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Abstract: The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) expo-
sure arises from RNA polymerase II (RNAP II) inhibition. RNAP II inhibition occurs through the
dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from
α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling
pathway was activated through quantitative phosphoproteomic and molecular biological analyses
in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phospho-
rylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only
the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors.
Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling
pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant
splicing events leading to cell death in Huh-7 cells.

Keywords: alpha-amanitin; toxic mushroom; acute liver failure; global phosphoproteome; RAS/RAF/ERK
signaling pathway

1. Introduction

For several decades, mushrooms have become popular with people interested in
well-being [1]. There is a growing interest in harvesting wild edible mushrooms, and
ingesting food from nature is becoming more common [2], increasing the possibility of
toxic mushroom exposure [3]. Despite these risks, people may confuse edible and toxic
mushrooms because of misidentification based on morphology. Toxic mushrooms are
classified by their toxic components, such as cyclopeptides, gyromitrin, muscarine, coprine,
isoxazoles, orellanine, psilocybin, and gastrointestinal irritants [4]. Poisonous mushrooms
containing cyclopeptide toxins are responsible for 90–95% of all deaths resulting from their
consumption.

Amanita phalloides has the highest rate of fatalities due to intoxication [5–8]. Amatoxin
poisoning has a poor prognosis because of the high risk of liver failure. Although there are
no universal treatment guidelines for amatoxin intoxication, supportive care and antidotes
are frequently used [9–11]. Alpha-amanitin (α-AMA) poisoning is characterized by the
accumulation of α-AMA in the liver and kidneys, with no symptoms until extensive
damage has occurred [12]. Clinical symptoms of amatoxin ingestion are expected to
manifest after several hours (6–24 h) or even days and include nausea, vomiting, diarrhea,
abdominal pain, and hematuria [13]. During this period, fever, tachycardia, and metabolic
disorders such as hypoglycemia, dehydration, and electrolyte imbalance may occur [14].
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Several mechanisms of toxicity have been attributed to amatoxins, associated with their
ability to non-covalently bind and inhibit RNA polymerase II (RNAP II) activity within the
nucleus [15]. Several experimental studies have examined interactions between amatoxins
and RNAP II [16,17].

Protein phosphorylation is a reversibly regulated representative protein modification
by kinases and phosphatases. Competition between kinases and phosphatases generates
protein phosphorylation, indicating a signaling pathway critical for numerous cellular
functions such as proliferation, survival, differentiation, function, and motility [18,19].
Therefore, abnormal regulation of signaling pathways by hyper- or hypophosphorylation
could be the causative mechanism of the toxic response. For example, phosphorylation by
an extracellular signal-related kinase (ERK) and AMP-activated protein kinase (AMPK)
is related to pathological processes that occur after exposure to harmful metals such as
cadmium and selenium [20,21]. In addition, toxicity leading to cell death has been reported
for various chemicals via p38 mitogen-activated protein kinase (MAPK), protein kinase B
(AKT), and protein phosphatase 2A (PP2A) [22–24].

It is difficult to identify an unknown signaling pathway that causes the toxicity of
a specific toxic compound. However, it can be solved by applying a global quantitative
phosphoproteome. In this study, to understand the initial signaling process leading to
acute liver failure (ALF) after α-AMA exposure, we profiled the level of protein phospho-
rylation over 0–12 h after α-AMA treatment of Huh-7 human hepatoma cells. In addition,
comparative phosphoproteomics analysis was performed using tandem mass tag (TMT)
labeling coupled with titanium dioxide (TiO2)-affinity chromatography. The data have
shown that activation of the RAS/RAF/ERK signaling pathway and hyperphosphorylation
of spliceosomal proteins are key mechanisms of α-AMA-induced hepatotoxicity. Moreover,
inhibition of induced ERK activity through chemical ERK inhibitors suggests the possibility
of controlling hepatotoxicity induced by α-AMA.

2. Results
2.1. Characterization of Cytotoxicity Induced by α-AMA in Human Hepatoma Cells

Toxic concentrations of α-AMA were evaluated in human Huh-7 cells to explore
the protein phosphorylation involved in early toxicity following α-AMA exposure in the
human liver. α-AMA was added to Huh-7 cells for 24 h at a concentration of 0.5 to 10 µM,
and cell viability was evaluated using the CCK-8 assay (Figure S1A). Doxorubicin (DOX)
treatment was used as a control for cell viability. Although a previous study reported that
2 µM α-AMA produced reversible hepatic damage in a human normal liver cell line, we
determined 5 µM α-AMA as the concentration to induce cytotoxicity in Huh-7 cells [25]. In
this study, treatment with 5 µM α-AMA resulted in cell death of approximately 10% of the
total cells by CCK-8 assay and induced morphological differences (Figure S1B). The 5 µM
α-AMA was considered to be the initial toxicity condition chosen as an early stage of liver
failure to look for changes in the proteome, consistent with our previous study results [26].

2.2. Time-Dependent Quantitative Protein Phosphorylation Analysis by α-AMA Treatment

Protein phosphorylation was evaluated by Western blotting using pan-specific Ser-,
Thr-, and Tyr-phosphorylation antibodies to determine the dynamics of protein phosphory-
lation after α-AMA treatment (Figure S2). Significant protein degradation was not observed
on the SDS-PAGE. Instead, phosphorylated proteins were observed to increase slowly in a
time-dependent manner.

To identify the dynamics of protein phosphorylation by α-AMA treatment in Huh-7
cells, a comparative phosphoproteome analysis was performed (Figure 1A). To enrich
global phosphopeptides at each period, TiO2-affinity chromatography was first performed,
and labeling was performed with 6-plex TMT for relative quantification at each period.
The samples were analyzed by nano-flow LC-MS/MS with technical duplicates. Overall,
we identified 2785 phosphopeptides (1598 phosphoproteins) and quantified 1598 phospho-
peptides (763 phosphoproteins) (localization probability > 0.75 and FDR < 1%) (Table S1).
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The ratio of each group was calculated using the ratio of the reporter ion intensity of the
α-AMA samples after and before treatment (0 h-treated samples).
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Figure 1. Systematic time profiling of the global phosphoproteome after α-amanitin (α-AMA)
treatment of Huh-7 cells. (A) Schematic workflow of comparative phosphoproteome after treatment
with α-AMA (5 µM) for 12 h. (B) Time-dependent unsupervised hierarchical clusters of phospho-
rylation after treating Huh-7 cells with α-AMA. Heatmap between each time point for the α-AMA
treatment group after Z-score normalization.

The tendency of protein phosphorylation level changes was divided into eight clusters
according to the unsupervised hierarchical Z-score clustering (Figure 1B). The level of
phosphorylation in Cluster 8 increased over time, consistent with the results of Western
blotting showing increased phosphorylation following α-AMA treatment. Most of the
quantified phosphorylation (1569 phosphopeptides) belonged to Cluster 8.

2.3. Characterization of RAS/RAF/ERK Signal Cascade Related to α-AMA-Induced Hepatotoxicity

We characterized the phosphorylation in Cluster 8 using GO, Interpro, and KEGG
enrichment analyses using the DAVID bioinformatics resources tool to document the time-
dependent phosphorylation increase after 5 µM α-AMA treatment (Figure 2A). In the
GO biological process (GOBP) categories, mRNA splicing, cell–cell adhesion, and mRNA
processing were in Cluster 8. The GO cell component (GOCC) categories showed that
upregulated phosphorylation was present in the nucleoplasm, cytoplasm, nucleus, cell–cell
adherens junction, and nucleolus. Time-dependent increased protein phosphorylation was
also observed in GO molecular function (GOMF) categories, such as poly(A) RNA bind-
ing, protein binding, cadherin binding involved in cell-cell adhesion, nucleotide binding,
and RNA binding. The Interpro identified nucleotide-binding, RNA recognition motif
domain, armadillo-type fold, K homology domain, and initiation factor eIF-4 gamma.
Finally, KEGG analysis revealed that gradually increasing phosphoproteins were involved
in the spliceosome, RNA transport, mTOR signaling pathway, adherens junction, and
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insulin signaling pathway. In particular, the spliceosome category included 73 phosphory-
lations in 32 proteins, including splicing factor 45 (RNA binding motif protein 17 (RBM17),
SPF45) and splicing factor U2AF 65 kDa subunit (U2AF2, U2AF65) that modulate factors
of RAS/RAF/ERK signaling [27,28]. The mTOR signaling pathway category included
17 phosphorylations in nine proteins, including two kinases, mitogen-activated protein
kinase 1/2 (extracellular signal-regulated kinase 2 (ERK2), MAPK 1/2), and non-specific
serine/threonine protein kinase.
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Figure 2. Characterization of time-dependently upregulated phosphorylation by α-amanitin
(α-AMA) treatment of Huh-7 cells. (A) DAVID-generated Gene Ontology (GO) enrichment and Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of Cluster 8. (B) Kinase–substrate
interaction analysis of phospho-threonine proteins using iGPS 1.0. Circle (Kinase), Square (Substrate),
Pink (Detected), and Blue (Predicted).

In addition, to discover the kinases that play a key role in time-dependently upreg-
ulated phosphorylation in Cluster 8, we sorted phosphopeptide sequences by phospho-
serine and phospho-threonine and input the sequences to iGPS 1.0 to find a kinase and
substrate protein network (Figure 2B and Figure S4) [29]. In the phospho-threonine peptide
group, 85 kinases were predicted to interact with the identified phosphosites; seven kinases
were detected in Cluster 8. The kinases are extracellular signal-regulated kinase 1 and
2 (ERK1/2), AP2-associated protein kinase 1 (AAK1), receptor protein-tyrosine kinase
(EGFR), serine/threonine-protein kinase PAK 2 (PAK2), dual-specificity mitogen-activated
protein kinase kinase 2 (MAP2K2), and non-specific serine/threonine protein kinase (RSK2,
RPS6KA3). Taken together with the results of the DAVID and kinase–substrate interaction
analysis, we found that the RAS/RAF/ERK signaling cascade was involved when initial
hepatotoxicity was induced after exposure to α-AMA [30].
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2.4. Investigation of RAS/RAF/ERK Signal Pathway Role for α-AMA-Induced Hepatotoxicity

To check the role of RAS/RAF/ERK signal cascade, we treated Huh-7 cells for
24 h with α-AMA (0–20 µM) and with 1, 2, 5, and 10 µM ERK1/2 inhibitor (FR180204)
(Figure 3A) [31,32]. The linear plot for the cell viability assay showed that cell viability was
gradually reduced by α-AMA in a concentration-dependent manner. However, it recovered
with increasing ERK1/2 inhibitor concentration. Moreover, we found that p53 levels were
increased according to α-AMA concentration; however, p53 levels were gradually reduced
after treatment with the ERK1/2 inhibitor at 10 µM α-AMA (Figure 3B).
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Figure 3. Identification of RAS/RAF/ERK signaling pathway related to the toxicity of α-amanitin
(α-AMA) in Huh-7 cells. (A) Cell viability assay for α-AMA treatment with ERK1/2 inhibitor. Cell
density was 5 × 103 cells/well in a 96-well plate. The viability of Huh-7 cells was detected by CCK-8
reagent after α-AMA and ERK1/2 inhibitor treatment for 24 h. The data are presented as the means
± SEM (n = 3). (B) Immunoblotting assay of RAS/RAF/ERK cascade after α-AMA and ERK1/2
inhibitor (FR180204) treatment of Huh-7 cells.

We verified the correlation between the RAS/RAF/ERK signaling cascade and α-AMA-
induced cytotoxicity using Western blotting (Figure 3B). In the RAS/RAF/ERK signaling
cascade, such as p-c-RAF and p-MEK1/2, factors upstream of ERK were increased by
treatment with α-AMA but were not affected by ERK inhibitor treatment in Huh-7 cells.
However, while the level of ERK did not change, the increase in p-ERK expression by
α-AMA was slightly decreased by ERK1/2 inhibitor treatment. It was established that
activation of the RAS/RAF/ERK signaling cascade by α-AMA can cause hepatotoxicity
that could be alleviated by selective inhibitors.

To identify downstream factors affecting the RAS/RAF/ERK signaling cascade of
toxicity induced by α-AMA, we carried out a comparative phosphoproteome analysis of an
ERK1/2 inhibitor treatment of Huh-7 cells (Figure 4A). To quantify the phosphopeptides
in each group, we applied 16/18O-labeling during trypsin digestion and enrichment by
TiO2-affinity chromatography. The phosphorylation data for each group are shown in
Table S3. We quantified 1203 phosphopeptides in 2200 identified phosphopeptides in
the mixed control and 10 µM α-AMA-treated groups. Only 449 phosphopeptides out of
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764 identified phosphopeptides were quantified in the mixed group of control and 10 µM
α-AMA-treated group with 5 µM ERK 1/2 inhibitor. The decreased phosphorylation in
the ERK 1/2 inhibitor-treated group was a result of the inhibition of the RAS/RAF/ERK
signaling cascade.
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Figure 4. Global phosphoproteomic profiling of α-amanitin (α-AMA) target factors induced by
RAS/RAF/ERK signal-pathway activation. (A) Flow chart of the comparative phosphoproteome.
Huh-7 cells were treated with α-AMA (10 µM) and/or ERK1/2 inhibitor (FR180204, 5 µM) for
24 h. (B) Cluster 5 selected by unsupervised hierarchical clusters of phosphorylation after α-AMA
treatment of Huh-7 cells with ERK 1/2 inhibitor. Heatmap between each time point of α-AMA
treatment after Z-score normalization. DAVID-generated Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis of Cluster 5.

Therefore, when analyzing the changes in protein phosphorylation levels by unsuper-
vised hierarchical clustering, we paid attention to Cluster 5, which increased by α-AMA
treatment and decreased sequentially by the ERK 1/2 inhibitor (Figure 4B). In Cluster
5, 129 phosphorylations were classified, and the spliceosome was included in the KEGG
category through DAVID analysis. The seven proteins were included in the spliceosome
class, and two phosphosites were in U4/U6. U5 tri-snRNP-associated protein 2 (Ser82) and
SPF45 (Ser155) were detected at the same sites in Cluster 8 after only α-AMA treatment
(Table S4). Although it is involved in various functions in the RAS/RAF/ERK signaling
cascade, it is related to the increased phosphorylation of proteins in the spliceosome about
α-AMA toxicity (Figure 5).
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Figure 5. Activation of RAS/RAF/ERK signaling cascades related to α-amanitin (α-AMA)-induced
cytotoxicity in Huh-7 cells. EGFR, epidermal growth factor receptor; RAF, RAF proto-oncogene
serine/threonine-protein kinase; MEK, dual specificity mitogen-activated protein kinase; ERK1/2,
extracellular signal-regulated kinase 1/2; SAM68, Src associated in mitosis 68 kDa protein; U2AF65,
splicing factor U2AF 65 kDa subunit; SPF45, splicing factor 45. Arrow means the increase.

3. Discussion

In this study, to identify the initial signaling pathway involved in hepatotoxicity
that occurs following α-AMA exposure, global protein phosphorylation changes up to 12
h after treatment with 5 µM α-AMA in Huh-7 cells, a human hepatoma cell line, were
profiled based on comparative phosphoproteomic analysis. Most of the detected protein
phosphorylation was increased 12 h after α-AMA, and it was found by unsupervised
hierarchical clustering using a Z-score analysis that the proteins with increased phosphory-
lation belonged to Cluster 8. DAVID analysis of the proteins included in Cluster 8 showed
that phosphorylation of proteins related to the spliceosome was increased (Figure 2A). In
addition, the RAS/RAF/ERK signaling cascade was included in Cluster 8 from the analysis
of the kinase–substrate interaction based on iGPS 1.0 (Figure 2B).

To establish a cytotoxicity model by α-AMA in this study, we treated Huh-7 cells with
5 µM of α-AMA, which is higher than the concentration that induces ALF to which patients
are exposed in actual clinical practice. Various concentrations have been reported from
previous studies, it is measured in patient plasma with acute accidental poisoning with wild
mushrooms at the maximum ng/mL level [33,34]. It is ideal to determine the concentration
to be treated in the cell line by reflecting the clinical concentration; however, the assessed
concentration may not match due to the heterogeneity between the two systems. Although
the concentration of α-AMA treated in Huh-7 cells is higher than that detected in patient
blood, it is the concentration at which irreversible damage occurs in hepatocytes [25], which
may reflect the initial intracellular damage caused by α-AMA.

The RAS/RAF/ERK signaling cascade was a key factor in cytotoxicity induced by
α-AMA in Huh-7 cells. Upon treatment with α-AMA, phosphorylation of RAF and MEK
upstream of ERK1/2 increased, leading to the activation of ERK1/2 (Figure 3B) [30]. How-
ever, when ERK activity induced by α-AMA in Huh-7 cells was inhibited by treatment with
an ERK1/2 inhibitor, the cytotoxicity caused by α-AMA was reduced (Figure 5). In many
previous studies, the RAS/RAF/ERK signaling cascade was reported to be associated with
cell proliferation, differentiation, migration, senescence, and apoptosis [21,35]. Addition-
ally, as an unexpected role of xenobiotic exposure, the activation of the RAS/RAF/ERK
signaling cascade is the cause of toxicity.

Heavy metals such as lead, chromium, arsenic, mercury, nickel, and cadmium cause
hepatotoxicity by generating ROS that cause numerous injuries and undesirable changes in
the liver [36]. ROS upregulate ERK1/2, causing an abnormal mitochondrial division and
eventually inducing cell death [37,38]. The RAS/RAF/ERK signaling cascade mediates
cellular responses to diverse environmental toxicants, including heavy metals, and may
trigger CNS disorders via modulation of the MAPK pathways [39]. Chlorpyrifos, an
organophosphate, induces cytotoxicity and neuronal death by increasing p-p38 and p-ERK
expression and caspase-3 levels [40]. Perfluorooctane sulfonic acid (PFOA), a persistent
organic pollutant, increases TNF-α and IL-6 expression, partly by increasing ERK1/2-
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MAPK/NF-κB [41]. As a result, since activation of the RAS/RAF/ERK signaling pathway
by toxicant exposure can cause toxicity, it is supported that the activation of RAS/RAF/ERK
signaling by α-AMA can be a mechanism causing cytotoxicity in Huh-7 cells.

Furthermore, increased phosphorylation of splicing factors, such as SRSFs and RNA-
binding proteins, was investigated in Huh-7 cells after α-AMA treatment (Table S2). The
phosphorylation level of proteins involved in the splicing process is very important for pre-
mRNA splicing, regulated by various signaling pathways, including the RAS/RAF/ERK
cascade [28]. One of the target factors of the RAS/RAF/ERK signaling pathway is SAM68,
a prototype regulator of alternative splicing [42]. SAM68 interacts with the splicing factor
U2AF65, and phosphorylation by ERKs reduces the affinity of the SAM68/U2AF65 complex
to CD44 pre-mRNA [43]. Although phosphorylation of SAM68 was not detected in this
study, we identified an increase in U2AF65 phosphorylation (S475) following activation of the
RAS/RAF/ERK signaling pathway by α-AMA treatment in Huh-7 cells. Another target factor
of the RAS/RAF/ERK signaling pathway is SPF45, which is related to regulating alternative
mRNA splicing factors [44]. ERK2 phosphorylates SPF45 on Thr71 and Ser222, whereas the
phosphorylation on Ser155 was observed in our study [44]. Although the effect of Ser155
phosphorylation on the function of SPF45 should be further studied, we found that Ser155
was increased by α-AMA and decreased by the ERK 1/2 inhibitor (Table S4). This result also
supports that the RAS/RAF/ERK signaling pathway is involved in α-AMA toxicity.

In conclusion, based on a comparative phosphoproteome approach, we suggest that
activation of the RAS/RAF/ERK signaling cascade is a new mechanism involved in cytotox-
icity caused by exposure to α-AMA in Huh-7 cells. Further, the toxicity could be controlled
with an ERK 1/2 inhibitor; validation in animal experiments should be conducted in the
future. If confirmed, the utility of the ERK 1/2 inhibitor as a therapeutic target could
clinically reduce the high risk of liver failure caused by ingestion of amatoxin.

4. Materials and Methods
4.1. Cell Culture

Human hepatocyte-derived carcinoma cells (Huh-7) were maintained at 37 ◦C in 5%
CO2 in Dulbecco’s Modified Eagle Medium (Hyclone Laboratories Inc., Logan, UT, USA)
supplemented with 10% fetal bovine serum (Hyclone Laboratories Inc.) and 1 × penicillin-
streptomycin (GibcoTM, Grand Island, NY, USA). All experiments were performed using
Huh-7 cells under passage 30.

4.2. Cell Cytotoxicity Check through CCK-8 Assay

To determine the inhibitory concentration of α-AMA before comparative proteomic
analysis in Huh-7 cells, the cytotoxicity of α-AMA was evaluated using a CCK-8 reagent
(Dojindo Molecular Technologies, Kumamoto, Japan). CCK-8 assay is a sensitive colori-
metric method used to evaluate cell viability in the context of proliferation and death.
In cells, dehydrogenases produce a formazan dye in proportion to the number of living
cells. Huh-7 cells were cultured in Dulbecco’s Modified Eagle Medium (Hyclone Labora-
tories Inc.) supplemented with 10% fetal bovine serum (Hyclone Laboratories Inc.) and
1 × penicillin-streptomycin (Gibco) at a concentration of 5 × 103 cells/well in 96-well
plates, and incubated for 18 h. Next, the cells were washed with 1 × phosphate-buffered
saline (Gibco). The cell medium was then replaced with fresh cell media containing
1 × penicillin-streptomycin and α-AMA at 2, 5 and 10 µM concentrations and incubated
for 24 h. DOX (Sigma-Aldrich, St. Louis, MO, USA) was used as a positive control. Finally,
the cell medium was removed, and fresh cell media mixed with the cytotoxicity-checking
CCK-8 reagent was added. The absorbance was measured at 450 nm using a spectropho-
tometer.

To check the effect of the ERK inhibitor (FR180204; Sigma-Aldrich), Huh-7 cells were
grown in Dulbecco’s Modified Eagle Medium (Hyclone Laboratories Inc.) supplemented
with 10% fetal bovine serum (Hyclone Laboratories Inc.) and 1 × penicillin-streptomycin
(Gibco) at a concentration of 5 × 103 cells/well in 96-well plates and incubated for 18 h.
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The cells were then washed with 1 × phosphate-buffered saline (Gibco). Cells were
then transferred to new cell media containing 1 × penicillin-streptomycin and α-AMA at
concentrations of 1, 2, 5, 10 and 20 µM. Then, 1, 2, 5 and 10 µM ERK1/2 inhibitors were
added to each α-AMA concentration group, and cells were incubated for 24 h.

4.3. Preparation of Proteins from Hepatocytes and Trypsin Digestion

α-AMA-treated Huh-7 cells were harvested and directly added to 500 µL of 8 M
Urea (Sigma-Aldrich) in 100 mM Tris (VWR International, Radnor, PA, USA) containing
protease and phosphatase inhibitors (Thermo Fisher Scientific, Waltham, MA, USA). The
collected cells for one minute (output 30%, 5-s on and off intervals) and then centrifuged
at RT at 16,000× g for 10 min to separate the soluble proteins from the cell debris. The
supernatant was collected from the top fraction and placed in new sample tubes, and the
protein concentration was determined using a BCA kit (Thermo Fisher Scientific). Duplicate
samples were harvested from each treatment group, and proteins were extracted. Protein
samples (100 µg) were placed in new sample tubes, and 5 mM dithiothreitol (Sigma-Aldrich)
was added for cysteine residue reduction at 56 ◦C for 30 min. The samples were then treated
with 15 mM iodoacetamide (Sigma-Aldrich) in the dark for 30 min to alkylate cysteine
groups. Next, samples were diluted two-fold for trypsin digestion. Following a pH check,
trypsin (2 µg) was directly added to the samples and allowed to digest for 18 h at 37 ◦C.
Then, 1% trifluoroacetic acid (Sigma-Aldrich) was added to complete the digestion step.
The peptides were dried in a speed-vac dryer at a low temperature.

4.4. Sample Preparation for Comparative Phosphoproteomics Analysis

The phosphopeptides were enriched using TiO2 Phosphopeptide Enrichment Tips
(Thermo Fisher Scientific). The TiO2 tip was activated in 20 µL buffer A (40% ACN with
4% TFA) and equilibrated in 20 µL buffer B (buffer A with 25% lactic acid). The peptides
were dissolved in 150 µL of buffer B using a sonicator and loaded onto the TiO2 tip.
Phosphopeptides were washed twice with buffer B and three times with buffer A and
eluted using 50 µL of 1.5% ammonium hydroxide solution and 50 µL of 5% pyrrolidine.
The sample was desalted following the manufacturer’s instructions using GL-Tip™SDB
and GL-Tip™GC (GL Science Inc., Tokyo, Japan).

Dried peptide samples were dissolved in 50 mM tetraethylammonium bromide (Sigma-
Aldrich) for 6-plex TMT reagent labeling (Thermo Fisher Scientific). After checking the
peptide concentration using a Pierce™ quantitative colorimetric peptide assay kit (Thermo
Fisher Scientific), equal amounts of peptides from each group were labeled and placed
in a sample tube. Pooled peptide samples were fractionated using a Pierce™ High pH
Reversed-Phase Peptide Fractionation Kit (Thermo Fisher Scientific).

We harvested 10 µM α-AMA-treated Huh-7 cells with and without 5 µM ERK1/2
inhibitor and added to 500 µL of 8 M Urea (Sigma-Aldrich) in 100 mM Tris (VWR Inter-
national) containing protease and phosphatase inhibitors (Thermo Fisher Scientific) to
investigate the effect of the ERK1/2 inhibitor. The trypsin-digested peptides were collected
as described above. The α-AMA and ERK1/2 inhibitor treatment groups were labeled
with 18O water (Cambridge Isotope Laboratories, Inc., Cambridge, MA, USA) for quan-
titative analysis based on the 18O/16O ratio. Peptide concentrations were determined
using a Pierce™ quantitative colorimetric peptide assay kit (Thermo Fisher Scientific).
Equal amounts of peptides from each group were blended 1:1 with the control group.
Phosphopeptide enrichment was performed as previously described.

4.5. Instruments

All samples were dissolved in 10 µL of solution A (2% acetonitrile in 0.1% formic acid),
and 2 µg of each fraction was loaded onto an Ultimate 3000 RSLCnano system connected to
a PepMap™ RSLC C18 analytical column and Acclaim PepMap™ 100 trap column. Samples
were eluted using the gradient liquid chromatography method (5–30% acetonitrile for 150
min) and analyzed using an LTQ-Orbitrap Velos mass spectrometer in positive ion mode
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at the Mass Spectrometry Convergence Research Center. Quantitative mass spectrometry
analyses were performed in duplicate for each pooled peptide sample. The electrospray
voltage was set to 2.0 kV for the TMT-labeled sample analysis. The precursor ion scans
were acquired at a resolution of 60000. The automatic gain control (AGC) target value
for the MS scan of 1.0 × 106 higher-energy collisional dissociation collision (HCD) mode
was used to obtain MS2 (R = 7500). The data-dependent mode producing ten of the most
abundant ions from the full scans was fragmented in the HCD mode with 40% normalized
collision energy (NCE). For 18O-labeled sample analysis, the MS2 parameter changed from
the HCD mode to the collision-induced dissociation (CID) mode with 30% NCE. The other
parameters were the same as those used in the TMT-labeled sample analysis.

4.6. Phosphoproteome Data Analysis and Bioinformatics Analysis

All mass spectra data were input into MaxQuant 1.5.1.0 [45], and the human proteome
database (updated 13 December 2018) was downloaded from Uniprot to obtain bioinfor-
matics information. Protein and peptides were obtained using the following parameters:
trypsin/P for cleavage enzyme permitting up to 2 missed cleavages; 10 ppm for precursor
ions and 0.02 Da for fragment ions of mass error; carbamidomethylation on Cys for fixed
modification and oxidation on Met, phosphorylation on Ser, Thr and Tyr, and acetylation
on the protein N-terminus for variable modifications. The false discovery rate (FDR) for
proteins, peptides, and phosphosites was set to 1%. The minimum length of the peptide
was set to 7. The site localization probability was set to >0.75 for selected specific phospho-
rylation sites. All other MaxQuant parameters were set to their default values. Data are
available in ProteomeXchange with the identifier PXD035817 for α-AMA and PXD035758
for α-AMA+ERK1/2 inhibitor.

The DAVID Functional Annotation Bioinformatics Microarray Analysis web-based
software was used for Gene Ontology (GO), InterPro, and KEGG pathway analyses [46].
Perseus 1.6.0.7, depending on the phosphoprotein regulation patterns, was used for unsu-
pervised hierarchical clustering [45]. All reported ion intensities from the treatment groups
were divided by the reporter ion intensity from the control group, and these data were nor-
malized using Z-score normalization to categorize proteins based on abundance-changing
tendencies. Hierarchical clustering based on Euclidean distance was applied to cluster
the normalized scores, and average linkage clustering was used to process the k-means
clustering. Heat map clustering was used to visualize the data.

The STRING analytical tool was used to profile the protein–protein networks. iGPS
1.0 was used to identify kinase-specific p-sites and systematically elucidate site-specific
kinase-substrate relationships [28]. The STRING analytical tool (https://string-db.org/)
was used to search for specific protein networks [47].

4.7. Phosphoprotein Screening by Immunoblotting

Proteins (10 µg) were separated by SDS-PAGE using 12% tris-glycine polyacrylamide
gel electrophoresis and then transferred to a PVDF membrane using a wet blotting system
(Roche, Basel, Switzerland) to profile phosphoproteins in hepatocytes. Membranes were
blocked with 5% BSA in TBST (20 mM tris, 500 mM sodium chloride, 0.1% Tween-20, pH
7.5) for 4 h at room temperature (RT) and then incubated with primary antibodies at 4 ◦C
for 18 h. The membranes were washed thrice with TBST for 10 min and then incubated
with secondary antibodies for 1 h at RT. Signals were detected using iBright 1500 (Thermo
Fisher Scientific) and ECL Prime Immunoblotting Detection Reagent (Cytiva, Marlborough,
MA, USA).

To verify the phosphoproteomics results, primary antibodies specific to p53 (Cell
Signaling Technology, Danvers, MA, USA; P/N 2524S), histone H3 (Cell Signaling Tech-
nology; P/N 9715S), α-tubulin (Abcam, UK; P/N ab52866), phospho-serine (Abcam, P/N
ab9332), phospho-threonine (Cell Signaling Technology, P/N 9381S), phospho-tyrosine
(Cell Signaling Technology, P/N 9411S), phospho-c-Raf (Cell Signaling Technology, P/N
9421S), phospho-MEK1/2 (Cell Signaling Technology, P/N 9154S), phospho-ERK1/2 (Cell

https://string-db.org/
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Signaling Technology, P/N 9101S), and ERK1/2 (Cell Signaling Technology, P/N 9102S)
were used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232012294/s1.
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