 0.7993
AT1G17250.1 N Y RLP 0.9965 RLP 0.9911 LRR-RLP 0.8496 (LRR-RLP) 0.799
AT3G23120.1 N Y RLP 0.997 RLP 0.9905 LRR-RLP 0.6835 (LRR-RLP) 0.7976
AT3G53240.1 N Y RLP 0.9961 RLP 0.9905 LRR-RLP 0.783 (LRR-RLP) 0.7973
AT1G07390.1 N Y RLP 0.9957 RLP 0.7119 LRR-RLP 0.7826 (LRR-RLP) 0.7969
AT3G11010.1 N Y RLP 0.9961 RLP 0.9902 LRR-RLP 0.6665 (LRR-RLP) 0.7958
AT1G34290.1 Y Y RLP 0.9964 RLP 0.9898 Undefined 0.2166 (Undefined) 0.7949
AT5G49290.1 N Y RLP 0.9966 RLP 0.9901 LRR-RLP 0.6833 (LRR-RLP) 0.7941
AT2G32660 N
AT2G33020 N
AT2G33030 N
AT2G33080 N
AT3G24900 N
AT3G25010 N
AT4G13900 N
AT5G40170 N
AT3G25020 N

In a third validation, we selected 148 LRR-RLPs described in a genome-wide study
of rice RLPs [64] (Table S1). The results show that 78 LRR-RLPs with SP and TM were
correctly classified with a relatively high probability (greater than 0.98). Additionally, from
73 LRR-RLPs with a single TM, 71 were correctly classified, whereas 2 were classified as
Other-RLPs with an estimated probability ranging from 0.792 to 0.805. Only four predicted
LRR-RLPs from rice were classified as NRLPs; two lack both SP and TM, and two do not
harbor TM. The fourth validation was carried out to ensure that RLPredictiOme does not
randomly classify proteins. For this, 100 randomly generated sequences were confronted
against RLPredictiOme, and all sequences were classified as NRLP in the first step (Table 8).
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Table 8. Random sequences confronted against RLPredictiOme.

Accession SP TM RLP-NRLP RLP-NRLP
Probability RLP-RLK RLP-RLK

Probability
RLP-

Subfamily
RLP-Subfamily

Probability Classification Decision
Probability

Alien_71_464 Y Y NRLP 0.0532 RLP 0.7145 Other-RLP 0.4166 NRLP 0.4033
Alien_78_801 Y Y NRLP 0.0532 RLP 0.857 WAK-RLP 0.3169 NRLP 0.4014
Alien_88_471 N Y NRLP 0.369 RLP 0.855 Unknown 0.2837 NRLP 0.2068
Alien_90_956 N Y NRLP 0.0527 RLK-like 0.5721 Other-RLP 0.3499 NRLP 0.2064

Alien_94_666 N Y NRLP 0.0535 RLP 0.8558 S-domain-
RLP 0.3164 NRLP 0.2045

Alien_11_789 N Y NRLP 0.0524 RLK-like 0.4288 Other-RLP 0.4331 NRLP 0.2034
Alien_34_248 N Y NRLP 0.2093 RLP 0.8571 Other-RLP 0.4004 NRLP 0.2022
Alien_70_660 N Y NRLP 0.3677 RLP 0.8564 Unknown 0.2491 NRLP 0.2002

Alien_59_959 N Y NRLP 0.052 RLK-like 0.576 S-domain-
RLP 0.417 NRLP 0.1994

Alien_20_195 Y N NRLP 0.3704 RLP 0.8544 Unknown 0.2671 NRLP 0.1987
Alien_23_503 N Y NRLP 0.3698 RLP 0.8596 Unknown 0.3 NRLP 0.1987
Alien_69_854 N Y NRLP 0.0542 RLP 0.7198 Other-RLP 0.4327 NRLP 0.1985
Alien_2_750 N Y NRLP 0.0526 RLK-like 0.5768 Other-RLP 0.3331 NRLP 0.1956

Alien_66_528 N N NRLP 0.0001 RLP 0.8549 S-domain-
RLP 0.3829 NRLP 0.0195

Alien_1_268 N N NRLP 0.0002 RLP 0.8536 Other-RLP 0.3831 NRLP 0.0093
Alien_51_917 N N NRLP 0.0002 RLK-like 0.573 Unknown 0.283 NRLP 0.0044
Alien_79_429 N N NRLP 0.3166 RLP 0.8588 Other-RLP 0.3001 NRLP 0.0041

Alien_61_779 N N NRLP 0.0002 RLP 0.7131 S-domain-
RLP 0.3834 NRLP 0.0036

Alien_67_112 N N NRLP 0.1591 RLP 0.7131 Other-RLP 0.3342 NRLP 0.0035

Alien_42_363 N N NRLP 0.316 RLP 0.8576 S-domain-
RLP 0.3336 NRLP 0.003

Alien_4_417 N N NRLP 0.0002 RLK-like 0.5712 WAK-RLP 0.4337 NRLP 0.0029
Alien_24_102 N N NRLP 0.4222 RLP 0.861 WAK-RLP 0.3498 NRLP 0.0027

Alien_9_882 N N NRLP 0.0002 RLP 0.7132 S-domain-
RLP 0.3664 NRLP 0.0019

Alien_7_199 N N NRLP 0.3166 RLP 0.8564 WAK-RLP 0.3504 NRLP 0.0018
Alien_29_460 N N NRLP 0.2089 RLP 0.8554 Unknown 0.284 NRLP 0.0017
Alien_50_474 N N NRLP 0.0009 RLP 0.8548 Unknown 0.2495 NRLP 0.0017
Alien_72_442 N N NRLP 0.0002 RLP 0.8498 Unknown 0.2333 NRLP 0.0017
Alien_97_120 N N NRLP 0.3685 RLP 0.8566 Unknown 0.2999 NRLP 0.0017

Alien_38_893 N N NRLP 0.0003 RLK-like 0.5771 S-domain-
RLP 0.4499 NRLP 0.0016

Alien_73_528 N N NRLP 0.0002 RLP 0.857 S-domain-
RLP 0.3665 NRLP 0.0016

Alien_83_641 N N NRLP 0.0003 RLP 0.7085 Other-RLP 0.3502 NRLP 0.0016

Alien_44_248 N N NRLP 0.0003 RLP 0.7133 S-domain-
RLP 0.3833 NRLP 0.0015

Alien_62_945 N N NRLP 0.0002 RLK-like 0.5733 S-domain-
RLP 0.4834 NRLP 0.0015

Alien_16_855 N N NRLP 0.0002 RLK-like 0.4308 Unknown 0.2658 NRLP 0.0014

Alien_40_703 N N NRLP 0.0002 RLP 0.711 S-domain-
RLP 0.3499 NRLP 0.0014

Alien_45_534 N N NRLP 0.0002 RLP 0.8553 WAK-RLP 0.3165 NRLP 0.0014
Alien_74_665 N N NRLP 0.0001 RLP 0.8547 Unknown 0.2503 NRLP 0.0014
Alien_18_925 N N NRLP 0.0001 RLK-like 0.5679 Other-RLP 0.4166 NRLP 0.0013
Alien_33_955 N N NRLP 0.0003 RLK-like 0.4348 Unknown 0.2332 NRLP 0.0013
Alien_39_171 N N NRLP 0.1577 RLP 0.8516 Unknown 0.2665 NRLP 0.0012

Alien_49_350 N N NRLP 0.0002 RLP 0.8573 S-domain-
RLP 0.4842 NRLP 0.0012

Alien_63_622 N N NRLP 0.0002 RLP 0.8555 Unknown 0.2664 NRLP 0.0012
Alien_89_627 N N NRLP 0.0002 RLP 0.8567 Other-RLP 0.3835 NRLP 0.0012
Alien_91_929 N N NRLP 0.0003 RLK-like 0.573 Other-RLP 0.4331 NRLP 0.0012
Alien_14_450 N N NRLP 0.3148 RLP 0.7157 WAK-RLP 0.333 NRLP 0.0011
Alien_15_536 N N NRLP 0.0007 RLP 0.8566 Unknown 0.2668 NRLP 0.0011

Alien_22_586 N N NRLP 0.001 RLP 0.8562 S-domain-
RLP 0.3993 NRLP 0.0011

Alien_3_226 N N NRLP 0.0003 RLK-like 0.431 Unknown 0.2991 NRLP 0.0011
Alien_57_326 N N NRLP 0.3151 RLP 0.8605 Unknown 0.2502 NRLP 0.0011
Alien_13_137 N N NRLP 0.2113 RLK-like 0.5764 Unknown 0.1667 NRLP 0.001
Alien_35_659 N N NRLP 0.0002 RLK-like 0.5687 Other-RLP 0.3829 NRLP 0.001
Alien_37_440 N N NRLP 0.0003 RLK-like 0.5743 Unknown 0.2666 NRLP 0.001
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Table 8. Cont.

Accession SP TM RLP-NRLP RLP-NRLP
Probability RLP-RLK RLP-RLK

Probability
RLP-

Subfamily
RLP-Subfamily

Probability Classification Decision
Probability

Alien_48_571 N N NRLP 0.0002 RLP 0.8586 Unknown 0.2999 NRLP 0.001
Alien_54_839 N N NRLP 0.0004 RLP 0.7158 Unknown 0.2674 NRLP 0.001
Alien_12_553 N N NRLP 0.3185 RLP 0.858 Unknown 0.2335 NRLP 0.0009
Alien_17_304 N N NRLP 0.3169 RLP 0.8541 Unknown 0.2828 NRLP 0.0009
Alien_25_176 N N NRLP 0.0003 RLP 0.8568 Unknown 0.2667 NRLP 0.0009
Alien_30_623 N N NRLP 0.0002 RLP 0.8547 Other-RLP 0.3833 NRLP 0.0009
Alien_32_240 N N NRLP 0.1576 RLP 0.8531 Unknown 0.2499 NRLP 0.0009
Alien_53_589 N N NRLP 0.0006 RLP 0.7103 Unknown 0.3 NRLP 0.0009

Alien_58_715 N N NRLP 0.0001 RLK-like 0.5748 S-domain-
RLP 0.3842 NRLP 0.0009

Alien_82_456 N N NRLP 0.0001 RLP 0.855 S-domain-
RLP 0.3165 NRLP 0.0009

Alien_85_415 N N NRLP 0.0004 RLP 0.715 Unknown 0.2167 NRLP 0.0009
Alien_8_947 N N NRLP 0.0001 RLK-like 0.5689 Unknown 0.25 NRLP 0.0009
Alien_10_555 N N NRLP 0.0002 RLP 0.8536 Unknown 0.2996 NRLP 0.0008
Alien_19_229 N N NRLP 0.0003 RLP 0.8599 PAN-RLP 0.3336 NRLP 0.0008
Alien_27_824 N N NRLP 0.0002 RLP 0.7111 Unknown 0.3337 NRLP 0.0008
Alien_41_731 N N NRLP 0.0004 RLP 0.7117 Unknown 0.2666 NRLP 0.0008

Alien_43_686 N N NRLP 0.0001 RLP 0.7129 S-domain-
RLP 0.3662 NRLP 0.0008

Alien_47_420 N N NRLP 0.0004 RLP 0.8546 Other-RLP 0.4172 NRLP 0.0008
Alien_52_779 N N NRLP 0.0003 RLK-like 0.4383 Unknown 0.2999 NRLP 0.0008
Alien_55_478 N N NRLP 0.0002 RLP 0.7179 Other-RLP 0.3997 NRLP 0.0008
Alien_60_817 N N NRLP 0.0002 RLP 0.7135 Unknown 0.2999 NRLP 0.0008
Alien_64_626 N N NRLP 0.0002 RLP 0.7138 Other-RLP 0.4 NRLP 0.0008
Alien_75_673 N N NRLP 0.0002 RLP 0.8548 Unknown 0.2832 NRLP 0.0008

Alien_81_442 N N NRLP 0.0003 RLK-like 0.5736 S-domain-
RLP 0.4833 NRLP 0.0008

Alien_87_495 N N NRLP 0.0005 RLP 0.8555 S-domain-
RLP 0.3838 NRLP 0.0008

Alien_93_110 N N NRLP 0.3149 RLP 0.8597 WAK-RLP 0.467 NRLP 0.0008
Alien_99_622 N N NRLP 0.0002 RLP 0.8568 Unknown 0.25 NRLP 0.0008

Alien_21_499 N N NRLP 0.0002 RLP 0.86 S-domain-
RLP 0.3498 NRLP 0.0007

Alien_31_429 N N NRLP 0.0002 RLP 0.7128 Unknown 0.2996 NRLP 0.0007
Alien_46_860 N N NRLP 0.0002 RLK-like 0.571 Unknown 0.2995 NRLP 0.0007

Alien_56_859 N N NRLP 0.0005 RLK-like 0.5724 S-domain-
RLP 0.3328 NRLP 0.0007

Alien_5_855 N N NRLP 0.0003 RLK-like 0.572 Unknown 0.2997 NRLP 0.0007
Alien_65_609 N N NRLP 0.0002 RLK-like 0.4257 Unknown 0.2667 NRLP 0.0007
Alien_6_529 N N NRLP 0.0001 RLP 0.8565 Unknown 0.2504 NRLP 0.0007
Alien_86_232 N N NRLP 0.1581 RLP 0.8535 Other-RLP 0.3495 NRLP 0.0007
Alien_92_960 N N NRLP 0.0005 RLK-like 0.5741 Other-RLP 0.3168 NRLP 0.0007
Alien_95_597 N N NRLP 0.157 RLP 0.8588 Unknown 0.2833 NRLP 0.0007
Alien_96_597 N N NRLP 0.3704 RLP 0.8544 WAK-RLP 0.3999 NRLP 0.0007
Alien_0_119 N N NRLP 0.0528 RLP 0.7163 PAN-RLP 0.4339 NRLP 0.0006
Alien_26_112 N N NRLP 0.5285 RLP 0.8585 Unknown 0.2664 NRLP 0.0006
Alien_76_327 N N NRLP 0.0003 RLP 0.7066 Other-RLP 0.4002 NRLP 0.0006
Alien_77_685 N N NRLP 0.0002 RLK-like 0.569 Unknown 0.2494 NRLP 0.0006
Alien_98_323 N N NRLP 0.1046 RLP 0.7172 Other-RLP 0.5328 NRLP 0.0006
Alien_28_468 N N NRLP 0.0001 RLP 0.8563 Unknown 0.2831 NRLP 0.0005
Alien_36_821 N N NRLP 0.0001 RLP 0.717 Unknown 0.2337 NRLP 0.0005
Alien_68_626 N N NRLP 0.0002 RLP 0.8541 Unknown 0.2835 NRLP 0.0005

Alien_80_637 N N NRLP 0.0002 RLK-like 0.5715 S-domain-
RLP 0.4333 NRLP 0.0005

Alien_84_494 N N NRLP 0.1614 RLP 0.8574 S-domain-
RLP 0.3501 NRLP 0.0005

2.7. High Throughput Prediction of RLPs in the Arabidopsis Genome Using RLPredictiOme

We performed high throughput prediction by submitting the Arabidopsis sequences
against RLPredictiOme. The cutoff tuning for the probability filter was assumed to be 0.6
in the first two-step and 0.7 in the last step (Figure 1F). In the third step, the probability
estimates were more flexible in order to predict the RLP subfamilies.

From this genome-wide prediction, RLPredictiOme classified 176 RLP sequences into
15 subfamilies (Table S2). Table 9 summarizes the correct predictions within the subfamily.
The number of proteins with unknown functions is highlighted in red, whereas the blue
description represents the RLPs subfamilies predicted in other subfamilies. The LRR-RLPs
subfamily contained 49 members. Three new members (AT5G37360, AT5G19230, and
AT4G28560), predicted with relatively high probability, were not classified into a known
subfamily, whereas two sequences were incorrectly classified. Interestingly, AtRLP4 has two
domains, an LRR domain, and an endoplasmic reticulum protein-associated Di-glucose
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binding domain, which characterizes malectin proteins. The RLPredictiOme method
classified the AtRLP4 into the malectin-RLP subfamily (see Table S2).

Table 9. Number of RLPs and predicted RLKs.

Class (Subfamily) RLP Correctly
Classified *

Unknown
Function **

Incorrectly
Subfamily

Classified ***

Mistakenly
Classified ****

RLKs in
Arabidopsis

LRR-RLP 49 46 3 0 2 235
L-Lectin-RLP 5 0 5 5 45

Salt stress
response/antifungal-RLP 9 3 1 5 0 44

WAK-RLP 6 5 1 4 42
S-domain-RLP 1 1 1 37

Unknown-RLP (Extensin,
PERK, RKF3, URKI) 43 43 11 28

Malectin-RLP 6 2 3 1 5 15
RCC1-RLP 4 4 8
LysM-RLP 4 2 2 3

B-lectin-RLP 1 1 2
C-Lectin-RLP 0 2

Ethylene-responsive-RLP 3 3 3 2
PAS-RLP 0 2

Thaumatin-RLP 6 6 2
PPR-RLP 0 1

Glycosyl-hydrolases-RLP 3 3 0
PAN-RLP 1 1 1 0
Other-RLP 35 11 24 13 0
Undefined 78

Total 176 122 47 7 45 468

* Correctly classified as shown in Table S2 in black bold. ** Unknown function as shown in Table S2 in
red. *** Incorrectly subfamily classified as shown in Table S2 in blue. **** Mistakes as shown in Table S2 in
standard black.

The candidate sequences with a legume lectin domain were classified into two RLP
subfamilies, B-Lectin-RLP and L-Lectin-RLP (Table S2). Only one member was classified
as B-Lectin-RLP with an unknown function, while six members were classified into the L-
Lectin-RLP subfamily, also designated as unknown function proteins. Seven proteins were
classified incorrectly into this subfamily. The 20 Lysin motif-containing candidate proteins
were classified as LysM-RLP (Table S2). Two (AT1G77630.1 and AT2G17120.1) of the three
previously characterized LysM-RLPs [65] and two classified LysM-RLPs (AT3G06360.1 and
AT5G26270.1) belong to subfamilies previously identified as unknown function subfamilies,
and one sequence (AT1G63550.1) belongs to the salt stress response/antifungal-RLP family.
The other 15 sequences may belong to the lipid transfer protein family, not yet characterized.
Additionally, the ectodomain lipid transfer family associated with a kinase domain was
allocated in the other-RLP group as probable lipid transfer-RLK. Twelve sequences were
classified as probable lipid transfer-RLP; however, this misclassification occurred in the
LysM-RLP and unknown-RLP groups, which may be functionally similar. It may be due to
the over-representability of these two mentioned groups.

In the malectin-RLP subfamily, RLPredictiOme correctly classified two members pre-
viously characterized (AT1G28340.1 and AT1G24485.1). Four candidate members were
identified into subfamilies of unknown function, and seven sequences were incorrectly pre-
dicted (Table S2). Furthermore, the third previously identified malectin-RLP (AT3G46240.1)
was predicted as an RCC1-RLP. This subfamily has seven predicted members without
known functions. One salt stress response/antifungal-RLP was predicted within this fam-
ily. The salt stress response/antifungal-RLPs had four members correctly classified and
four predicted within other subfamilies (three in WAK-RLP and one in RCC1-RLP). The
S-domain-RLP had a correctly and an incorrectly predicted sequence (Table S2).
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As for the thaumatin-RLP subfamily, all six members were correctly predicted (Table
S2). The WAK-RLP subfamily correctly predicted five members but also incorporated one
candidate sequence with an unknown function and three salt stress response/antifungal-
RLPs. Ectodomains without a functional domain were classified within a subfamily desig-
nated unknown-RLPs. This group also includes RLPs harboring the ectodomains PERK-like,
extensin, RKF3-like, CrRLK1, and RLK10-like proline-rich proteins. RLPredictiOme pre-
dicted 46 sequences with unknown functions classified as an unknown-RLP subfamily
(Table S2). The protein sequences, which are not classified correctly or have a low relative
probability of subfamily classification, were designated as undefined and not considered
RLPs. In summary, a total of 78 proteins were classified in this group (Table S2).

RLPredictiOme identified probable lipid transfer-RLPs, considered a novel RLP class
associated with RLKs, yet to be characterized. Furthermore, three new classes of RLPs
were predicted: plastocyanin-like-RLP, ring finger-RLP, and glycosyl-hydrolase-RLP, which
contained eight, five, and seven members, respectively. Interestingly, five glycerophos-
phoryl diester phosphodiesterase family (GDPDL members were predicted as other-RLPs.
As a rare protein family in plants, we selected GDPDL-RLP to carry out an experimental
validation for these receptor-like protein candidates. The number of predicted RLPs in each
subfamily is shown in Table 9.

2.8. GDPDL Family Downstream Analysis

Phylogenetic analysis of the kinase domain of the RLK family and the kinase domain
of IRE1A and IRE1B, endoplasmic reticulum (ER)-specific protein kinase, clustered the
kinase domain of GDPDL-RLK and thaumatin in the same group distinct from the ER
kinases (Figure 2A). These results suggest that GDPDL-RLKs are not ER transmembrane
proteins. The secondary structure and the topology of GDPDL show that the N-terminal
region of GDPDL-RLK is composed of a signal peptide, a GDPD domain, and more than
10 candidate sites for N-glycosylation (Figure 2B). As an RLK, GDPDL-RLK contains an
ectodomain facing the extracellular space, a transmembrane segment, and a cytoplasmic
portion harboring the kinase domain. The topology of classified GDPDL-RLPs fits a typical
RLP configuration with an N-terminal peptide signal, the glycerophosphoryl diester phos-
phodiesterase ectodomain, the transmembrane segment, and it lacks a short C-terminal
cytoplasmic domain. GDPDL1 and GDPDl6 harbor two glycerophosphoryl diester phos-
phodiesterase domains, whereas GDPDL3/4/5 has a single domain localized in a similar
position compared with GDPDL-RLK.

The molecular evolution of the new GDPDLs and the GDPDL-RLK ectodomain was
investigated by calculating the ratio between non-synonymous and synonymous substi-
tutions (Ka/Ks). Compared to the full-length sequence of GDPDL-RLK, only the gene
pair GDPDL-RLK/GDPDL6 with a ratio of Ka/Ks > 1 may have undergone a positive
selection (Table 10). The ectodomain sequence of GDPDL-RLK compared with gene pairs
GDPL1/3/4 was submitted to purifying selection, as suggested by their Ka/Ks ratio < 1 and
p-value < 0.05. The divergence time of GDPL1/3/4 was 23.7, 32.5, and 120.1 Mya. These
results suggest that despite the divergence time of GDPL1/3/4 compared to the GDPDL-
RLK ectodomain, the higher frequency of synonymous mutations may have maintained
the GDPL1/3/4 and the ectodomain GDPDL-RLK functionally similar.
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Table 10. Molecular evolution analysis of the GDPDLs.

Sequence Ka Ks Ka/Ks Selection Date (Mya) p-Value

GDPDL5-GDPDL3 0.382 1.578 0.242 Purifying 129.316 7.98 × 10−49

GDPD (ectodomain)- GDPDL4 0.214 1.466 0.146 Purifying 120.193 2.22 × 10-45

GDPDL4-GDPD-RLK 0.214 1.288 0.166 Purifying 105.602 9.31 × 10−45

GDPDL1-GDPDL4 0.180 0.940 0.192 Purifying 77.037 1.60 × 10−51

GDPDL3-GDPDL4 0.164 0.852 0.192 Purifying 69.822 1.12 × 10−46

GDPDL4-GDPDL6 0.646 0.802 0.805 Purifying 65.744 0.146094
GDPD-RLK-GDPDL6 0.695 0.638 1.090 Positive 52.286 0.109708

GDPD (ectodomain)- GDPDL3 0.170 0.397 0.428 Purifying 32.525 4.56 × 10−13

GDPDL3-GDPD-RLK 0.167 0.394 0.423 Purifying 32.333 3.06 × 10−13

GDPD-RLK-GDPDL3 0.167 0.394 0.423 Purifying 32.333 3.06 × 10−13

GDPDL1-GDPDL3 0.141 0.390 0.363 Purifying 31.961 1.05 × 10−17

GDPDL1-GDPD-RLK 0.120 0.327 0.368 Purifying 26.786 5.38 × 10−16

GDPD-RLK-GDPDL1 0.120 0.327 0.368 Purifying 26.786 5.38 × 10−16

GDPDL1-GDPD (ectodomain) 0.125 0.326 0.384 Purifying 26.730 5.08 × 10−15

2.9. Identification of GDPDLs- and SNC4-Interacting Proteins from Arabidopsis

Protein–protein interactions between the GDPDLs and GDPDL-RLK, also designated
SUPPRESSOR OF NPR1, CONSTITUTIVE 4 (SNC4), and the Arabidopsis proteins were
identified in silico through the protein–protein interactome using Cytoscape software
and several databases (BioGRID database, Arabidopsis interactome database, and the
String database). This procedure identified the protein-protein interaction (PPI) network
containing GDPDLs and directly interacting Arabidopsis proteins (Figure 3). The GDPDL6
formed the largest hub (degree 38). Among the GDLDL6-interacting proteins, the glycogen
synthase kinase 3/SHAGGY-like kinases (GSKs-AT1G57870) may represent a candidate
protein for signaling (Figure 3A, Table 11). Although GSKs have been recently discovered
in plants, evidence suggests that they are involved in different biological processes, such
as brassinosteroid signaling, flower development, and injury responses [66]). The node-
hub GDPDL5 contains the AtMLP328 pathogenesis-related protein and other proteins of
unknown function (Figure 3A, Table 11). The AtMLP328 is a member of the major latex
protein-like (MLPL) gene family responsible for promoting vegetative growth and delaying
flowering.
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1 
 

 

Figure 3. GDPDL-RLPs-interacting Arabidopsis proteins. (A) GDPDL-RLP-interacting proteins were
identified in the Arabidopsis interactome, and the network was assembled by the Cytoscape software.
GDPDL-RLPs and SNC4 (GDPDL2) are indicated in green, GDPDL-specifically interacting proteins
in light blue, RNA-binding proteins, which interact with all 6 GDPDLs, including GDPDL_RLK
(SNC4), are shown in red. In orange, CSN5A as a central hub of plant-pathogen interactions (B) Gene
enrichment of proteins under the molecular function term from the GDPD-RLP-Arabidopsis protein-
protein interactions (PPI) network. (C) Gene enrichment of proteins from the GDPD-RLP-Arabidopsis
PPI network under the cellular component term.
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Table 11. Protein-protein interactions between the GDPDL proteins and Arabidopsis proteins. The
colors indicate the hubs from Figure 3A.

Name Betweenness
Centrality

Closeness
Centrality Degree Eccentricity Description

SNC4 0.19234075 0.37614679 12 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed
RLP51 0.0 0.27516779 2 4 leucine rich repeat family protein, putative, expressed
SNC1 3.0111 × 10−4 0.27702703 4 4 rp3 protein, putative, expressed
SUA 1.0037 × 10−4 0.27702703 4 4 RNA recognition motif family protein, expressed

DRT111 1.0037 × 10−4 0.27702703 4 4 G-patch domain containing protein, expressed
AT2G20050 0.0 0.27424749 1 4 AGC_PKA/PKG_like.1-ACG kinases include homologs to PKA, PKG and PKC, expressed
AT1G59780 0.0 0.27424749 1 4 NBS-LRR disease resistance protein, putative, expressed
AT3G55350 0.0 0.27609428 3 4 trp repressor/replication initiator, putative, expressed

BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed
AT4G1772 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed

AT1G22920 0.0 0.27424749 2 4 COP9 signalosome complex subunit 5b, putative, expressed
GDPDL5 0.17835276 0.37104072 10 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed
MLP328 0.0 0.27702703 7 4 pathogenesis-related Bet v I family protein, putative, expressed
AGL46 0.0 0.27702703 7 4 OsMADS89-MADS-box family gene with M-gamma type-box, expressed

AT2G47115 0.04302 0.2779661 8 4 expressed protein
AT1G29660 0.04302 0.2779661 8 4 GDSL-like lipase/acylhydrolase, putative, expressed
AT5G51950 0.04302 0.2779661 8 4 HOTHEAD precursor, putative, expressed
AT1G20680 0.04302 0.2779661 8 4 Ser/Thr-rich protein T10 in DGCR region, putative, expressed
AT2G17710 0.04302 0.2779661 8 4 expressed protein
AT5G42530 0.04302 0.2779661 8 4

BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed
AT4G17720 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed

GDPDL3 0.1693342 0.37104072 10 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed
SHV2 0.0 0.27516779 5 4 COBRA-like protein 7 precursor, putative, expressed
MRH1 0.0 0.27516779 5 4 MRH1, putative, expressed
BST1 0.0 0.27516779 5 4 endonuclease/exonuclease/phosphatase family domain containing protein, expressed

MRH6 0.0 0.27516779 5 4 universal stress protein domain containing protein, putative, expressed
MRH2 0.0 0.27516779 5 4 kinesin motor domain containing protein, expressed

ATCOAE 0.0 0.27152318 1 4 dephospho-CoA kinase, putative, expressed
AT3G23750 0.0 0.27152318 1 4 receptor protein kinase TMK1 precursor, putative, expressed

BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed
AT4G17720 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed

GDPDL1 0.12794717 0.37442922 10 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed
AT1G49750 0.0 0.27333333 1 4 uncharacterized protein At4g06744 precursor, putative, expressed
AT3G45710 0.0 0.27333333 1 4 peptide transporter PTR2, putative, expressed

PLDGAMMA1 0.00779455 0.29181495 3 4 phospholipase D, putative, expressed
MAP18 0.0 0.27333333 1 4 Unknown function
CDS1 0.0 0.28275862 2 4 phosphatidate cytidylyltransferase, putative, expressed
BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed

AT4G17720 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed
GDPDL4 0.21573054 0.38497653 14 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed

AT5G38480 0.0 0.27891156 1 4 14-3-3 protein, putative, expressed
FLA7 0.00445805 0.29390681 6 4 fasciclin domain containing protein, expressed
SKU5 0.0 0.2877193 4 4 monocopper oxidase, putative, expressed
FLA8 0.0 0.2877193 4 4 fasciclin-like arabinogalactan protein, putative, expressed
ZW9 0.00445805 0.29390681 6 4 ubiquitin carboxyl-terminal hydrolase, putative, expressed

AT1G32860 0.00853443 0.29496403 2 4 glycosyl hydrolases family 17, putative, expressed
AT3G56370 0.0 0.27891156 1 4 receptor-like protein kinase precursor, putative, expressed
AT4G09000 0.0 0.27891156 1 4 14-3-3 protein, putative, expressed
BG_PPAP 0.0 0.27891156 1 4 glycosyl hydrolases family 17, putative, expressed

AT1G01080 0.06480132 0.39047619 3 4 RNA recognition motif containing protein, putative, expressed
AT5G65430 0.0 0.27891156 1 4 14-3-3 protein, putative, expressed

BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed
AT4G17720 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed

GDPDL6 0.67455299 0.4969697 38 3 glycerophosphoryl diester phosphodiesterase family protein, putative, expressed
AT4G11860 0.0 0.27891156 1 4 ubiquitin interaction motif family protein, expressed
AT3G23410 0.0 0.33333333 1 4 alcohol oxidase, putative, expressed
AT4G23400 0.0 0.33333333 1 4 aquaporin protein, putative, expressed
AT4G30850 0.0 0.33333333 1 4 haemolysin-III, putative, expressed
AT1G57870 0.0 0.33333333 1 4 CGMC_GSK.5-CGMC includes CDA, MAPK, GSK3, and CLKC kinases, expressed
AT1G31812 0.0 0.33333333 1 4 acyl CoA binding protein, putative, expressed
AT1G14360 0.0 0.33333333 1 4 solute carrier family 35 member B1, putative, expressed
AT5G06320 0.0 0.33333333 1 4 harpin-induced protein 1 domain containing protein, expressed

AT1G07550 0.0 0.33333333 1 4 senescence-induced receptor-like serine/threonine-protein kinase precursor,
putative, expressed

AT5G07340 0.0 0.33333333 1 4 calreticulin precursor protein, putative, expressed
AT2G41705 0.0 0.33333333 1 4 crcB-like protein, expressed
AT3G12180 0.0 0.33333333 1 4 cornichon protein, putative, expressed
AT5G11890 0.0 0.33333333 1 4 harpin-induced protein 1 domain containing protein, expressed
AT1G14020 0.0 0.33333333 1 4 auxin-independent growth promoter protein, putative, expressed
AT1G34640 0.0 0.33333333 1 4 expressed protein
AT3G66654 0.0 0.33333333 1 4 peptidyl-prolyl cis-trans isomerase, putative, expressed
AT2G22425 0.0 0.33333333 1 4 signal peptidase complex subunit 1, putative, expressed
AT2G27290 0.0 0.33333333 1 4 protein of unknown function DUF1279 domain containing protein, expressed
AT5G49540 0.0 0.33333333 1 4 transmembrane protein 93, putative, expressed
AT1G13770 0.0 0.33333333 1 4 DUF647 domain containing protein, putative, expressed
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Table 11. Cont.

Name Betweenness
Centrality

Closeness
Centrality Degree Eccentricity Description

AT1G29060 0.0 0.33333333 1 4 expressed protein
AT4G14455 0.0 0.33333333 1 4 SNARE domain containing protein, putative, expressed
AT4G25360 0.0 0.33333333 1 4 leaf senescence related protein, putative, expressed
AT4G12250 0.0 0.33333333 1 4 UDP-glucuronate 4-epimerase, putative, expressed
AT5G35460 0.0 0.33333333 1 4 integral membrane protein, putative, expressed
AT1G16170 0.0 0.33333333 1 4 expressed protein
AT5G03345 0.0 0.33333333 1 4 expressed protein
AT1G47640 0.0 0.33333333 1 4 SSA2-2S albumin seed storage family protein precursor, putative, expressed
AT5G52420 0.0 0.33333333 1 4 expressed protein

BPA1 0.30818366 0.51898734 6 2 RNA recognition motif containing protein, putative, expressed
AT4G17720 0.30818366 0.51898734 6 2 RNA recognition motif, putative, expressed

The cluster of GDPDL3-interacting proteins includes the BRASSINOSTEROIDE IN-
SENTIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1 (BAK1), also designated SO-
MATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3). BAK1 has been shown to
function as a co-receptor for many RLKs, including the recruitment of receptor-like proteins
and SOBIR to form a heterodimeric complex upon recognition of ligands by RLPs, for
example, RLP23-SOBIR1-BAK1, cf-4-BAK1/SERK3- SOBIR1, RE02-BAK1-SOBIR1, and
RXEG1-BAK1-SOBIR1 [46,49,51,67] (Figure 3A, Table 11).

The interactions of GDPDLs- and SNC4 converge to centralized hubs represented by
BPA1, AT1G01080, and AT4G17720 (BPL1), which contain an RNA binding motif (Figure 3A,
Table 11). The BPA1 protein has been shown to interact with Arabidopsis ACD11, which
induces the expression of genes associated with disease resistance and genes involved in
the ROS-mediated response defense upon recognizing fungal elicitors [68,69]. Furthermore,
BPA1 and BPL1 are induced during geminivirus infection [70]. The GDPDLs-Arabidopsis
PPI network is enriched for proteins involved in plant defense response to pathogens and
vegetative growth, indicating that this new RLP family may be involved in immunity and
developmental signaling.

To gain further insights into the cellular processes involved by GDPDLs, we performed
functional enrichment analyses of their direct interactors. In all three categories, biological
process, molecular function, and cellular component ontology, we identified enriched GO
terms with a p-value < 0.05. Under molecular function, we identified enriched terms for
Glycerophosphodiester phosphodiesterase activity, nucleotide binding, purine ribonu-
cleotide binding, and hydrolase activity, which are unusual enzyme activities associated
with membrane receptor activity (Table 10). Under the cellular component ontology, we
observed an over-representation of proteins from plasma membrane term, membrane-
bounded term, and plant-type cell wall term, which may suggest that the location and
functional activities of these hubs are specific to transmembrane proteins. (Figure 3B).
Under the biological process ontology, the response to defense response, response to ex-
ternal stimulus, and developmental growth term represented significantly enriched GO
terms, which show that this family of proteins may be related to immunity and plant
development (Table S3).

2.10. The Expression Profile of the GDPDLs in Response to Pathogens and Different Organs

To gain insights into the potential defense response of the GDPDLs genes and to
validate these candidate receptor-like proteins as expressed genes, we investigated their
expression profiles through publicly available expression datasets using the gene investiga-
tor (NEBION, AG, Zurich, Switzerland; www.genevestigator.com, academic free license,
accessed on 28 February 2020) (Figure 4A). From these microarray data, GDPDL1-RLK was
induced by aphids, the bacteria Pseudomonas syringae, and the begomovirus cabbage leaf
curl virus (CabLCV), but not by nematodes. Likewise, GDPDL2-RLP is induced by bacteria
and aphids, and begomoviruses to a lesser extent. GDPDL3-RLP and GDPDL4-RLP are
upregulated by aphids and bacteria and down-regulated by begomovirus. GDPDL5 and
GDPDL6 are not induced by aphids and bacteria but downregulated by CabLCV. As for
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organ-specific expression, except for GDPDL5-RLP and GDPDL6-RLP which only expressed
in flowers and siliques, the remaining GDPDLs are expressed in all organs tested, although
to a different extent (Figure 4B). While GDPDL1 and GDPDL2 expressions predominate in
the developed rosette, GDPDL3 is highly expressed in germinated seeds, and the GDPDL4
expression is fairly distributed in all organs.
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GDPDL-RLPs in response to pathogens. (B) The expression profile of the GDPDL-RLPs in different
organs and developmental stages.

Pathogen-induced and organ-specific expression profiles of the predicted GDPDL-RLP
genes were confirmed by qRT-PCR (Figures 5 and 6). We also monitored the expression of
the GDPDL-RLP genes in response to infections with tobacco rattle virus (TRV) and CabLCV.
The antibacterial immune responses (PTI) were activated by treatment with flg22, and the
expression of GDPDLs was monitored (Figure 5). Consistent with the microarray data,
GDPL5 and GDPL6 expression was not affected by flg22 treatment but was downregulated
by CabLCV, whereas GDPDL1 and GDPDL2 were induced by flg22 and CabLCV. All 5
GDPDLs analyzed by qRT-PCR were induced by TRV, a plant RNA virus. Remarkably,
these GDPDL proteins are interconnected via interactions with RNA recognition motif-
containing proteins, which form centralized hubs in the network interaction (Figure 3A,
Table 11). This result may suggest an involvement of GDPDLs in the antiviral response
induced by an RNA virus.
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tion of the indicated genes was monitored by quantitative RT-PCR with gene-specific primers. The 
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or standard bars indicate the mean ± SD (n  =  3, technical replicates). * p < 0.05. 

Figure 5. Expression analysis of the GDPDL genes in response to biotic signals. For the flg22-induced
expression of GDPDLs (as indicated in the figure), 12-day-old Arabidopsis seedlings were treated
with 100 nM flg22, and total RNA was prepared from 100 µg of a pool of 10 flg22-treated plants.
For TRV infection, Arabidopsis leaves were mechanically inoculated with TRV from N. benthamiana-
infected leaves, and TRV infection was diagnosed by PCR. For CabLCV infection, Arabidopsis plants
were inoculated with infectious DNA-A and DNA-B clones, and viral accumulation was monitored by
PCR. After 15 days of TRV inoculation and 21 days of CabLCV inoculation, total RNA was extracted
from a pool of 10 TRV- and CabLCV-infected plants. The transcript accumulation of the indicated
genes was monitored by quantitative RT-PCR with gene-specific primers. The gene expression was
calculated by the 2−∆CT method using actin as an endogenous control. The error or standard bars
indicate the mean ± SD (n = 3, technical replicates). * p < 0.05.

We also confirmed the expression profile of these GDPDL genes in different tissues
by qRT-PCR. We used the root, pedicel, inflorescence axis, and flower tissues. The expres-
sion levels of GDPDL1 and GDPDL2 are similar in all tissues (Figure 6A,B). The highest
expression levels were identified in the inflorescence axis and pedicel, suggesting dis-
tinct functions in development. Likewise, GDPDL3 is most expressed in roots and barely
detected in other tissues (Figure 6C). Interestingly, the expression levels of GDPDL4 are
regular in all tissues, showing that this protein may have a varied role during development
(Figure 6D). In contrast, qRT-PCR confirmed that the GDPDL5 and GDPDL6 transcripts
accumulated to elevated levels in flowers (Figure 6E, 6F). These gene expression analyses
confirmed that GDPDL-RLPs are expressed in response to stimuli and development, sub-
stantiating the argument that they may form a new class of RLPs involved in immunity
and developmental signaling.
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Figure 6. Organ-specific expression of the GDPDL genes. Total RNA was extracted from different
Arabidopsis organs (as indicated in the figure) of 35-day-grown plants. We used 3 samples of different
pools of 10 plants each (therefore n = 3, biological replicates), and the transcript levels of the indicated
genes (GDPDL1, GDPDL2, GDPDL3, GDPDL, GDPDL5, and GDPDL6) were determined by qRT-PCR
using gene-specific primers. The gene expression was calculated by the 2−∆CT method using actin
as an endogenous control. The error or standard bars indicate the mean ± SD (n = 3 biological
replicates + n = 3 technical replicates each) of three independent experiments.

3. Discussion

Due to the functional relevance of the RLK family in several biological processes, this
large family has been extensively studied in different plant species [6,9,71–75]. In contrast,
far less is known about the plant RLP family, despite their conceptual relevance in signaling
modules. RLPs can perceive external signals but depend on association with RLKs for
signal transduction due to the lack of a cytoplasmic kinase domain at the C-terminus. The
absence of a conserved kinase domain precludes using sequence comparison algorithms
for genome-wide studies of the plant RLP family. Thus, identifying RLPs in plant genomes
is challenging, and few RLPs have been described in plant species. Moreover, a large-scale
RLP prediction tool has not been developed. Here, we developed the RLPredictiOme
method based on machine learning approaches and Bayesian inference for the throughout
prediction of RLPs.

Typically, the ML classification models applied in plant molecular biology require
actual data to train ML-supervised algorithms [54,76–78]. The RLPredictiOme can pre-
dict RLP subfamilies using the RLK ectodomain and simultaneously six types of fea-
tures during the prediction process. The prediction model consists of three steps subse-
quently built with trained models and different algorithms capable of distinguishing RLP
from NRLP, RLP from RLKs, and finally, predicting an RLP subfamily. The combination
of several ML models with different algorithms has been applied for protein and viral
sequence classification [58,63]. Using different classifiers requires methods that compile
the results of the classifiers into a single final prediction. Some methods have used dif-
ferent techniques for model combinations, including a majoritarian vote of the classifiers
or an average probability for the classifications [63,79]. The approaches applied in the
RLPredictiOme by combining models are based on the success and failure of predictions,
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which are modeled with Bayesian inference. In each step after the classifications, the
Bayesian inference is applied. The validation results of the RLPredictiOme showed high
probabilities for classifying RLPs proteins (See Table 7, columns RLP-NRLP Probability,
RLP-RLK Probability, and RLP-Subfamily Probability). In contrast, NRLP proteins were
predicted with a lower probability (Table 8). Finally, based on the probability of Bayesian
inferences for each step, the last step is used as a decision-making process for the prediction
of RLPs (Figure 1F). The RLPredictiOme predicts RLP proteins with a probability ranging
from 0.79 to 0.99 (See Tables 7–9, column Decision probability). Thus, the ML models
can be successfully combined with Bayesian inference to perform robust high-throughput
predictions of RLPs in plant genomes.

The RLPredictiOme could predict new RLP subfamilies with higher probability in all
steps, although groups less represented were also classified into a corresponding subfamily,
yet with lower probability. Furthermore, groups less represented by RLPs tended to be
classified within other RLP subfamilies. This other RLP classification was the case of the
probable lipid transfer-RLP subfamily, which shares similar functional characteristics with
LysM-RLP. The lipid transfer proteins (LTPs), already described as non-specific lipid transfer
proteins (nsLTPs), contain an eight-cysteine motif that is stabilized by four disulfide bonds
(Wang et al., 2019). The probable lipid transfer family (PLT)-RLPs found by RLPredictiOme
harbor a five-cysteine motif (CC-Xn-CXC-Xn-C) in the TP_2 functional domain differently
from the typical nsLTPs [80]. Phylogenetics relationships, structure, and genome-wide
distribution of LTPs, involved in response to nematodes, have been described in cucumbers
(Wang et al., 2019). Furthermore, PLTs have been shown to play a crucial role in regulating
various plant biological processes and responding to biotic and abiotic stress [81,82]. Due
to evidence of association with kinases, PTL-RLPs may be classified as a new subfamily of
RLPs or may represent an expansion of the LysM-RLP subfamily, which exhibits similar
functional roles.

In silico and in vitro analyses of GDPDL-RLPs confirmed the efficiency of the RLPre-
dictiOme in identifying a new family of RLPs based on the ectodomain of GDPDL-RLK se-
quences. The GDPDL-RLK is a reduced class of RLKs in plants. Among all the plant species
analyzed, they have been found only in Arabidopsis halleri (Araha.28943s0001.1), Arabidop-
sis lyrata (475793), Arabidopsis thaliana (AT1G66980.1), Boechera stricta (Bostr.26959s0213.1,
Bostr.26959s0216.1), and Brassica rapa (Brara.K00110.1), all from the Brassicaceae family, and
Capsella grandiflora (Cagra.0792s0001.1) and Panicum virgatum (Pavir.6NG294600.1), from
the Poaceae family. Despite only one GDPDL-RLK in the Arabidopsis genome [83], RLPred-
itiOme identified five sequences as GDPDL-RLP. Furthermore, the GDPDL-RLK subfamily
has been maintained in only a few plant species; thereby, this family is likely suffering a
reduction in size and distribution. The GDPDL2-RLK (AT1G66980) has been previously
characterized as SNC4, an atypical receptor-like kinase with a predicted extracellular GDPD
domain involved in regulating plant immunity [84]. The glycerophosphodiester phos-
phodiesterase (GDPD) hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate
(G-3-P) and plays a significant role in various biological processes [84]. The GDPDL2-RLK
ectodomain is structurally similar to the predicted GDPDL-RLPs (Figure 2B). Molecular
evolution investigated by calculating ka/ks of GDPDL-RLP-GDPDL-RLK pairs revealed a
significant rate of synonymous substitutions indicating that although the kinase domain
has been lost, the functional characteristics of the ectodomain remained conserved among
evolution (Table 10).

A common feature of the RLK subfamilies is that they are often more extensive
than the RLP subfamily counterparts, which suggests that some members of the RLK
subfamilies have lost their conserved C-terminal kinase domain during evolution. In
contrast, RLPredictiOme identified a new RLP subfamily, GDPDL-RLP, which seems to
have expanded compared to the corresponding GDPDL-RLK subfamily. Therefore, we
were interested in examining the expression profile of the GDPDL-RLP members to ensure
a basal level of expression during development or in response to pathogens. In silico
analyses from publicly available expression databases indicated that the RLP members
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display differential expression profiles in response to pathogens and different organs,
indicating that they may be involved in development and immunity.

GDPDL1 (GDPGL-RLP) has been previously shown to be expressed in the rosettes
of Arabidopsis plants [85]. We confirmed by qRT-PCR that GDPDL1 is expressed in the
pedicels of the rosette and flowers. GDPDL1 has also been shown to be involved in
processes that confer rigidity to the cell wall, related to defense against insects, nematodes,
and oomycetes [85]. Accordingly, the previously published microarray data showed a high
GDPDL1 induction in response to these pathogens and pests.

GDPDL1 and GDPDL2 displayed the highest expression in pedicels and flower stems
and were highly expressed in response to pathogens and flg22. Among all members of this
new GDPDL family, GDPDL3 was barely detected in the organs examined except in roots,
consistent with its role in root morphogenesis [86]. GDPL4 was uniformly expressed in
all organs evaluated. GDPDL4 has been described as a highly expressed gene in rosettes
and is involved in the development of root hair [85,87]. Therefore, the expression profile of
already described GDPDLs is coordinated with their assigned function.

Two undescribed family members, GDPDL6 and GDPDL5, displayed elevated levels
of expression in flowers, showing that both genes may be involved in the development
of reproductive organs and structures. These genes are also induced by biotic signals,
as RT-qPCR demonstrated they were upregulated by TRV infection and microarray data
showed their slight induction by nematodes. We found that all GDPDLs are induced by the
RNA virus TRV and form interconnected protein-protein hubs with RNA binding proteins.
It would be relevant to investigate whether GDPDLs function in RNA virus infection. The
expression pattern and evolution studies of members of the GDPGL-RLP subfamily further
substantiate the notion that the members of this subfamily have maintained functional
domains and may play relevant roles in development and plant defense.

4. Materials and Methods
4.1. Reclassification of the Plant RLK Ectodomains for Composing Datasets

The amino acid sequences of 80 plant species were retrieved from the Phytozome
database (version 11.1 by DOE Joint Genome Institute, Lawrence Berkeley National Labo-
ratory; https://phytozome.jgi.doe.gov/, accessed on 28 February 2020). We applied filters
to remove unknown sequence proteins without functional annotation. The sequences were
re-annotated using SMART (version 8.0, licensed by Creative Commons Licence, manufac-
tured by Heidelberg, Germany; smart.embl-heidelberg.de) and Pfam (pfam.sanger.ac.uk)
databases. Then, the amino acid sequences containing a predicted kinase domain were se-
lected. The signal peptide was predicted using SignalP v.4.0 [50] and Phobius [88] software,
whereas the transmembrane segment was identified using TMHMM [89] and Phobius
software. Then, the sequences were filtered by using the criteria based on the presence of a
signal peptide and a transmembrane segment. Furthermore, the redundant sequences were
removed through CD-HIT algorithm [90]. Subsequently, the amino acid sequences were
grouped according to the functional domain of the extracellular ectodomain (LRR-RLK,
WAK-RLK, and LysMRLK, for example) [9,91].

4.2. Dataset Composition

For the classification of RLPs, we used three steps: two steps of binary classification
and one multilabel classification. In summary, the first stage compares RLPs with other
families of NRLP; the second compares RLP with receptor-like kinases (RLKs); and the
third performs the classification of a protein sequence within an RLP subfamily using the
functional ectodomain present in RLKs. In the first stage, the training dataset consisted of
amino acid sequences containing the extracellular ectodomain, the region of the membrane
segment, and the cytoplasmic region that precedes (upstream) the kinase domain of RLKs
(but without the kinase domain) as a positive class (RLP). The negative class was composed
of full-length amino acid randomly selected sequences (NRLP); the sequences of the positive
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class were removed from the negative dataset. The dataset was divided into three different
datasets to increase the number of negative examples.

In the second stage, the positive class contained the training dataset (RLP), and the
negative class used the full-length amino acid sequences of RLKs. In the third stage, the data
from RLP positive classes were labeled according to the reclassification of RLKs based on
their ectodomain. In this case, a putative LRR-RLP, for instance, contained an ectodomain
of the leucine-rich repeat kinase receptor-like kinase (LRR-RLK), a transmembrane segment,
and a short cytoplasmic region excluding a kinase domain. Furthermore, the whole dataset
was distributed into ten different sub-datasets to work around the computational time
limitations of the training.

4.3. Feature Extraction

Six types of feature types representing residue frequency composition were calculated
for each residue sequence. These included (i) amino acid composition frequency of full-
length sequence, (ii) amino acid composition frequency (monopeptide) of the N-terminal
and C- terminal regions, (iii) dipeptide frequency, (iv) tripeptide frequency, (v) frequency
of chemical properties of amino acid side chains (CPAASC), and (vi) CPAASC2 frequency
of the N-terminal and C-terminal regions. A numerical feature vector was created for each
sequence of positive and negative datasets. The CPAASC feature describes the frequency
of the chemical properties of amino acid side chains, such as positively charged, negatively
charged, polar uncharged, aromatic, nonpolar aliphatic, hydrophobicity, volume, and mass
of the total number of amino acids in the full-length peptide sequence [63]. In contrast, the
CPAASC2 is calculated by the frequency of the chemical properties of amino acid side chains
of the N-terminal and C-terminal regions. The full-length sequence is split into two equal
(or nearly equal) regions, and the proportion of amino acid composition was also calculated
for each of these regions. We consider the N-terminus the first region of the complete amino
acid sequence and the C-terminus the second region of the full-length sequence.

The amino acid composition feature describes the frequency of an individual amino
acid type within the total number of amino acids in the full-length peptide sequence
(Saravanan and Gautham, 2015). The amino acid composition comprises 20 features
(ACDEFGHIKLMNPQRSTVWY). The amino acid composition frequency is calculated by
the individual amino acid type of the N-terminal and C-terminal regions. The amino acid
composition frequency in the N-terminal and C-terminal regions comprises 40 features.
The dipeptide frequency describes all combinations of amino acid pairs and comprises 400
features [92]. The tripeptide frequency describes all combinations of three amino acids
resulting in 8000 features [93].

The six types of features were used to train all classification models in the three
proposed steps. In summary, three training datasets totaling 18 training sets were created
for each feature type to compare RLPs with NRLPs proteins (first stage). However, to
compare RLPs with RLKs (second stage), one training dataset for each feature type was
created. Finally, to classify RLPs within a subfamily (third stage), ten training datasets for
each feature type were created, resulting in 60 training sets.

4.4. Dealing with Imbalanced Datasets

The superfamily RLK in plants has been broadly characterized and is subdivided into
different groups with a different number of members in the subfamilies. The LRR-RLK is
the largest subfamily, whereas other subfamilies have a lower frequency of plant members;
we used the SMOTE algorithm [94] to oversample the minority class, resulting in a balanced
dataset. The SMOTE creates synthetic samples based on the values of the features from the
minor class.

4.5. Machine Learning Algorithms

The RLPredictiOme method embeds several ML models built with the previously
described training sets. This study tested 20 ML algorithms to select the one that suits the



Int. J. Mol. Sci. 2022, 23, 12176 26 of 34

supervised learning task. Those algorithms are implemented in the Python library Scikit-
learn v.0.22.1 [95]. The algorithms AdaBoost, probability calibration, Gradient Boosting,
K-Nearest Neighbors, Linear discriminant analysis, Logistic Regression, and Deep Neural
Network were selected, respectively, to compose RLPredictiOme [96–104].

4.6. Performance Assessment of the Models

The evaluation metrics used in bioinformatics were applied to choose the most efficient
algorithms and training models. We evaluated accuracy, F-measure, false discovery rate
(FDR), Mathew’s correlation coefficient (MCC), precision, sensitivity, and specificity for
each training set and algorithm. These metrics are calculated based on the confusion matrix
(contingence matrix) using the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), respectively. For multi-class models, PyCM python
library was used (multi-class confusion matrix library in Python) [105].

4.7. Bayesian Inference in Ensemble Methods

Ensemble methods under an ML approach combine the predictions of several clas-
sification models with improving the overall performance. Thus, it attempts to avoid
misclassification due to noise, bias, and data variance reductions. In an ensemble method,
several models are used to predict each data instance. In the binary classification contrasts
involving the models RLPs versus NRLPs, and RLPs versus RLKs, we assumed the results
provided by n independent Bernoulli trials (0 or 1 values) with probability parameter π.
Thus, the number of successes (x) derived from these trials follows a binomial distribu-
tion [106]. In this context, we assumed a Beta distribution as the prior distribution for
π [107]. Under the Bayes theorem, the posterior distribution for π (probability of success of
classification) is a beta distribution and is conjugated with a binomial distribution. The mul-
tilabel models to classify RLP sub-families have different probabilities of success. Thus, the
sum of the classification success for each subfamily follows a multivariate generalization of
the binomial distribution, named multinomial distribution. We assumed the multinomial
distribution for response vector x and probability of observed, and N is a vector of the total
counts in each RLP sub-families. Thus, the data distribution assumes a multinomial model
for all trials. The prior probability widely used for multinomial models is the Dirichlet
distribution, which presents the parameters π and θ. The data vector (x) accounts for the
total counts in each RLP sub-family.

We perform Bayesian inference using the Bayesian statistical modeling and PyMC3
Python library, which uses the Markov chain Monte Carlo (MCMC) algorithms to explore
the posterior distributions [108]. Based on previous analyses with MCMC chains, we opted
to use a single chain with 10,000 iterations per amino acid sequence. We used burn-in to
2000 iterations and four chains for all models. The Gibbs sampler algorithm was used to
generate random samples from the posterior distribution for all analyses [109].

4.8. Classifier Evaluation Strategy

The classification models were evaluated using 10-fold cross-validation. Thus, the
data were divided into ten subsets, assuming the training with nine datasets and validation
with one dataset. This procedure was repeated ten times, whereas the testing for the
RLPredictiOme method was performed with three independent datasets. One dataset
was composed of 44 RLPs already described in the literature, and other datasets with
57 LRR-RLPs and legume-like (L-type) lectins, G-type lectins, calcium-dependent (C-type)
lectins, and the lectin-like Lysin-motifs (LysM) described in Arabidopsis [53,110,111]. In
addition, 100 random amino acid sequences were created by an in-house algorithm to
demonstrate that the classifiers do not calculate random predictions.

4.9. RLP Subfamilies Downstream Analysis

The function domain prediction analysis was carried out with the Pfam database
(version 31, licensed by Creative Commons Zero (“CC0”), manufactured by European
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Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI; Hinxton,
Cambridge; http://pfam.xfam.org/) with a Hidden Markov Model (HMM) algorithm
implemented in Hummer software. The signal peptide and transmembrane segment
were predicted with SignalP v.4.0 and TMHMM software, respectively [50]. The topology
diagram was performed with Protter Web server [112]. The sequence alignment of the
RLP superfamily was conducted using the Muscle algorithm (version V1.4.4 by EMBL-
EBI, Hinxton, Cambridges, United Kingdom; www.ebi.ac.uk/Tools/msa/muscle/). The
phylogenetic analysis was performed by the maximum likelihood statistical method with
10.000 bootstraps using FastTree software [113]. The tree was edited using the FigTree
(version V1.4.4 by Andrew Rambaut; http://tree.bio.ed.ac.uk/software/figtree/) software.
The gene expression of the glycerophosphoryl diester phosphodiesterase RLP subfamily
was investigated through the meta-analysis of transcriptomes using Geneinvestigator
V3 [114] and ePlant [115] for the expression in tissues and responses to pathogens.

4.10. Protein-Protein Interaction (PPI) Network Analysis

GDPDLs- and SNC4-interacting proteins from Arabidopsis were used as a query
term to identify their respective interactions described in the BAR database (Genome
Evolution and Function (CAGEF, University of Toronto, Toronto, Canadá; http://bar.
utoronto.ca/interactions/). The IntAct and Biogrid databases were selected for searching.
The protein–protein interactions (PPI) were visualized in the Cytoscape software (version
3.8.1, licensed by LGP, manufactured by National Resource for Network Biology (NRNB,
USA; https://cytoscape.org/), which allowed us to spot the firework topology of the
interactions network and measure the network centrality metrics for each protein. We
used betweenness, closeness, eccentricity, and degree. Briefly, the betweenness centrality in
the PPI network of the graph G = (V, E) was calculated by the number of times a protein
interacts along the shorter paths among all nodes. The closeness centrality of a protein
v is the sum of the shortest path distances from w to all other proteins. The eccentricity
centrality of a protein v is the maximum distance from v to all other proteins in graph G.
The degree of centrality of protein v is the total number of adjacent proteins.

4.11. Plant Growth, Treatment with flg22, and Viral infection with TRV and CabLCV

All gene expression experiments used Arabidopsis thaliana ecotype Columbia (Col-0)
at different ages. The seeds were germinated on half-strength Murashige and Skoog (MS;
Sigma = Aldrich) plates containing 10% (w/v) sucrose and 0.8% (w/v) agar, sterile, and
grown under normal growth conditions at 21 ◦C under a 16 h light/8 h dark cycle. After 10
days, the seedlings were transferred to a tissue culture plate containing 2 mL of 100 nM
flg22 (Sigma-Aldrich), and incubated for 15 min [116]. For the viral infection assay with
tobacco rattle virus (TRV), Agrobacterium cultures containing TRV-RNA1 (pTRV1) and
TRV-RNA2 (pTRV2) T-DNA constructs were infiltrated onto the lower leaf of four-leaf stage
N. benthamiana plants using a 1-mL needleless syringe. Infected leaves were confirmed by
conventional RT-PCR using TRV-RNA2-specific primers. TRV was mechanically inoculated
in A. thaliana grown in soil in a growth chamber for 14 days by rubbing the leaves with
sap (0.05 M K2HPO4, pH 7.2, 0.01 M Na2SO3) from infected N. benthamiana leaves. After 2
weeks of inoculation, viral infection was confirmed by RT-PCR. For infection with cabbage
leaf curl virus (CabLCV), plants at the seven-leaf stage were inoculated with plasmids
containing partial tandem repeats of CabLCV DNA-A and DNA-B [117], using biolistic
delivery as previously described [118,119]. Inoculated plants were transferred to a growth
chamber, and infection was confirmed by conventional PCR using CabLCV DNA-B-specific
primers.

4.12. RNA Extraction, Synthesis of cDNA, and qRT-PCR Analysis

For quantitative RT-PCR, total RNA was extracted from frozen leaves or seedlings
with TRIzol (Invitrogen) according to the instructions from the manufacturer. To quantify
flg22-induced expression, total RNA was extracted from a pool of 10 flg22-treated seedlings

http://pfam.xfam.org/
www.ebi.ac.uk/Tools/msa/muscle/
http://tree.bio.ed.ac.uk/software/figtree/
http://bar.utoronto.ca/interactions/
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(as described in 4.11). For the TRV infection experiment, total RNA was extracted from a
pool of 10 infected plants two weeks post-inoculation (as described in 4.11). For CabLCV
infection, total RNA was extracted from a pool of 10 infected plants after 21 days of
inoculation. To quantify gene expression in different organs, total RNA was extracted from
flowers, the inflorescence axis, pedicels of 35 days-soil-grown Col-0 plants, and from roots
of 10 days-grown plants in MS medium under the conditions described in 4.11. We used
3 samples of different pools of 10 plants each (therefore n = 3, biological replicates) and
three technical replicates.

Total RNA was treated with 2 units of RNase-free DNase (Promega). First-strand
cDNA was synthesized from 3.5 mg of total RNA using oligo-dT(18) and Transcriptase
Reverse M-MLV (Invitrogen), according to the manufacturer’s instructions. Real-time
RT-PCR reactions were performed on ABI7500 equipment (Applied Biosystems), using
SYBR Green PCR Master Mix (Bio-rad). The amplification reactions were performed as
follows: 2 min at 50 ◦C, 10 min at 95 ◦C, and 40 cycles of 94 ◦C for 15 s and 60 ◦C for 1 min.
To quantify gene expression, we used the 2−∆Ct method and actin 3 (At3g53750) as the
endogenous control genes for data normalization.

5. Conclusions

An extensive family of RLKs and RLPs on the cell surface perceive external stimuli
and allows communication of plant cells with the environment. Due to their conceptual rel-
evance in cell signaling, RLKs have been extensively studied and characterized. In contrast,
little is known about the RLP family that does not harbor conserved domains to prototype
genome-wide searching and characterization of members in different plant species. As
a result of this investigation, a new method, based on artificial intelligence and machine
learning models in combination with Bayesian inference, designated RLPredictiOme, is
proposed to perform genome-wide surveys of RLPs in plant species.

We provided evidence indicating that RLPredictiOme reliably predicts RLP subfamilies
in plant genomes. First, the ML models achieved high accuracy, precision, sensitivity,
and specificity for predicting RLPs with relatively high probability ranging from 0.79 to
0.99. Second, in the validation tests, more than 90% of known RLPs from Arabidopsis
and rice were correctly predicted via RLPredictiOme. Finally, RLPredictiOme may have
outperformed the predicting methods based on sequence comparison because it discovered
new RLP subfamilies in the Arabidopsis genome. Therefore, PredctOme provides a reliable
means to rationalize functional studies of the RLP gene family.

The new GDPDL-RLP subfamily seems to have expanded from the only GDPDL-
RLK representative in the Arabidopsis genome. All five GDPDL-RLPs were expressed
in different organs and responded to biotic signals. Evolution studies showed that their
ectodomain may have undergone purifying selection, indicating that the members of this
subfamily may have kept conserved functional signatures during evolution. In addition,
an in silico analysis demonstrated that GDPDL-RLPs form biologically relevant hubs in
the GDPDL-RLP-Arabidopsis protein-protein interactions network. Collectively, these
biological studies confirmed the prediction of the new GDPDL-RLP subfamily.

In addition to using a set of conventional extractable features for training the clas-
sification models, RLPredictiOme also filters the conserved characteristics of the RLP
configuration. These conserved attributes include the presence of a signal peptide, RLK
ectodomains, a transmembrane segment, and the lack of a C-terminal kinase domain.
Therefore, RLPredictiOme has the potential to predict RLPs from other organisms as well.
Furthermore, the consistent and expanded results using RLPredctOme, which applies a
different approach from sequence comparison methods, certify this new method as an
innovative and promising tool for predicting RLPs. RLPredictOme will ultimately serve as
an essential complement for protein annotation, identification, and functional prediction of
novel RLPs in different plant species and organisms.
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Abbreviations

ACC accuracy ML machine learning
BAK1 BRI1-ASSOCIATED RECEPTOR KINASE1 MLPL major latex protein-like
BRI1 BRASSINOSTEROID INSENSITIVE 1 MS Murashige and Skoog
CabLCV cabbage leaf curl virus NEP1 NECROSIS- AND ETHYLENE-INDUCING PEPTIDE 1
CAP adenylate-cyclase-associated NLPs NEP1-LIKE PROTEINS
CERK1 CHITIN ELICITOR RECEPTOR KINASE 1 NRLPs non-RLPs
CLV1 CLAVATA1 nsLTP non-specific lipid transfer proteins
CPAASC2 chemical properties of amino acid side chains 2 PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns PEPR1 PEP1 RECEPTOR 1
ECD extracellular domain PEPR2 PEP1 RECEPTOR 2
EPF1 EPIDERMAL PATTERNING FACTOR 1 PPI protein-protein interaction
EPF2 EPIDERMAL PATTERNING FACTOR 2 PRRs pattern recognition receptors
ER endoplasmic reticulum PSK PHYTOSULFOKINE
ERL1 ERECTA-LIKE 1 PSKR1 PHYTOSULFOKINE RECEPTOR 1
ETI effector-triggered immunity PPI protein-protein interactions
FDR false discovery rate PTI PAMP-triggered immunity
GDPDL glycerophosphoryl diester phosphodiesterase family RLCK receptor-like cytoplasmic kinases
HMM hidden Markov model RLP receptor-like protein
LRR leucine-rich repeat SOBIR1 SUPPRESSOR OF BIR1-1
LRR-RLK leucine-rich repeat kinase receptor-like kinase SP signal peptide
LYM1 LYSIN-MOTIF 1 TMM RLP TOO MANY MOUTHS
LYM3 LYSIN-MOTIF 3 TN true negatives
LysM lysin-motifs TP true positives
MCC Mathew’s correlation coefficient TRV tobacco rattle virus
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