Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analyses
2.2. Scanning Electron Microscopy Analysis
2.3. Atomic Force Microscopy (AFM) Analysis
2.4. Transmission Electron Microscopy (TEM) Analysis
2.5. X-ray Diffraction Analysis
3. Materials and Methods
3.1. GO Foil Preparation
3.2. Ion Irradiation
3.3. Rutherford Back Scattering (RBS) Spectrometry and Elastic Recoil Detection Analysis (ERDA)
3.4. Structure Analysis by XRD
3.5. Scanning Electron (SEM) and Atomic Force (AFM) and Transmission Electron (TEM) Microscopies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Correction Statement
References
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and Technology of Graphite Intercalation Compounds. Pure Appl. Chem. 1994, 66, 1893–1901. [Google Scholar] [CrossRef]
- Schafhaeutl, C. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Phil. Mag. 1840, 16, 570–590. [Google Scholar]
- Cutroneo, M.; Havranek, V.; Mackova, A.; Malinsky, P.; Torrisi, L.; Silipigni, L.; Fazio, B.; Torrisi, A.; Szokolova, K.; Sofer, Z.; et al. Effects of the ion bombardment on the structure and composition of GO and rGO foils. Mater. Chem. Phys. 2019, 232, 272–277. [Google Scholar] [CrossRef]
- Cutroneo, M.; Torrisi, L.; Havranek, V.; Mackova, A.; Malinsky, P.; Silipigni, L.; Fernandes, S.; Sofer, Z.; Stammers, J. Localized modification of graphene oxide properties by laser irradiation in vacuum. Vacuum 2019, 165, 134–138. [Google Scholar] [CrossRef]
- Silipigni, L.; Salvato, G.; Fazio, B.; Di Marco, G.; Proverbio, E.; Cutroneo, M.; Torrisi, A. Temperature sensor based on IR-laser reduced Graphene Oxide. J. Instrum. 2020, 15, C04006. [Google Scholar] [CrossRef]
- Silipigni, L.; Salvato, G.; Torrisi, A.; Cutroneo, M.; Slepicka, P.; Fajstavr, D.; Torrisi, L. Pressure sensor based on porous polydimethylsiloxane with embedded gold nanoparticles. J. Mater. Sci. Mater. Electron. 2021, 32, 8703–8715. [Google Scholar] [CrossRef]
- Cutroneo, M.; Havranek, V.; Semian, V.; Torrisi, A.; Mackova, A.; Malinsky, P.; Silipigni, L.; Slepicka, P.; Fajstavr, D.; Torrisi, L. Porous polydimethylsiloxane filled with graphene-based material for biomedicine. J. Porous Mater. 2021, 28, 1481–1491. [Google Scholar] [CrossRef]
- Cutroneo, M.; Havranek, V.; Mackova, A.; Malinsky, P.; Torrisi, L.; Lorincik, J.; Luxa, J.; Szokolova, K.; Sofer, Z.; Stammers, J. Localized deoxygenation of graphene oxide foil by ion microbeam writing. Vacuum 2019, 163, 10–14. [Google Scholar] [CrossRef]
- Malinský, P.; Romanenko, A.; Havránek, V.; Stammers, J.; Hnatowicz, V.; Cutroneo, M.; Novák, J.; Slepička, P.; Svorčík, V.; Szőkölová, K.; et al. Microcapacitors on graphene oxide and synthetic polymers prepared by microbeam lithography. Appl. Surf. Sci. 2020, 528, 146802. [Google Scholar] [CrossRef]
- Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, M.; Kovacik, L. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging. Gold Bull. 2017, 50, 51–60. [Google Scholar] [CrossRef]
- Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Shirazian, S.A.; Rahighi, R. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 2016, 97, 71. [Google Scholar] [CrossRef]
- Del Sol Fernandez, S.; García-Salcedo, R.; Sanchez-Guzman, D.; Ramírez-Rodríguez, G.; Gaona, E.; de Leon-Alfaro, M.A.; Rivera-Montalvo, T. Thermoluminescent dosimeters for low dose X-ray measurements. Appl. Radiat. Isot. 2016, 7, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Kirby, D.; Green, S.; Palmans, H.; Hugtenburg, R.; Wojnecki, C.; Parker, D. LET dependence of GafChromic films and an ion chamber in low energy proton dosimeter. Phys. Med. Biol. 2010, 55, 417. [Google Scholar] [CrossRef] [PubMed]
- Chiu-Tsao, S.T. Dose response characteristics of new models of GAFCHROMIC films: Dependence on densitometer light source and radiation energy. Med. Phys. 2004, 31, 2501–2508. [Google Scholar] [CrossRef]
- Cecchini, S.; Dekhissi, H.; Garutti, V.; Giacomelli, G.; Katsavounidis, E.; Mandrioli, G.; Margiotta-Neri, A.R.; Patrizir, L.; Popa, V.; Serra, P.; et al. Calibration with relativistic and low-velocity ions of a CR39 nuclear track detector. Nuovo Cim. 1996, 109, 1119–1128. [Google Scholar] [CrossRef]
- Dempsay, G.F. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 2000, 27, 2462–2475. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, L.; Silipigni, L.; Manno, D.; Serra, A.; Nassisi, V.; Cutroneo, M. Investigations on graphene oxide for ion beam dosimetry applications. Vacuum 2020, 178, 109451. [Google Scholar] [CrossRef]
- Manno, D.; Serra, A.; Buccolieri, A.; Calcagnile, L.; Cutroneo, M.; Torrisi, A.; Silipigni, L.; Torrisi, L. Structural and spectroscopic investigations on graphene oxide foils irradiated by ion beams for dosimetry application. Vacuum 2021, 188, 110185. [Google Scholar] [CrossRef]
- Torrisi, L.; Manno, D.; Serra, A.; Calcagnile, L.; Torrisi, A.; Cutroneo, M.; Silipigni, L. Structural phase modifications induced by energetic ion beams in graphene oxide. Vacuum 2021, 193, 110513. [Google Scholar] [CrossRef]
- Olejniczak, A.; Nebogatikova, N.A.; Frolov, A.V.; Kulik, M.; Antonova, I.V.; Skuratov, V.A. Swift heavy-ion irradiation of graphene oxide: Localized reduction and formation of sp-hybridized carbon chains. Carbon 2019, 141, 390–399. [Google Scholar] [CrossRef]
- Ramezani, M.; Alibolandi, M.; Nejabat, M.; Charbgoo, F.; Taghdisi, S.M.; Abnous, K. Chapter 6—Graphene-Based Hybrid Nanomaterials for Biomedical Applications in Biomedical Applications of Graphene and 2D Nanomaterials; Nurunnabi, M., McCarthy, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Jin, S.H.; Kim, D.H.; Jun, G.H.; Hong, S.H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2019, 7, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qi, W.; Gao, X.; Wu, Q.; Tian, L.; Wu, W. Graphene Quantum Dots prepared by Electron Beam Irradiation for Safe Fluorescence Imaging of Tumor. Nanotheranostics 2022, 6, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Čubová, K.; Čuba, V. Synthesis of inorganic nanoparticles by ionizing radiation—A review. Radiat. Phys Chem. 2020, 169, 108774. [Google Scholar] [CrossRef]
- Wei, J.; Zang, Z.; Zhang, Y.; Wang, M.; Du, J.; Tang, X. Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Optic. Lett. 2017, 42, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Cutroneo, M.; Havránek, V.; Torrisi, A.; Mackova, A.; Malinsky, P.; Slepicka, P.; Sofer, Z.; Torrisi, L. Polydimethylsiloxane–graphene oxide composite improving performance by ion beam irradiation. Surf. Interface Anal. 2020, 52, 1156–1162. [Google Scholar] [CrossRef]
- Noga, P.; Dobrovodský, J.; Vaňa, D.; Beňo, M.; Závacká, A.; Muška, M.; Závacká, A.; Muška, M.; Halgaš, R.; Minárik, S.; et al. A new ion-beam laboratory for materials research at the Slovak University of Technology. Nucl. Instrum. Meth. Phys. Res. B 2017, 409, 264. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter. 2010. Available online: https://apps.dtic.mil/sti/pdfs/ADA515302.pdf (accessed on 4 September 2022).
- Mayer, M. SIMNRA Version 6.06, Max-Planck Institut fur Plasmaphysik. Available online: http://home.mpcdf.mpg.de/~mam/ (accessed on 4 September 2022).
- Torrisi, L.; Cutroneo, M.; Torrisi, A.; Silipigni, L. Measurements on Five Characterizing Properties of Graphene Oxide and Reduced Graphene Oxide Foils. Phys. Status Solidi A 2022, 219, 2100628. [Google Scholar] [CrossRef]
- Raina, G.; Sen, R. An atomic force microscope study of carbon onions and related nanoparticles. Bull. Mater. Sci. 1997, 20, 1–7. [Google Scholar] [CrossRef]
- Martin-Gullon, I.; Vera, J.; Conesa, J.A.; Gonzalez, J.L.; Merino, C. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 2006, 44, 1572–1580. [Google Scholar] [CrossRef]
- Ahirwar, S.; Mallick, S.; Bahadur, D. Electrochemical Method to Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega 2017, 2, 8343–8353. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.B.; Pillai, V.K. Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chem. Eur. J. 2012, 18, 12522–12528. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.J. Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Compos. Part B 2021, 227, 109387. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J. Modification of graphene by ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 406, 683–688. [Google Scholar] [CrossRef]
- Nebogatikova, N.A.; Antonova, I.V.; Erohin, S.V.; Kvashnin, D.G.; Olejniczak, A.; Volodin, V.A.; Skuratov, A.V.; Krasheninnikov, A.V.; Sorokin, P.B.; Chernozatonskii, L.A. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: Tuning of electronic and transport properties. Nanoscale 2018, 10, 14499–14509. [Google Scholar] [CrossRef] [PubMed]
Sample | Ions 3 MeV Energy | Fluence (Ions/cm2) | Atomic (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | H | Mn | S | N | C/O | ||||
GO | VIRGIN | 0 | 0 | 41.6 | 25 | 30 | 0.2 | 0.7 | 2.5 | 1.66 |
#1 | H+ | 5 × 1011 | 44.2 | 24.2 | 29.0 | 0.1 | 0.5 | 2.0 | 1.83 | |
#2 | 5 × 1012 | 44.6 | 23.9 | 28.9 | 0.1 | 0.5 | 2.0 | 1.87 | ||
#3 | 5 × 1013 | 46.1 | 23.5 | 28.3 | 0.1 | 0.5 | 1.5 | 1.96 | ||
GO | #4 | He+ | 5 × 1011 | 44.3 | 24.6 | 28.5 | 0.1 | 0.5 | 2.0 | 1.80 |
#5 | 5 × 1012 | 46.5 | 23.4 | 28.0 | 0.1 | 0.5 | 1.5 | 1.99 | ||
#6 | 5 × 1013 | 48.4 | 22.5 | 27.5 | 0.1 | 0.5 | 1.0 | 2.15 | ||
#7 | 5 × 1014 | 49.9 | 21.5 | 27.0 | 0.1 | 0.5 | 1.0 | 2.32 | ||
GO | #8 | O+ | 5 × 1011 | 44.4 | 24.0 | 29.0 | 0.1 | 0.5 | 2.0 | 1.85 |
#9 | 5 × 1012 | 46.8 | 22.6 | 28.0 | 0.1 | 0.5 | 2.0 | 2.07 | ||
#10 | 5 × 1013 | 52.4 | 20.0 | 26.0 | 0.1 | 0.5 | 1.0 | 2.62 |
Ions | Ions Fluence (Ions/cm2) | Ra (nm) | RMS (nm) |
---|---|---|---|
Unirradiated/virgin GO | None | 9.2 | 10.5 |
H+ | 5 × 1011 | 15.4 | 18.4 |
He+ | 5 × 1011 | 10.9 | 13.2 |
O+ | 5 × 1011 | 7.6 | 10.1 |
Sample | Intensity | Position 2θ (Degree) | FWHM (cm−1) | Area (%) | |
---|---|---|---|---|---|
GO virgin | GO | 2048.2 | 8.5 | 3.0 | 4.8 |
rGO | 41,843.4 | 11.3 | 1.5 | 52.1 | |
a-C | 1500.0 | 14.0 | 5.5 | 5.1 | |
CNT | 4426.8 | 21.7 | 13.0 | 36.7 | |
CNT | 4660.4 | 43.8 | 0.3 | 1.3 | |
GO bulges | 2429.1 | 8.3 | 2.6 | 1.7 | |
GO H+ 5 × 1011 | rGO | 61,949.1 | 11.5 | 1.5 | 69.4 |
a-C | 1867.4 | 15.2 | 7.0 | 7.1 | |
CNTs/GO QDTs | 3838.9 | 22.0 | 9.5 | 21.5 | |
CNTs/GO QDTs | 1483.9 | 43.8 | 0.3 | 0.3 | |
GO QDTs | 2323.8 | 8.3 | 2.4 | 1.7 | |
GO H+ 5 × 1012 | rGO | 57,474.2 | 11.5 | 1.5 | 60.1 |
a-C | 2355.8 | 15.6 | 6.2 | 8.8 | |
CNTs/GOGNFs/QDTs | 3881.7 | 22.27 | 7.5 | 20.4 | |
GOGNFs | 1841.8 | 8.2 | 2.6 | 1.3 | |
GO H+ 5 × 1013 | rGO | 54,513.7 | 11.5 | 1.5 | 61.6 |
a-C | 2597.6 | 15.6 | 11.7 | 16.4 | |
CNTs/GOGNFs | 3280.9 | 23.0 | 10.2 | 20.7 | |
GO QDTs | 2903.6 | 8.4 | 2.5 | 4.5 | |
GO He+ 5 × 1011 | rGO | 72,869.5 | 11.5 | 1.4 | 68.3 |
a-C | 2400.0 | 14.3 | 6.0 | 8.2 | |
GO QDTs | 4175.3 | 22.0 | 9.4 | 18.8 | |
GO QDTs | 1540.5 | 43.8 | 0.3 | 0.2 | |
GO QDTs | 2311.8 | 8.4 | 2.4 | 1.4 | |
GO He+ 5 × 1012 | rGO | 69,000.8 | 11.5 | 1.4 | 69.1 |
a-C | 2337.4 | 14.2 | 7. 5 | 9.0 | |
CNTs/GOGNFs/GO QDTs | 4080.9 | 22.2 | 9.0 | 20.5 | |
GO QDTs | 1850.4 | 8.7 | 2.6 | 1.3 | |
GO He+ 5 × 1013 | rGO | 49,382.9 | 11.8 | 1.5 | 56.7 |
a-C | 2837.4 | 15.2 | 12.3 | 18.9 | |
CNTs/GOGNFs/GO QDTs | 3421.3 | 23.3 | 11.3 | 23.1 | |
GO QDTs | 2307.7 | 8.8 | 1.8 | 1.1 | |
GO He+ 5 × 1014 | rGO | 5934.1 | 11.1 | 2.1 | 9.3 |
a-C | 24,395.6 | 13.4 | 2.2 | 40.4 | |
CNTs/GOGNFs/GO QDTs | 7676.9 | 22.4 | 11.8 | 49.2 | |
GO QDTs | 1510.0 | 8.2 | 2.1 | 0.8 | |
GO O+ 5 × 1011 | rGO | 56,471.2 | 11.3 | 1.6 | 61.0 |
a-C | 1700.0 | 15.0 | 7.3 | 5.9 | |
CNTs/GOGNFs/GO QDTs | 5144.9 | 22.0 | 10.7 | 32.2 | |
GOGNFs | 1309.5 | 8.1 | 2.2 | 1.1 | |
GO O+ 5 × 1012 | rGO | 22,912.6 | 11.5 | 2.0 | 43.7 |
a-C | 1944.1 | 15.3 | 7.7 | 11.8 | |
CNTs/GOGNFs | 3965.0 | 23.0 | 12.5 | 43.4 | |
GOGNFs | 1058.0 | 8.3 | 3.3 | 2.5 | |
GO O+ 5 × 1013 | rGO | 11,323.5 | 11.2 | 1.7 | 17.4 |
a-C | 6375.4 | 14.3 | 4.3 | 24.3 | |
CNTs/GOGNFs | 6156.2 | 22.9 | 11.8 | 55.8 |
Parameters | Ions Irradiating the Go Foil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
H+ | He+ | O+ | ||||||||
Energy (MeV) | 3.0 | 3.0 | 3.0 | |||||||
Se (keV/μm) | 15.71 | 164.10 | 1369.00 | |||||||
Sn (keV/μm) | 0.01 | 0.12 | 5.70 | |||||||
St = Se + Sn (keV/μm) | 15.72 | 164.22 | 1374.70 | |||||||
Range R (μm) | 113.4 | 14.5 | 3.7 | |||||||
Fluence Fi (5 × 1011/cm2) | 1 | 10 | 100 | 1 | 10 | 100 | 1000 | 1 | 10 | 100 |
Dose Da (MGy) | 0.0074 | 0.0743 | 0.7427 | 0.0770 | 0.7730 | 7.7280 | 77.2800 | 0.6460 | 6.4690 | 64.7000 |
Sample label | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cutroneo, M.; Torrisi, L.; Silipigni, L.; Michalcova, A.; Havranek, V.; Mackova, A.; Malinsky, P.; Lavrentiev, V.; Noga, P.; Dobrovodsky, J.; et al. Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies. Int. J. Mol. Sci. 2022, 23, 12563. https://doi.org/10.3390/ijms232012563
Cutroneo M, Torrisi L, Silipigni L, Michalcova A, Havranek V, Mackova A, Malinsky P, Lavrentiev V, Noga P, Dobrovodsky J, et al. Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies. International Journal of Molecular Sciences. 2022; 23(20):12563. https://doi.org/10.3390/ijms232012563
Chicago/Turabian StyleCutroneo, Mariapompea, Lorenzo Torrisi, Letteria Silipigni, Alena Michalcova, Vladimir Havranek, Anna Mackova, Petr Malinsky, Vasily Lavrentiev, Pavol Noga, Jozef Dobrovodsky, and et al. 2022. "Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies" International Journal of Molecular Sciences 23, no. 20: 12563. https://doi.org/10.3390/ijms232012563
APA StyleCutroneo, M., Torrisi, L., Silipigni, L., Michalcova, A., Havranek, V., Mackova, A., Malinsky, P., Lavrentiev, V., Noga, P., Dobrovodsky, J., Slepicka, P., Fajstavr, D., Andò, L., & Holy, V. (2022). Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies. International Journal of Molecular Sciences, 23(20), 12563. https://doi.org/10.3390/ijms232012563