
Citation: Wang, H.; Wang, J.; Feng,

Z.; Li, Y.; Zhao, H. PD-BertEDL: An

Ensemble Deep Learning Method

Using BERT and Multivariate

Representation to Predict Peptide

Detectability. Int. J. Mol. Sci. 2022, 23,

12385. https://doi.org/10.3390/

ijms232012385

Academic Editors: Christo

Z. Christov and

Tatyana Karabencheva-Christova

Received: 1 September 2022

Accepted: 12 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

PD-BertEDL: An Ensemble Deep Learning Method Using BERT
and Multivariate Representation to Predict Peptide Detectability
Huiqing Wang *, Juan Wang, Zhipeng Feng, Ying Li and Hong Zhao

College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
* Correspondence: wanghuiqing@tyut.edu.cn

Abstract: Peptide detectability is defined as the probability of identifying a peptide from a mixture
of standard samples, which is a key step in protein identification and analysis. Exploring effective
methods for predicting peptide detectability is helpful for disease treatment and clinical research.
However, most existing computational methods for predicting peptide detectability rely on a single
information. With the increasing complexity of feature representation, it is necessary to explore the
influence of multivariate information on peptide detectability. Thus, we propose an ensemble deep
learning method, PD-BertEDL. Bidirectional encoder representations from transformers (BERT) is
introduced to capture the context information of peptides. Context information, sequence information,
and physicochemical information of peptides were combined to construct the multivariate feature
space of peptides. We use different deep learning methods to capture the high-quality features of
different categories of peptides information and use the average fusion strategy to integrate three
model prediction results to solve the heterogeneity problem and to enhance the robustness and
adaptability of the model. The experimental results show that PD-BertEDL is superior to the existing
prediction methods, which can effectively predict peptide detectability and provide strong support
for protein identification and quantitative analysis, as well as disease treatment.

Keywords: peptide detectability; BERT; multivariate representation; ensemble deep learning

1. Introduction

Peptide detectability is defined as the probability of detecting a peptide from a stan-
dard sample analyzed by a proteomics program [1]. It is used to measure the relationship
between the amount of protein in the sample and the peptide detected. In a shotgun protein
assay, proteins in the mixture sample are enzymatically decomposed into peptides, and
high-throughput peptide analysis is performed by liquid chromatography-tandem mass
spectrometry (LC-MS/MS) and other techniques to determine the composition and content
of proteins in the sample [1–3]. In this process, non-site cleavage of sequences, loss of
peptide generated during enzymatic hydrolysis, and other abnormalities may lead to the
deviation of the probability of peptide detection [2], thus restricting the identification and
quantitative calculation of proteins. Studies have shown that peptide detectability is crucial
to detection, analysis, and differential expression of proteins in proteomics [4–6]. Therefore,
accurate prediction of peptide detectability helps protein detection and expression analysis
provides reference value for the discovery of disease biomarkers and clinical research and
thus helps us to more deeply understand cell biology and the underlying mechanisms of
human diseases.

There is a strong correlation between amino acids and amino acids in the sequence.
Researchers introduce contextual information as the feature representation of the peptide se-
quence level to better describe the global information of the sequence. Charoenkwan et al. [7]
captured the context information of bitter peptides and used it as a feature, and used BiL-
STM and DNN to identify bitter peptides. The results showed that the context information
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could effectively improve the recognition accuracy of bitter peptides. In peptide detectabil-
ity, Serrano et al. [8] regarded amino acids as words, utilized word2vec to calculate the
embedding vector of each word, and input the convolutional neural network to predict
peptide detectability. Cheng et al. [9] used transformer and bidirectional gated neural net-
work (BiGRU) to capture the context information of peptides, and improved the prediction
performance of peptide detectability. These methods capture the context information of
peptides and reflect the global information of peptides better. However, word2vec regards
amino acids as words to calculate the embedding vector of each amino acid, but the vector
is a fixed value. For the same amino acid, the embedding vector is the same regardless of its
context, so it cannot fully reflect the context information of the peptides [9–11]. Transformer
uses the attention mechanism to capture the association between the target word and other
words in the text in order to enhance the target word’s semantic representation, but the
target word itself will consist of the semantics of the main parts, leading to the information
contained in each word after encoding being more inclined to the meaning of the word
itself [12,13], which could not obtain high quality context features.

With the continuous development of natural language processing (NLP), the re-
searchers used a new NLP technology-BERT to capture the context information. BERT
adopts mask language model (MLM) to strengthen the dependence on context and uses
output vector as the semantic representation of the whole sentence, thus integrating the
semantic information of each word in the text more “fairly” and solve the problem of
self-bias [14]. It has been successfully applied to protein post-translational modification
site prediction [15], peptide recognition [7,16] and gene sequence study [11,17,18]. There-
fore, BERT can effectively fuse the information of each amino acid to capture the context
information of peptides and enhance the prediction performance of peptide detectability.

There are numerous factors that affect peptide detectability, including sequence infor-
mation, physicochemical properties [19–22], context information derived from sequences,
etc. [8,9]. Tang et al. [1] encoded the sequence derived information of peptides and input
the feedforward neural network to predict the detection ability of peptides. Li et al. [19]
considered the 292-dimensional physicochemical properties, such as peptide length, con-
structed artificial neural networks to predict peptide detectability. Guruceaga et al. [21]
screened the 106-dimensional physicochemical properties of peptides, such as molecular
weight and theoretical isoelectric point, constructed random forest classifier (RF) for pep-
tide detection. Serrano et al. [8] extracted context information derived from sequences
and input it to a convolutional neural network for feature learning, which improved the
prediction accuracy of peptide detectivity. In the above studies, sequence information,
physicochemical properties, and context information derived from sequences were used to
predict peptide detectivity. However, these methods only considered information at a cer-
tain level of peptide, resulting in the simplification of the constructed feature space and the
absence of some information. Zhang et al. [23] considered sequence information, sequence
derived pseudo-amino acid composition information, and physicochemical properties,
using LightGBM to predict non-classical secreted proteins. Xu et al. [24] used evolutionary
information, the physicochemical properties of proteins, and sequence derived K-spaced
amino acid pairs information to predict lysine succinylation sites by support vector ma-
chine (SVM), indicating that multivariate representation could make up for the unicity
of feature space and effectively improve the accuracy of site prediction. The sequence
information, physicochemical properties, and sequence derived information of peptides
represent peptides from different perspectives. Considering three kinds of information
simultaneously to predict peptide detectability can help the model to learn diversified
feature representations, obtain richer feature information of peptide, and produce more
reliable prediction results. Therefore, this paper intends to use sequence information,
physicochemical properties, and context information derived from sequences to construct a
multivariate feature space, enrich the embedded feature representation of peptides, and
help the model to better predict peptide detectability.
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In classification problems, heterogeneity among information is an important data
characteristic of information itself [25]. Fully considering the differences between differ-
ent information can help the model fully explore the characteristics of each information
representation, and learn the high-quality features of specific information. The sequence
information, physicochemical properties and context information describe the peptide from
different perspectives. After encoding the information, the data dimension and embedding
vector represented by each information are completely different, and there is great hetero-
geneity among the three types of information. Gao et al. [26] collected the physicochemical
properties and peptide digestibility, and linearly linear fuse these information to obtain
588-dimensional vectors, used RF to predict peptide detectability. Yu et al. [27] considered
the physicochemical properties and sequence information, used same CapsNet network
to learn the features of the two types of information, respectively, and thus achieved the
prediction of peptide detectability. These methods considered the information of different
types of peptides and effectively predicted peptide detectability. However, when linear
fusion or the same network is used to process different categories of information, the
heterogeneity between different categories of information is not considered, which leads
to the captured features losing the unique properties of the corresponding category in-
formation [28,29] and then affecting the prediction performance of the model. Ensemble
deep learning strategy “specialized” a single kind of specific information [30]. Different
deep learning technologies are adopted to learn the representation of specific information,
which can capture the high-quality features of specific information, solve the heterogeneity
problem among different information, and finally ensemble the classification results of
multiple independent deep learning models. It has good fault tolerance and reliability. At
present, ensemble deep learning has been successfully applied in biological sequence stud-
ies [31–34], genome analysis [35], medication adherence [36] and other fields, providing
strong support for the prediction of peptide detectability.

Based on this, we propose PD-BertEDL, an ensemble deep learning method to predict
peptide detectability. We introduced the dynamic bidirectional word embedding model
BERT to capture the context information of peptides, and combined the context information
with the sequence information and physicochemical information of peptides to construct
multivariate feature space of peptides. Aiming at three types of different information
of peptides, the ensemble deep learning strategy was introduced, and different deep
learning methods were selected to capture the high-quality features of specific information:
convolutional neural network (CNN) and bidirectional long short-term memory network
(BiLSTM) were used to extract the local and global features of sequence information; CNN
and BiLSTM were used to study the physicochemical characteristics of amino acids; and
BiLSTM was used to learn the context characteristics of the peptides and to describe the
global information of the sequence better. Then, the average fusion strategy was utilized
to integrate the model prediction results based on the three types of features as the final
prediction result to achieve the prediction of peptide detectability.

2. Results and Discussion
2.1. Performance of Different Encoding Schemes Based on Context Information

In order to verify whether the BERT vector adopted can capture the context information
of peptide more effectively, we compared BERT with other two methods: word2vec and
transformer. Among them, word2vec used CBOW algorithm, transformer used multi-head
self-attention mechanism (head nums = 16), BERT used BERT-mini (which had 11.3 million
parameters with 4 transformer layers and 256 hidden embedding sizes). For the three
methods, Dense layer was used for classification after coding, and Sn, Sp, ACC, MCC,
AUC, and AUPR values were calculated. The results are shown in Table 1.
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Table 1. Performance of three encoding methods on the independent set of Homo sapiens.

Method Sn (%) Sp (%) ACC (%) MCC (%) AUC (%) AUPR (%)

BERT 69.79 68.09 68.95 37.89 74.99 70.54
transformer 68.08 66.09 67.07 34.17 72.76 67.99
word2vec 53.49 65.33 59.47 18.96 63.49 61.19

From Table 1, compared with transformer and word2vec, the model achieves the
highest value in all indicators when BERT is used to encode context information. Specifically,
the ACC, MCC, AUC, and AUPR values for the BERT method are 68.95%, 37.89%, 74.99%,
and 70.54%, respectively, improving by 9.48%, 18.93%, 11.50%, and 9.35% over the word2vec
method, respectively. The word2vec method takes several words around the target word in
the form of sliding window as samples for training. After training, the word vector of the
corresponding word is obtained by looking up table [10]. No matter the amino acid context
in the sequence, the word vector in the table is fixed. Therefore, the word2vec method
does not take the context information of the sequence into account. In the pre-training
process, BERT can calculate the association between words at each position and other
words in the sequence, which can fully consider the relationship between amino acids and
amino acids in the peptide sequence and can capture the context information of the peptide
more effectively. Compared with transformer, the ACC, MCC, AUC and AUPR values
of the BERT method are increased by 1.88%, 3.72%, 2.23%, and 2.55%, respectively. Since
the information contained in each word after transformer encoding is more biased to its
own meaning, the context information is not comprehensive. However, after multi-layer
transformer of BERT, each output vector fairly and effectively integrates the information of
each word in the entire sequence, which can better describe the global information of the
peptide sequence and better predict the performance that can be obtained.

2.2. Ablation Experiment
2.2.1. Feature Combination Ablation Experiment

In this paper, we combined sequence information, physicochemical information, and
context information of peptides to characterize peptides. To verify whether the multivariate
feature space constructed using three kinds of peptide information could help to predict
peptide detectability, we conducted validation on the Homo sapiens training set based on
single and multiple features of peptides, and the experimental results are shown in Table 2.

Table 2. Performance of single feature or multiple feature ensemble.

Feature A
√ √ √ √

Feature B
√ √ √ √

Feature C
√ √ √ √

ACC(%) 81.15 81.17 80.42 81.60 81.14 81.20 82.58
MCC(%) 62.64 63.97 61.12 64.73 64.45 64.35 66.52
AUC(%) 87.07 86.57 87.07 87.58 87.59 87.62 88.32

AUPR(%) 82.11 81.16 82.69 82.70 83.05 83.06 84.01

Different columns in Table 2 represent different single features or feature combinations.
Among them, Feature A means sequence feature, Feature B means physical and chemical
feature, and Feature C means context feature, columns 2–4 represent single feature informa-
tion. Columns 5–7 indicate that integrating the two kinds of feature using average fusion
strategy. Last column indicates that integrate the sequence feature, physical and chemical
feature and context feature of peptide using average fusion strategy, which is the feature
combination method adopted in this paper. Table 2 records the ACC, MCC, AUC and
AUPR values obtained under different feature combinations. As can show in Table 2, when
the three features of peptide were integrated, the ACC, MCC, AUC and AUPR values were
82.58%, 66.52%, 88.32%, and 84.01%, respectively, which were better than other conditions.
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Compared with the case of a single feature, the feature combination method in this paper
increases by 1.43%, 1.41%, and 2.16% in ACC, respectively. Compared with the two feature
combinations, the feature combinations in this paper are improved by 0.98%, 1.44%, and
1.38% in ACC, respectively. This is because the case of a single feature and two feature
combinations only considered part of the feature of the peptide, resulting in the absence
of some features, which cannot describe the peptide information more comprehensively.
Peptide detectability is influenced by many factors. Considering the sequence information,
physicochemical information, and context information derived from sequences meanwhile,
the model can learn diversified feature representations, obtain rich feature information of
peptides, and significantly improve the prediction performance of the model [37].

2.2.2. Performance of Ensemble Deep Learning

In order to verify whether the ensemble deep learning strategy of PD-BertEDL method
can effectively solve the heterogeneity problem among different information and improve
the prediction performance of peptide detectability, we designed and implemented three
methods: Linear Fusion [26], Same Network [27], and Hybrid [38–40], respectively. Among
them, Linear Fusion linearly spliced the three kinds of peptide information used in this
paper, input the spliced vector into CNN+BiLSTM network to extract features and used
softmax to classify. The Same network used the same CNN+BiLSTM network to extract the
features of the three kinds of peptide information and used the ensemble strategy based on
average fusion to achieve peptide detectability prediction. Hybrid used CNN+BiLSTM,
CNN+BiLSTM, BiLSTM to extract the sequence information, physicochemical information
and features of context information derived from the sequence, respectively. The three
obtained features were fused by matrix concatenation, and BiLSTM was used to learn
the fused features. Finally, softmax was used for classification. In order to guarantee
the fairness of the experiment, the coding work based on different peptide information
and the parameter setting of the model in the above three methods is consistent with the
proposed method. On the Homo sapiens dataset, we trained the four models, respectively,
and evaluated the models with independent test set. The experimental results are shown
in Table 3.

Table 3. The results of PD-BertEDL and other integration methods.

Model ACC (%) MCC (%) AUC (%) AUPR (%)

Linear fusion 81.61 65.38 88.12 83.71
Same network 81.80 64.86 87.77 83.60

Hybrid 81.02 63.88 87.18 82.26
PD-BertEDL(our) 82.58 66.52 88.32 84.01

From Table 3, compared with Linear Fusion, Same Network, and Hybrid methods, the
proposed method PD-BertEDL achieves the highest ACC, MCC, AUC, and AUPR values.
Compared with the Linear Fusion method, PD-BertEDL method can extract features of
different information, avoid the interference between different information, and effectively
improve the quality of features. Compared with Same Network method, PD-BertEDL
method uses different deep learning models to extract the features of three kinds of peptide
information and learns the specific features of different information. Meanwhile, the
ACC, MCC, AUC, and AUPR values are improved by 0.78%, 1.66%, 0.55% and 0.41%,
respectively. Compared with Hybrid method, PD-BertEDL method adopts the ensemble
method based on average fusion to integrate models based on three kinds of peptide
information, give play to the advantages of each model, solve the constraints of different
model training, and improve the overall prediction performance of the model. For Hybrid
and PD-BertEDL, the difference is only in the final classification method. The MCC value
of PD-BertEDL increases by 2.64% compared with Hybrid, and the MCC value can be
used to measure the classification quality of a binary classifier [41]. This indicates that
in the prediction of peptide detectability, after using different models to automatically
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obtain corresponding high-level features from specific information, ensemble classification
method is more helpful to improve the prediction performance of peptide detectability
than mixed model classification method. In summary, this paper adopts different deep
learning methods to extract features of different information and adopts the ensemble
strategy based on average fusion to design the ensemble deep learning method architecture
reasonably and effectively, which can better predict peptide detectability.

2.3. Performance of Machine Learning and Deep Learning Methods

In this paper, we used sequence information, physicochemical information, and con-
text information derived from sequences as three kinds of information representation of
peptides. In order to explore effective learning methods based on these three kinds of infor-
mation, exploit the unique properties of each information fully, and capture high-quality
features, we adopted four classical machine learning algorithms: K-Nearest Neighbor
(KNN), Logistic Regression (LR), RF and Gradient Boosting Decision Tree (GBDT) and
two deep learning algorithms: CNN and BiLSTM, and the combination model of two
algorithms. Training was conducted on the Homo sapiens dataset, respectively, and cross-
validation mean results and independent test results were obtained, as shown in Figure 1
(see Tables S3 and S4 and Figures S1–S4 of Supplementary Materials for specific experimen-
tal results).

As can be seen from Figure 1, in the 5-fold cross-validation and independent test
experiments, the three deep learning methods achieve higher accuracy compared with the
traditional machine learning algorithms. For the sequence information encoded of one-hot
coding, when CNN+BiLSTM combined model was used to learn features, the ACC value
of cross validation reaches 81.47%, which is 1.10% higher than that of CNN model only
and 0.06% higher than that of BiLSTM model only. For the physicochemical information
of AP3-A coding, the ACC value of cross validation reached 80.58% when CNN+BiLSTM
combined model was used to learn features, which was 0.90% and 1.50% higher than that
of CNN model and BiLSTM model alone, respectively. This indicates that the combination
model of CNN and BiLSTM can simultaneously extract the local information of amino
acid residues and the order dependent relationship between different residues and obtain
higher quality sequence features and physicochemical characteristics. However, we found
that for the context information of peptides, only BiLSTM was used to learn features, which
achieved the optimal result; its cross-validated ACC value was 9.87% higher than that of
CNN model alone and 0.12% higher than that of CNN+BiLSTM model. This is because
BERT uses the above and below of the target word to capture the context information of
the sequence and fully reflect the global information of the sequence. While CNN uses
the sliding window to form a specific scale matrix to capture features, which will weaken
the context information extracted by BERT and even lead to losing part of the information
in the process of noise reduction, reducing the prediction performance of the model [42].
BiLSTM can well capture the bidirectional semantic dependence, strengthen the context
information extracted by BERT, to improve the prediction accuracy of peptide detectivity.
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2.4. Evaluation of PD-BertEDL Prediction Ability

To evaluate the prediction performance of the proposed method PD-BertEDL, we
compared the prediction performance of the proposed method PD-BertEDL with other
existing methods based on the independent test set. In this part of the experiment, we
chose four comparison methods: DNN [22], CapsNet [27], DeepMS [8], and PepFormer [9].
Among them, DNN method only used the single information representation of the peptide
to predict peptide detectability. The CapsNet method used peptide sequence information
and physicochemical information to describe the peptide, and used the same network to
extract features from different information to achieve the prediction of peptide detectability.
DeepMS and PepFormer are meaningful attempts of deep learning and NLP technology
in predicting peptide detectability: DeepMS regarded peptide sequence as a sentence and
used two-layer CNN to extract the context features of peptides encoded by word2vec for
further prediction; PepFormer used transformer to capture the context features of peptides
and used BiGRU to predict peptide detectability, which opens the idea for the application
of deep learning and NLP technology in predicting peptide detectability. In order to ensure
the fairness of the experiment, training is carried out on the training set of Homo sapiens,
and the model is evaluated on the independent test set. The experimental results are as
shown in Table 4.

Table 4. The results of PD-BertEDL and other predictors on the independent test set of Homo sapiens.

Model Sn (%) Sp (%) ACC (%) MCC (%)

DNN [22] 75.59 61.93 68.70 37.86
CapsNet [27] 88.32 74.43 81.31 63.34
DeepMS [8] 89.02 71.84 80.35 61.72

PepFormer [9] 81.56 79.61 82.17 61.17
PD-BertEDL(our) 92.38 72.96 82.58 66.52

From Table 4, we know that compared with other predictors, the Sn, ACC, and MCC
values of the proposed PD-BertEDL method are 92.38%, 82.58%, and 66.52%, respectively,
but the Sp value is relatively low. Sn and Sp are antagonistic, and Sn value represents
the percentage of data predicted as positive cases in all positive cases [41]. In protein
identification analysis and peptide detection, it is important to know which theory digested
peptides can be identified. This means that higher Sn value is more helpful in predicting
peptide detectability [26]. Through analysis, it was found that the proposed method PD-
BertEDL achieves the highest Sn value, which indicates that our method obtains better
prediction performance due to its ability to accurately predict positive samples. In addition,
the ACC value of PD-BertEDL is enhanced by 13.88%, 1.27%, 10.74%, and 0.41% compared
with DNN, CapsNet, DeepMS, and PepFormer, respectively. Through analysis, the DNN
method uses only the physicochemical information of peptides, while PD-BertEDL method
uses the sequence information, physicochemical information, and context information of
peptides to enrich the characteristic representation of peptides and solve the problem that
the information representation is simple due to the use of physicochemical information
only. Compared with the CapsNet method, PD-BertEDL adopts different deep learning
methods for feature learning of three different kinds of peptide information, which can
extract the important features of each information more effectively. At the same time, PD-
BertEDL combines with the ensemble strategy to effectively integrate the prediction results
of three kinds of feature information and solve the heterogeneity problem among different
information and enhances peptide detectability. Compared with the deep learning and NLP
methods (DeepMS and PepFormer), PD-BertEDL introduces BERT to capture the context
information of peptide more fully, and combines BiLSTM to capture the bidirectional
semantic dependence well, strengthens the context information extracted by BERT, and
effectively improves the overall prediction accuracy of the model.
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Since the ROC curve and PR curve can more intuitively compare the performance of
each predictor, the ROC curve and PR curve of PD-BertEDL and other predictors on the
independent test set of Homo sapiens were plotted in this paper, as shown in Figure 2.
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The AUC and AUPR of PD-BertEDL are 88.32% and 84.01%. Compared with DNN,
CapsNet, DeepMS, and PepFormer, the AUC (AUPR) value of the PD-BertEDL method
increased by 13.61% (14.18%), 2.65% (2.63%), 2.59% (4.09%), and 1.05% (2.19%), respectively.
In conclusion, these results demonstrate that our method retains a better predictive power
than the existing methods for the peptide detectability prediction.

In order to prove the stability of PD-BertEDL, we conducted 5-fold cross-validation
experiment on the Homo sapiens dataset for DNN, CapsNet, DeepMS, Pepformer, and
PD-BertEDL, and recorded the results in Table 5.

Table 5. The results of 5-fold cross-validation with different models on Homo sapiens dataset.

Model Sn (%) Sp (%) ACC (%) MCC (%) AUC (%) AUPR (%)

DNN [22] 73.92 ± 1.71 62.10 ± 1.70 67.96 ± 0.14 36.28 ± 0.32 73.77 ± 0.42 68.88 ± 0.62
CapsNet [27] 89.98 ± 0.71 73.02 ± 1.11 81.50 ± 0.48 63.94 ± 0.93 85.97 ± 0.33 81.50 ± 0.50
DeepMS [8] 90.79 ± 1.03 68.86 ± 0.38 79.73 ± 0.38 61.08 ± 0.70 85.25 ± 0.28 79.25 ± 0.39

PepFormer [9] 82.85 ± 2.13 76.20 ± 3.36 81.96 ± 0.32 59.03 ± 3.68 87.25 ± 0.31 82.36 ± 0.79
PD-BertEDL (our) 90.25 ± 1.34 71.76 ± 1.13 82.13 ± 0.42 65.10 ± 1.37 88.35 ± 0.49 84.29 ± 0.51

It can be seen from Table 5 that the standard deviations of Sn, Sp, ACC, MCC, AUC,
and AUPR of PD-BertEDL method are 0.0134, 0.0113, 0.0042, 0.0137, 0.0049, and 0.0051,
respectively. Based on the results of 5-fold cross-validation, we calculated the variance of
Sn, Sp, ACC, MCC, AUC, and AUPR, which were 2.24 × 10−4, 1.59 × 10−4, 2.17 × 10−5,
2.32 × 10−4, 3.00 × 10−5, and 3.19 × 10−5, respectively. (The variance of indicators for all
models in Table S5). The results show that the model can learn the characteristics of peptide
sequence well when processing each fold of samples, then effectively realize the prediction
of peptide detectability, and it has a certain stability.

In order to further verify the generalization ability of the proposed method PD-
BertEDL, the DNN, CapsNet, DeepMS, and PepFormer methods were trained on the
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Musculus dataset and independently tested and verified. The prediction results are shown
in Table 6.

Table 6. The results of PD-BertEDL and other predictors on the independent test set of Musculus.

Model Sn (%) Sp (%) ACC (%) MCC
(%) AUC (%) AUPR (%)

DNN [22] 58.34 65.29 62.05 23.67 67.34 60.39
CapsNet [27] 35.37 82.38 60.43 20.22 64.64 58.88
DeepMS [8] 72.06 66.35 69.01 38.34 75.54 66.62

PepFormer [9] 73.25 73.77 73.88 46.94 80.78 72.20
PD-BertEDL(our) 85.29 65.53 74.76 51.41 81.21 72.99

As can be seen from Table 6, on the Musculus dataset, the proposed method PD-
BertEDL still achieved the optimal results on a whole. This indicates that PD-BertEDL has
good generalization performance and is suitable for data of different species. In addition,
we find that the three methods DNN, DeepMS, and PepFormer reach the same conclusion
as the proposed method. However, prediction accuracy obtained by these three methods
are lower than that of the PD-BertEDL method. For the CapsNet method, the accuracy is
significantly lower than other methods. The underlying reason is that the learning ability
of this model is weak and it cannot fully learn the unique characteristics of data of different
species [9]. Further confirmed, even from the perspective of different species, our method
is more effective for predicting peptide detectability but also proves that the method has a
higher complexity and a stronger ability to learn; it can learn the unique features of different
species data; and it provides a useful reference for the prediction of peptide detectability in
other species.

2.5. t-SNE Visualization

In this paper, we combined sequence information, physicochemical information, and
context information derived from sequences to characterize peptides for the prediction
of peptide detectability. To verify that all three kinds of information contribute to the
prediction of peptide detectability, we performed visual verification using t-SNE on the
independent test set of Homo sapiens, based on two modes of single information and three
combinations of information. The initial coding vectors of all samples and high-level
abstract features extracted from models based on different information are projected into
a two-dimensional space, and the space is scaled to the interval [−1, 1]. The results are
shown in Figure 3.

For each information of peptide, after feature learning by corresponding models,
each model generates a better high-level feature discrimination representation. Compared
with the single information to distinguish whether a peptide can be detected or not, the
multivariate information of the integrated peptide shows better discrimination. Therefore,
the proposed model can learn the abstract deep representation of peptides from the se-
quence information, physicochemical information, and context information, enhance the
distinguishing ability of features, and help to predict peptide detectability.



Int. J. Mol. Sci. 2022, 23, 12385 11 of 19
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 19 
 

 

 
(a)  

(b)  

 
(c) 

 
(d) 

Figure 3. t-SNE visualization results on the independent test set of Homo sapiens: (a) t-SNE of
sequence information; (b) t-SNE of physicochemical information; (c) t-SNE of context information;
(d) t-SNE of three information.
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3. Materials and Methods

Prediction of peptide detectability can be abstracted as a binary classification problem.
The collected sequence can be classified as: the peptides detected by MS and the non-
detected peptides [8]. We propose an ensemble deep learning method to investigate the
underlying mechanisms of peptide detectability. The architecture of PD-BertEDL is shown
in Figure 4.

Int. J. Mol. Sci. 2022, 23, 12385 12 of 19 
 

 

Prediction of peptide detectability can be abstracted as a binary classification prob-
lem. The collected sequence can be classified as: the peptides detected by MS and the non-
detected peptides [8]. We propose an ensemble deep learning method to investigate the 
underlying mechanisms of peptide detectability. The architecture of PD-BertEDL is 
shown in Figure 4. 

 
Figure 4. The architecture of PD-BertEDL. 

3.1. Dataset Collection and Preprocessing 
The dataset applied for training and testing originates from the GPMDB database 

[43], involving mass spectrometry data and detection frequencies for proteins identified 
by mass spectrometry [27]. From Cheng et al. [9], we obtained data of two species: 
Homo.sapiens and Mus.culus. In order to avoid the deviation of the model due to the high 
sequence homology, we used the CD-HIT tool [44] with the threshold of 0.9 to delete se-
quences containing non-standard amino acids and redundant information. In addition, 
we calculated the peptide sequence lengths of the two datasets, and the maximum se-
quence lengths of Homo.sapiens and Mus.culus after CD-HIT were 46 and 63, respec-
tively. For the integrity of the sequence, we set the maximum length to the sequence length 
L. For sequence fragments containing fewer than L amino acids, we filled them with 
pseudo amino acids (represented by ‘X’). After that, we randomly selected 20% of them 
as an independent test set. The remaining peptide sequences were used as a training set. 
The statistical information of Homo.sapiens and Mus.culus dataset is shown in Table 7. 

Table 7. Dataset information of Homo.sapiens and Mus.culus, where the threshold of CD-HIT is 0.9. 

 Dataset Type Positive Sample Negative Sample 

Figure 4. The architecture of PD-BertEDL.

3.1. Dataset Collection and Preprocessing

The dataset applied for training and testing originates from the GPMDB database [43],
involving mass spectrometry data and detection frequencies for proteins identified by mass
spectrometry [27]. From Cheng et al. [9], we obtained data of two species: Homo sapiens and
Musculus. In order to avoid the deviation of the model due to the high sequence homology,
we used the CD-HIT tool [44] with the threshold of 0.9 to delete sequences containing
non-standard amino acids and redundant information. In addition, we calculated the
peptide sequence lengths of the two datasets, and the maximum sequence lengths of Homo
sapiens and Musculus after CD-HIT were 46 and 63, respectively. For the integrity of the
sequence, we set the maximum length to the sequence length L. For sequence fragments
containing fewer than L amino acids, we filled them with pseudo amino acids (represented
by ‘X’). After that, we randomly selected 20% of them as an independent test set. The
remaining peptide sequences were used as a training set. The statistical information of
Homo sapiens and Musculus dataset is shown in Table 7.
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Table 7. Dataset information of Homo sapiens and Musculus, where the threshold of CD-HIT is 0.9.

Dataset Type Positive Sample Negative Sample

Homo sapiens Training 22,404 22,813
Independent test 5601 5703

Musculus
Training 7320 8356

Independent test 1829 2089

3.2. Information Encoding
3.2.1. Sequence Information

One-of-21 encoding was used to encode sequence information of the peptide, which
is a discrete representation of value 1 at the index corresponding to the amino acid in the
peptide and 0 at all other positions [41]. For example, the one-of-21 encoding of a sequence
fragment ‘KFVICHLKGK’ is [[001000000000][000001000000] . . . . . . [000000010000]]. Thus,
for a sequence fragment with length L, L × 21-dimensional vector representation would be
obtained after one-hot-21 coding.

3.2.2. Physicochemical Information

Gao et al. [26] selected 15 amino acid indices from AAindex [45] as the physicochemi-
cal properties of peptides, including 10 structural indices, positive charge, 2 energy indices,
hydrophobicity indices and amino acid composition (Table S1 of Supplementary Mate-
rials). In this part, the 15 amino acid indices were used to encode the physicochemical
properties of the peptide, which is hereby referred to as AP3-A for the convenience of
the following description. For motifs of length L, we obtained corresponding values ac-
cording to the correspondence between amino acids contained in them and Table S2. For
example, the corresponding physicochemical properties vector representation of sequence
fragment ‘KFVICHLKGK’ is [[4.358,1.7,0.61 . . . 1,6.31], [4.663,1,0.8 . . . 0, 7.09], . . . . . . ,
[4.224,1.8,0.66 . . . 1,4.32]]. Thus, for a sequence fragment with length L, L× 15-dimensional
vector representation would be obtained, which can represent physicochemical information.

3.2.3. Sequence-derived Context Information

BERT jointly adjusts the context of the text through the self-attention mechanism
in all coding layers to obtain the deep bidirectional representation [46]. In the BERT
model, the input vector of each word consists of three embeddings: token embedding,
segment embedding and position embedding. Position embedding can represent the
absolute position information of each word in a sentence [47]. A visualization of the word
embedding structure is shown in Figure 5.
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In order to fully capture the context information of the peptide, we regarded the
peptide sequence as a sentence, and took k amino acids as a group, which was called
“word” [47]. Since the parameter scale of BERT model is up to 100 million, it is very
demanding for the experimental environment to use our own corpus to build a word list
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and retrain the BERT model. In addition, in the study of classification prediction using
BERT, some research proved that the optimal results could be obtained when k = 1 was
used [15,16]. Therefore, k was set to 1, and the peptide sequence of length L was divided
from beginning to end to obtain L “words”. In this paper, the token sequence is an array
composed of a single amino acid in the sequence. The token sequence is input into the BERT
model to obtain the embedding vector representation of each amino acid. Given a sequence
P = (P1, P2, . . . , PL) (Pi refers to each amino acid), the tokenizer transforms the sequence
P and obtains the mapping ids table of the sequence, where the first CLS is the sentence
vector and the last SEP is the spacer. For sequence P, we can obtain token embeddings
(1, L, 256), segment embeddings (1, L, 256), and position embeddings (1, L, 256) after three
layers of coding representation. A synthetic representation of size (1, L, 256) is obtained
using equations (1) and fed into the BERT model.

Embedding = embeddingtoken + embeddingsegment + embeddingposition (1)

Finally, we extracted intermediate features using a pre-trained language model (Bert-
mini) adopted by Qiao et al. [15], used output vector of the last layer as the context
information of sequence P and used it to predict peptide detectability.

3.3. The PD-BertEDL Architecture
3.3.1. Ensemble Deep Learning

Ensemble deep learning strategy combines ensemble learning and deep learning
technology, and can “specialized” a single feature set [30], using different deep learning
methods can learn the representation of a single feature set. The ensemble deep learning
strategy integrates the learning and classification results of multiple deep learning models
based on a single feature set, to solve the problem of heterogeneous data combination and
realize the multi-faceted abstraction of data [23]. This strategy is currently widely used
to predict different biological data, such as anti-tuberculate peptides [33], antimicrobial
peptides [34], recognition of non-classical secreted proteins [23], DNA recombination
points [35], etc., and has been shown to help improve prediction performance and model
generalization.

Considering the heterogeneity among different information, we adopted different
methods to extract the features of the three kinds of peptide information, and integrated
the prediction results of the model based on the three features, thus learn its unique
properties from the specific information and solve the heterogeneity problem among
different categories of information. We used four models with different machine learning
characteristics (LR, RF, KNN, GBDT [48]) and three deep learning models (CNN, BiLSTM,
CNN and BiLSTM combination model) to learn the three kinds of peptide information and
predict peptide detectability. Then, we obtained the prediction results of seven models
based on each kind of peptide information. Corresponding to the sequence information
of peptide, the optimal model (with the highest accuracy) was selected from the seven
models according to the prediction accuracy of the model as the prediction model based on
the sequence information of the peptide. Similarly, corresponding to the physicochemical
information of peptides and the context information derived from sequences, the optimal
prediction model based on the physicochemical information of peptides and the context
information derived from sequences can be obtained according to the above screening
methods. Finally, predicted output probable values of the three optimal prediction models
were equal-weighted averaged with average fusion strategy to achieve ensemble prediction.
After training and screening, the overall prediction result Y of the ensemble model based
on CNN + BiLSTM, CNN + BiLSTM and BiLSTM was obtained, as showed in Equation (2).

Y = f (yi) =
1
3

3

∑
i=1

yi (2)
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where yi is the predicted probability value based on the ith information of the peptide,
respectively. In this way, we effectively make use of the characteristics of each information
without being affected by the number and dimension of features encoded by different
information, thus enhance the performance and generalization of the model [23].

3.3.2. Convolutional Neural Networks

CNN is used to extract sequence information and local features of physicochemical
information of peptides. CNN carries out convolution operations through convolution
kernels with shared parameters to extract local spatial information, while different convo-
lution kernels extract different local information, and the combination of these information
constitutes spatial feature, which is more efficient than fully connected deep networks. In
this part, the basic CNN unit is a one-dimensional convolutional network (1D-CNN), which
contains a convolution layer and a relu layer. The unit is added in a nested way to adjust the
number of convolutional layers in the network. The convolution layer extracts the hidden
features in the original data by summing the dot product between the convolution kernel
matrix and the input data matrix. After the convolution operation, the relu activation
function is used to remove the negative information and retain the useful information
for classification.

Taking motifs of length L as an example, the feature extraction process of 1D-CNN is
shown in Equations (3)–(5).

X′ = fconv(I) (3)

X
′
i,j =

F

∑
F=1

R

∑
r=1

Wi
F,r · I

j
F,r + bi (4)

X(CNN) = frelu
(
X′
)
= relu

(
X′
)
= max

(
0, X′

)
(5)

Here, I ∈ RF×L is the coding vector of the input layer, and F ∈ {21, 15} is the coding
length of the sequence information and physicochemical information of the peptide. X′i,j
is the characteristic representation of the ith convolution kernel sliding to the jth amino
acid, i ∈

{
1, . . . , N f ilter

}
(N f ilter is the number of convolution kernels), j ∈ (1, . . . , L)

(R is the size of the convolution kernel, and S is the sliding step. W ∈ RN f ilter×F×R is the
weight matrix, and b is the bias term. X(CNN) ∈ RN f ilter×L is the output of 1D-CNN. This
process is repeated in a nested way to construct multi-layer CNN, so as to capture deeper
feature information.

3.3.3. Bi-Directional Long Short-Term Memory Network

Considering the sequential correlation between different amino acids, BiLSTM is used
to capture the interdependence information and global information among amino acids in
peptide sequences, so as to enhance the information flow in the process of peptide sequence
feature learning and to improve the discriminative ability of the network. BiLSTM is
composed of LSTM units, and the structure of a single LSTM unit is shown in Figure 6.
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After the LSTM unit receives the input data, the first step was to decide which in-
formation to keep through the “forgetting gate” and the output of the last moment. The
second step was divided into two parts. Firstly, generating new information through the
“input gate”; Second, new information was added through the tanh layer to update the
current unit state. The third step was to get the output of LSTM unit through “output
gate” and tanh layer. The calculation process of LSTM element at time step t is shown in
Equations (6)–(10).

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(6)

it = σ(Wxixt + Whiht−1 + bi) (7)

Ct = ftCt−1 + ittanh(WxCxt + WhCht−1 + bC) (8)

ot = σ(Wxoxt + Whoht−1 + bo) (9)

ht = ottanh(Ct) (10)

ft, it, Ct, ot and ht represent forgotten gate, input gate, unit state, output gate
and hidden state, respectively. xt represents the LSTM unit input at time step t; W and
b represent the weight matrix and the bias term, respectively. Therefore, the LSTM unit
adjusts the internal information flow through the gating mechanism and controls the
historical information through the “forgetting gate”, to ensure that the network learns the
dependence relationship between amino acid residues. BiLSTM network has outputs from
two directions, which are connected in series.

3.4. Evaluation Metrics

Several statistical measures were considered to evaluate the performance of the pro-
posed model and other predictors. They were sensitivity (Sn), specificity (Sp), accuracy
(ACC), and Matthew’s correlation coefficient (MCC). The definitions are as follows.

Sn =
TP

TP + FN
(11)

Sp =
TN

TN + FP
(12)

ACC =
TP + TN

TP + TN + FP + FN
(13)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)
(14)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. In addition, we also used the area under the receiver operating
characteristic (ROC) curve (AUC) and the area under the precision recall rate (PR) curve
(AUPR) to further access the overall performance of the model.

4. Conclusions

In this paper, we proposed an ensemble deep learning method, PD-BertEDL, to achieve
effective prediction of peptide detectability. We used the sequence information, physico-
chemical information, and context information derived from the sequence of the peptide,
and input the three kinds of information into the corresponding deep learning model after
encoding. In view of these three different kinds of information, CNN and BiLSTM were
used to extract the peptide sequence information and the characteristics of physicochemical
information. BiLSTM was used to capture the long-distance dependence information of the
peptide sequence and the deep features of the context information of the peptide. Finally,
we ensemble model prediction results based on a single feature representation to improve
prediction performance and model generalization ability. The results of a k-fold cross-
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validation experiment and an independent testing experiment suggest that our method has
potential to be a useful tool for the prediction of peptide detectability.

Although our method achieves promising performance in peptide detectability pre-
diction, there is still some room for improvement. In the future, we will try to reduce the
memory consumption of the model. At the same time, we will consider developing an
online platform aimed at providing an effective means of predicting peptide detectability.
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10.3390/ijms232012385/s1.
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