The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion
Abstract
:1. Introduction
2. Results
2.1. Expression of Immune Checkpoint Molecules of EpCAM+ Cancer Cells, CD8+ T Cells, and CD14+CD68+ Macrophages in MPE Samples
2.2. WT1 Expression of EpCAM+ Cancer Cells and Characteristics of WT1-CTLs in MPE Samples
2.3. Detection of SMAD4P130L Expression on EpCAM+ Cancer Cells and CD8+ T Cells’ Response to HLA-A*11:01 Restricted Neoantigens for SMAD4P130L in MPE Samples
2.4. Detection of the Memory Subset of Infiltrated CD8+ T Cells in MPE That Responds to SMAD4P130L during Disease Progression
3. Discussion
4. Materials and Methods
4.1. Ethics Statement and Cellular Materials from the Pleural Effusion
4.2. Phenotyping of MPE Cells
4.3. Immunofluorescence Staining
4.4. Memory T Cell Subsets and Functional Analysis of WT1-CTLs
4.5. Neoantigen Prediction for SMAD4P130L
4.6. CD8+ T Response to SMAD4P130L Neoantigen
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Lievense, L.A.; Bezemer, K.; Cornelissen, R.; Kaijen-Lambers, M.E.H.; Hegmans, J.P.J.J.; Aerts, J.G.J.V. Precision Immunotherapy; Dynamics in the Cellular Profile of Pleural Effusions in Malignant Mesothelioma Patients. Lung Cancer 2017, 107, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Shidham, V.B. Metastatic Carcinoma in Effusions. Cytojournal 2022, 19, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Matsumoto, I.; Tanaka, T.; Yamao, K.; Hayashi, A.; Kamei, K.; Satoi, S.; Takebe, A.; Nakai, T.; Takenaka, M.; et al. Pancreatic Neuroendocrine Tumor with Stenosis of the Main Pancreatic Duct Leading to Pancreatic Pleural Effusion: A Case Report. Surg. Case Rep. 2020, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Korc, M.; Apte, M.; la Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic Cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef]
- Chee, J.; Watson, M.W.; Chopra, A.; Nguyen, B.; Cook, A.M.; Creaney, J.; Lesterhuis, W.J.; Robinson, B.W.; Gary Lee, Y.C.; Nowak, A.K.; et al. Tumour Associated Lymphocytes in the Pleural Effusions of Patients with Mesothelioma Express High Levels of Inhibitory Receptors. BMC Res. Notes 2018, 11, 864. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.Y.; Zhang, Y.H.; Wang, T.; Chen, L.; Gong, Z.H.; Wan, Y.S.; Li, Q.J.; Li, Y.S.; Zhu, B. Interleukin-2 Reverses CD8+ T Cell Exhaustion in Clinical Malignant Pleural Effusion of Lung Cancer. Clin. Exp. Immunol. 2016, 186, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Prado-Garcia, H.; Aguilar-Cazares, D.; Flores-Vergara, H.; Mandoki, J.J.; Lopez-Gonzalez, J.S. Effector, Memory and Naïve CD8+ T Cells in Peripheral Blood and Pleural Effusion from Lung Adenocarcinoma Patients. Lung Cancer 2005, 47, 361–371. [Google Scholar] [CrossRef]
- Dhupar, R.; Okusanya, O.T.; Eisenberg, S.H.; Monaco, S.E.; Ruffin, A.T.; Liu, D.; Luketich, J.D.; Kammula, U.S.; Bruno, T.C.; Lotze, M.T.; et al. Characteristics of Malignant Pleural Effusion Resident CD8+ T Cells from a Heterogeneous Collection of Tumors. Int. J. Mol. Sci. 2020, 21, 6178. [Google Scholar] [CrossRef]
- Jameson, S.C.; Masopust, D. Understanding Subset Diversity in T Cell Memory. Immunity 2018, 48, 214. [Google Scholar] [CrossRef]
- Prado-Garcia, H.; Romero-Garcia, S.; Puerto-Aquino, A.; Rumbo-Nava, U. The PD-L1/PD-1 Pathway Promotes Dysfunction, but Not “Exhaustion”, in Tumor-Responding T Cells from Pleural Effusions in Lung Cancer Patients. Cancer Immunol. Immunother. 2017, 66, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, S.; Rive, C.M.; Ma, S.; Dick, I.M.; Allcock, R.J.N.; Brown, S.D.; Holt, R.A.; Watson, M.; Leary, S.; Lee, Y.C.G.; et al. Identification of a CD8+ T-Cell Response to a Predicted Neoantigen in Malignant Mesothelioma. Oncoimmunology 2020, 9, 1684713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeuerle, P.A.; Gires, O. EpCAM (CD326) Finding Its Role in Cancer. Br. J. Cancer 2007, 96, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Yachida, S.; White, C.M.; Naito, Y.; Zhong, Y.; Brosnan, J.A.; Macgregor-Das, A.M.; Morgan, R.A.; Saunders, T.; Laheru, D.A.; Herman, J.M.; et al. Clinical Significance of the Genetic Landscape of Pancreatic Cancer and Implications for Identification of Potential Long-Term Survivors. Clin. Cancer Res. 2012, 18, 6339–6347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zheng, Y.; Yang, F.; Zhu, L.; Zhu, X.Q.; Wang, Z.F.; Wu, X.L.; Zhou, C.H.; Yan, J.Y.; Hu, B.Y.; et al. The Molecular Biology of Pancreatic Adenocarcinoma: Translational Challenges and Clinical Perspectives. Signal Transduct. Target. Ther. 2021, 6, 1–23. [Google Scholar] [CrossRef]
- Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; et al. PD-1/PD-L1 Blockade Together with Vaccine Therapy Facilitates Effector T-Cell Infiltration into Pancreatic Tumors. J. Immunother. 2015, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Liu, X.; Ma, H.; Zhang, H.; Song, X.; Gao, L.; Liang, X.; Ma, C. Tim-3 Fosters HCC Development by Enhancing TGF-β-Mediated Alternative Activation of Macrophages. Gut 2015, 64, 1593–1604. [Google Scholar] [CrossRef]
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 Comes of Age as an Inhibitory Receptor. Nat. Rev. Immunol. 2020, 20, 173. [Google Scholar] [CrossRef]
- Türeci, Ö.; Löwer, M.; Schrörs, B.; Lang, M.; Tadmor, A.; Sahin, U. Challenges towards the Realization of Individualized Cancer Vaccines. Nat. Biomed. Eng. 2018, 2, 566–569. [Google Scholar] [CrossRef]
- Went, P.T.; Lugli, A.; Meier, S.; Bundi, M.; Mirlacher, M.; Sauter, G.; Dirnhofer, S. Frequent EpCam Protein Expression in Human Carcinomas. Hum. Pathol. 2004, 35, 122–128. [Google Scholar] [CrossRef]
- Hyun, K.-A.; Goo, K.B.; Han, H.; Sohn, J.; Choi, W.; Kim, S.-I.; Jung, H.-I.; Kim, Y.S. Epithelial-to-Mesenchymal Transition Leads to Loss of EpCAM and Different Physical Properties in Circulating Tumor Cells from Metastatic Breast Cancer. Oncotarget 2016, 7, 24677–24687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Wu, A.; Chen, X. Current Detection Technologies for Circulating Tumor Cells. Chem. Soc. Rev. 2017, 46, 2038–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunvald, M.W.; Jacobson, R.A.; Kuzel, T.M.; Pappas, S.G.; Masood, A. Current Status of Circulating Tumor DNA Liquid Biopsy in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 7651. [Google Scholar] [CrossRef] [PubMed]
- Shimodaira, S. Induction of Antigen-Specific Cytotoxic T Lymphocytes by Chemoradiotherapy in Patients Receiving Wilms? Tumor 1-Targetted Dendritic Cell Vaccinations for Pancreatic Cancer. OMICS J. Radiol. 2015, 04, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shimodaira, S.; Sano, K.; Hirabayashi, K.; Koya, T.; Higuchi, Y.; Mizuno, Y.; Yamaoka, N.; Yuzawa, M.; Kobayashi, T.; Ito, K.; et al. Dendritic Cell-Based Adjuvant Vaccination Targeting Wilms’tumor 1 in Patients with Advanced Colorectal Cancer. Vaccines 2015, 3, 1004–1018. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhou, T.; Xiao, Y.; Yu, J.; Dou, S.; Chen, G.; Wang, R.; Xiao, H.; Hou, C.; Wang, W.; et al. Tim-3 Promotes Tumor-Promoting M2 Macrophage Polarization by Binding to STAT1 and Suppressing the STAT1-MiR-155 Signaling Axis. Oncoimmunology 2016, 5, e1211219. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, A.P.; Clarke, J.; Wood, O.; Garrido-Martin, E.M.; Chee, S.J.; Mellows, T.; Samaniego-Castruita, D.; Singh, D.; Seumois, G.; Alzetani, A.; et al. Tissue-Resident Memory Features Are Linked to the Magnitude of Cytotoxic T Cell Responses in Human Lung Cancer. Nat. Immunol. 2017, 18, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.; Panwar, B.; Madrigal, A.; Singh, D.; Gujar, R.; Wood, O.; Chee, S.J.; Eschweiler, S.; King, E.V.; Awad, A.S.; et al. Single-Cell Transcriptomic Analysis of Tissue-Resident Memory T Cells in Human Lung Cancer. J. Exp. Med. 2019, 216, 2128–2149. [Google Scholar] [CrossRef]
- Garrido-Martin, E.M.; Mellows, T.W.P.; Clarke, J.; Ganesan, A.P.; Wood, O.; Cazaly, A.; Seumois, G.; Chee, S.J.; Alzetani, A.; King, E.V.; et al. M1 Hot Tumor-Associated Macrophages Boost Tissue-Resident Memory T Cells Infiltration and Survival in Human Lung Cancer. J. Immunother. Cancer 2020, 8, e000778. [Google Scholar] [CrossRef]
- Matos, T.R.; Gehad, A.; Teague, J.E.; Dyring-Andersen, B.; Benezeder, T.; Dowlatshahi, M.; Crouch, J.; Watanabe, Y.; O’Malley, J.T.; Kupper, T.S.; et al. Central Memory T Cells Are the Most Effective Precursors of Resident Memory T Cells in Human Skin. Sci. Immunol. 2022, 7, eabn1889. [Google Scholar] [CrossRef]
- Tian, T.; Li, Z. Targeting Tim-3 in Cancer with Resistance to PD-1/PD-L1 Blockade. Front. Oncol. 2021, 11, 3877. [Google Scholar] [CrossRef] [PubMed]
- Verdegaal, E.M.E.; de Miranda, N.F.C.C.; Visser, M.; Harryvan, T.; van Buuren, M.M.; Andersen, R.S.; Hadrup, S.R.; van der Minne, C.E.; Schotte, R.; Spits, H.; et al. Neoantigen Landscape Dynamics during Human Melanoma–T Cell Interactions. Nature 2016, 536, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kiyotani, K.; Chan, H.T.; Nakamura, Y. Immunopharmacogenomics towards Personalized Cancer Immunotherapy Targeting Neoantigens. Cancer Sci. 2018, 109, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Date, I.; Koya, T.; Sakamoto, T.; Togi, M.; Kawaguchi, H.; Watanabe, A.; Kato, T.; Shimodaira, S. Interferon-α-Induced Dendritic Cells Generated with Human Platelet Lysate Exhibit Elevated Antigen Presenting Ability to Cytotoxic T Lymphocytes. Vaccines 2021, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.K.; Schnabel, B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993, 31, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.B.; Sougnez, C.; Gabriel, S.B.; Meyerson, M.L.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef]
- Wilm, A.; Aw, P.P.K.; Bertrand, D.; Yeo, G.H.T.; Ong, S.H.; Wong, C.H.; Khor, C.C.; Petric, R.; Hibberd, M.L.; Nagarajan, N. LoFreq: A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012, 40, 11189–11201. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
Mutant Peptide | Wild-Type Peptide | ||||
---|---|---|---|---|---|
Sequence | Affinity to HLA (nM) | Sequence | Affinity to HLA (nM) | Amino Acid Length | HLA-Type |
SVCVNLYH | 129 | SVCVNPYH | 332 | 8 | HLA-A*11:01 |
CVNLYHYER | 180 | CVNPYHYER | 84 | 9 | HLA-A*11:01 |
SVCVNLYHY | 193 | SVCVNPYHY | 416 | 9 | HLA-A*11:01 |
SVCVNLYHYER | 285 | SVCVNPYHYER | 419 | 11 | HLA-A*11:01 |
SVCVNLYHY | 224 | SVCVNPYHY | 634 | 9 | HLA-B*15:01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koya, T.; Niida, Y.; Togi, M.; Yoshida, K.; Sakamoto, T.; Ura, H.; Togi, S.; Kato, T., Jr.; Yamada, S.; Sugiyama, H.; et al. The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion. Int. J. Mol. Sci. 2022, 23, 12177. https://doi.org/10.3390/ijms232012177
Koya T, Niida Y, Togi M, Yoshida K, Sakamoto T, Ura H, Togi S, Kato T Jr., Yamada S, Sugiyama H, et al. The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion. International Journal of Molecular Sciences. 2022; 23(20):12177. https://doi.org/10.3390/ijms232012177
Chicago/Turabian StyleKoya, Terutsugu, Yo Niida, Misa Togi, Kenichi Yoshida, Takuya Sakamoto, Hiroki Ura, Sumihito Togi, Tomohisa Kato, Jr., Sohsuke Yamada, Haruo Sugiyama, and et al. 2022. "The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion" International Journal of Molecular Sciences 23, no. 20: 12177. https://doi.org/10.3390/ijms232012177
APA StyleKoya, T., Niida, Y., Togi, M., Yoshida, K., Sakamoto, T., Ura, H., Togi, S., Kato, T., Jr., Yamada, S., Sugiyama, H., Koido, S., & Shimodaira, S. (2022). The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion. International Journal of Molecular Sciences, 23(20), 12177. https://doi.org/10.3390/ijms232012177