Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population
Abstract
:1. Introduction
2. Results
2.1. Study Population Characteristics
2.2. Association Studies of LINC00673 Genetic Polymorphisms and HCC Risks
2.3. Relationships of LINC00673 Genetic Polymorphisms with Clinicopathological Features in HCC Patients
2.4. Upregulation of LINC00673 Is Observed in HCC Tissues and Correlated with Tumor Progression and a Poor Prognosis
2.5. The Correlations of LINC00673 Genetic Variants with LINC00673 Expression Levels
3. Discussion
4. Materials and Methods
4.1. Study Populations, Ethics, and Consent
4.2. Genomic DNA Extraction from Blood
4.3. HCC Cell Lines
4.4. Selection of LINC00673 SNPs
4.5. Genotyping of LINC00673 SNPs
4.6. Extraction of RNA and Reverse-Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR)
4.7. Bioinformatics Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.F.; Chang, I.C.; Hong, C.C.; Yen, T.C.; Chen, C.L.; Wu, C.C.; Tsai, C.C.; Ho, M.C.; Lee, W.C.; Yu, H.C.; et al. Metabolic risk factors are associated with non-hepatitis b non-hepatitis c hepatocellular carcinoma in taiwan, an endemic area of chronic hepatitis b. Hepatol. Commun. 2018, 2, 747–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Ye, Z.; Zhang, Z.; Zheng, J.; Tang, Y.; Hou, E.; Huang, Z.; Meng, L. A comprehensive evaluation of single nucleotide polymorphisms associated with hepatocellular carcinoma risk in asian populations: A systematic review and network meta-analysis. Gene 2020, 735, 144365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, X.; Wu, M.; Qin, T.; Wu, S.; Liu, H. Mirna polymorphisms and hepatocellular carcinoma susceptibility: A systematic review and network meta-analysis. Front. Oncol. 2020, 10, 562019. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.T.; Chang, J.H.; Lee, H.L.; Yang, Y.C.; Su, S.C.; Lin, C.L.; Yang, S.F.; Chien, M.H. Genetic variants of lncrna malat1 exert diverse impacts on the risk and clinicopathologic characteristics of patients with hepatocellular carcinoma. J. Clin. Med. 2019, 8, 1406. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.C.; Ni, J.J.; Cui, W.Y.; Wang, B.Y.; Zhuo, W. Emerging roles of lncrna in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019, 9, 1354–1366. [Google Scholar]
- Gong, J.; Liu, W.; Zhang, J.; Miao, X.; Guo, A.Y. Lncrnasnp: A database of snps in lncrnas and their potential functions in human and mouse. Nucleic Acids Res. 2015, 43, D181–D186. [Google Scholar] [CrossRef] [Green Version]
- Tung, M.C.; Wen, Y.C.; Wang, S.S.; Lin, Y.W.; Chow, J.M.; Yang, S.F.; Chien, M.H. Impact of long non-coding rna hotair genetic variants on the susceptibility and clinicopathologic characteristics of patients with urothelial cell carcinoma. J. Clin. Med. 2019, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Zhu, T.; Wu, S.; Liu, S.; Liu, B.; Wu, J.; Cai, J.; Zhu, X.; Zhang, X.; Zeng, M.; et al. Long noncoding rna linc00673-v4 promotes aggressiveness of lung adenocarcinoma via activating wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 14019–14028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Hou, J.; Wang, Y.; Xie, M.; Wei, C.; Nie, F.; Wang, Z.; Sun, M. Long noncoding rna linc00673 is activated by sp1 and exerts oncogenic properties by interacting with lsd1 and ezh2 in gastric cancer. Mol. Ther. 2017, 25, 1014–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, E.; Shen, Y.; Bhandari, A.; Zhou, X.; Wang, Y.; Yang, F.; Wang, O. Long non-coding rna linc00673 promotes breast cancer proliferation and metastasis through regulating b7-h6 and epithelial-mesenchymal transition. Am. J. Cancer. Res. 2018, 8, 1273–1287. [Google Scholar] [PubMed]
- Gong, Y.; Dai, H.S.; Shu, J.J.; Liu, W.; Bie, P.; Zhang, L.D. Lnc00673 suppresses proliferation and metastasis of pancreatic cancer via target mir-504/hnf1a. J. Cancer 2020, 11, 940–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Zhang, H.; Niu, Y.; Wu, Y.; Sun, W.; Li, H.; Kong, J.; Ding, K.; Shen, H.M.; Wu, H.; et al. Long non-coding rna linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging mir-150-5p. Mol. Cancer 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Zhang, Y.; Chen, X.; Wu, P.; Chen, D. Long non-coding rna linc00673 silencing inhibits proliferation and drug resistance of prostate cancer cells via decreasing klf4 promoter methylation. J. Cell Mol. Med. 2020, 24, 1878–1892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.G.; Zhou, X.K.; Zhou, R.J.; Lv, H.Z.; Li, W.P. Long non-coding rna linc00673 promotes hepatocellular carcinoma progression and metastasis through negatively regulating mir-205. Am. J. Cancer Res. 2017, 7, 2536–2544. [Google Scholar]
- Zhao, K.; Zhang, R.; Li, T.; Xiong, Z. Functional variants of lncrna linc00673 and gastric cancer susceptibility: A case-control study in a chinese population. Cancer Manag. Res. 2019, 11, 3861–3868. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Luo, T. Linc00673 rs11655237 polymorphism is associated with increased risk of cervical cancer in a chinese population. Cancer Control 2018, 25, 1073274818803942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Huang, X.; Tan, W.; Yu, D.; Du, Z.; Chang, J.; Wei, L.; Han, Y.; Wang, C.; Che, X.; et al. Pancreatic cancer risk variant in linc00673 creates a mir-1231 binding site and interferes with ptpn11 degradation. Nat. Genet. 2016, 48, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chang, Y.; Jia, W.; Zhang, J.; Zhang, R.; Zhu, J.; Yang, T.; Xia, H.; Zou, Y.; He, J. Linc00673 rs11655237 c>t confers neuroblastoma susceptibility in chinese population. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.; Li, J.; Wen, Y.; Tan, T.; Yang, J.; Pan, J.; Hu, C.; Yao, Y.; Zhang, J.; Xin, Y.; et al. Linc00673 rs11655237 c>t polymorphism impacts hepatoblastoma susceptibility in chinese children. Front. Genet. 2019, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Lu, J.; Qian, Y.; Qian, T.; Wu, X.; Xu, Q. The egfr polymorphism increased the risk of hepatocellular carcinoma through the mir-3196-dependent approach in chinese han population. Pharmgenom. Pers. Med. 2021, 14, 469–476. [Google Scholar] [PubMed]
- Piñero, F.; Dirchwolf, M.; Pessôa, M.G. Biomarkers in hepatocellular carcinoma: Diagnosis, prognosis and treatment response assessment. Cells 2020, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Chen, Y.; Li, X.; Li, J.; Zhao, Y.; Shen, J.; Du, F.; Kaboli, P.J.; Li, M.; Wu, X.; et al. Long non-coding rnas: Potential biomarkers and targets for hepatocellular carcinoma therapy and diagnosis. Int. J. Biol. Sci. 2021, 17, 220–235. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Dong, X.; Wang, X. Serum exosomal long noncoding rnas ensg00000258332.1 and linc00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol. Biomark. Prev. 2018, 27, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Hu, R.; Pang, J.M.; Zhang, G.Z.; Yan, W.; Li, Z.N. Serum long noncoding rna lrb1 as a potential biomarker for predicting the diagnosis and prognosis of human hepatocellular carcinoma. Oncol. Lett. 2018, 16, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.K.; Pang, C.; Yang, Y.; Duan, Q.; Zhang, J.; Liu, W.C. Serum long noncoding rna urothelial carcinoma-associated 1: A novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. J. Int. Med. Res. 2018, 46, 348–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.C.; Lin, C.W.; Ju, P.C.; Chang, L.C.; Chuang, C.Y.; Liu, Y.F.; Hsieh, M.J.; Yang, S.F. Association of linc00673 genetic variants with progression of oral cancer. J. Pers. Med. 2021, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.M.; Chang, H.Y. Long noncoding rnas in cancer pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramji, D.P.; Foka, P. Ccaat/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 2002, 365, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, R. The molecular biology of the ccaat-binding factor nf-y. Gene 1999, 239, 15–27. [Google Scholar] [CrossRef]
- Tseng, H.H.; Hwang, Y.H.; Yeh, K.T.; Chang, J.G.; Chen, Y.L.; Yu, H.S. Reduced expression of c/ebp alpha protein in hepatocellular carcinoma is associated with advanced tumor stage and shortened patient survival. J. Cancer Res. Clin. Oncol. 2009, 135, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Bezzecchi, E.; Ronzio, M.; Mantovani, R.; Dolfini, D. Nf-y overexpression in liver hepatocellular carcinoma (hcc). Int. J. Mol. Sci. 2020, 21, 9157. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Liu, Y.J.; Bai, X.F.; Han, X.L.; Jiang, Y.; Ai, B.; Shi, S.S.; Wang, F.; Xu, M.C.; Wang, Y.Z.; et al. Varadb: A comprehensive variation annotation database for human. Nucleic Acids Res. 2021, 49, D1431–D1444. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; He, K.; Luo, T.; Deng, Y.; Wang, H.; Liu, H.; Zhang, J.; Chen, K.; Xiao, J.; Duan, X.; et al. Ssrp1 contributes to the malignancy of hepatocellular carcinoma and is negatively regulated by mir-497. Mol. Ther. 2016, 24, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Y.; Wu, P.; Chen, H.; Deng, Z.; Deng, G.; Zheng, Y.; Li, G.; Yuan, L.; Li, L. Association of linc00673 rs11655237 polymorphism with pediatric glioma susceptibility in a chinese population. Transl. Pediatr. 2021, 10, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, A.; Han, D.; Zhou, H.; Cheng, J.; Zhang, J.; Fu, W.; Zhuo, Z.; He, J. Linc00673 rs11655237 c>t and susceptibility to wilms tumor: A five-center case-control study. J. Gene Med. 2019, 21, e3133. [Google Scholar] [CrossRef]
- Childs, E.J.; Mocci, E.; Campa, D.; Bracci, P.M.; Gallinger, S.; Goggins, M.; Li, D.; Neale, R.E.; Olson, S.H.; Scelo, G.; et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 2015, 47, 911–916. [Google Scholar] [CrossRef]
- Streicher, S.A.; Klein, A.P.; Olson, S.H.; Amundadottir, L.T.; DeWan, A.T.; Zhao, H.; Risch, H.A. Impact of sixteen established pancreatic cancer susceptibility loci in american jews. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1540–1548. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zheng, Y.; Ogundiran, T.O.; Ojengbede, O.; Zheng, W.; Nathanson, K.L.; Nemesure, B.; Ambs, S.; Olopade, O.I.; Huo, D. Association of pancreatic cancer susceptibility variants with risk of breast cancer in women of european and african ancestry. Cancer Epidemiol. Biomark. Prev. 2018, 27, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.T.; Liu, Y.F.; Hsu, C.L.; Cheng, T.Y.; Yang, C.Y.; Chang, J.S.; Lee, W.J.; Hsiao, M.; Juan, H.F.; Chien, M.H.; et al. 3′utr polymorphisms of carbonic anhydrase ix determine the mir-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci. Rep. 2017, 7, 4466. [Google Scholar] [CrossRef] [Green Version]
- Su, S.C.; Hsieh, M.J.; Lin, C.W.; Chuang, C.Y.; Liu, Y.F.; Yeh, C.M.; Yang, S.F. Impact of hotair gene polymorphism and environmental risk on oral cancer. J. Dent. Res. 2018, 97, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Gong, Z.; Li, P.; Jiang, X.; Zeng, Z.; Xiong, W.; Yu, J. A review of linc00673 as a novel lncrna for tumor regulation. Int. J. Med. Sci. 2021, 18, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.C.; Yang, Y.S.; Kornelius, E.; Huang, C.N.; Hsu, M.Y.; Lee, C.Y.; Yang, S.F. Impact of long noncoding rna linc00673 genetic variants on susceptibility to diabetic retinopathy. Front. Genet. 2022, 13, 889530. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.T.; Lee, W.J.; Yang, Y.C.; Chen, B.R.; Yang, C.Y.; Chen, M.W.; Chen, J.Q.; Hsiao, M.; Chien, M.H.; Hua, K.T. Histone methyltransferase g9a-promoted progression of hepatocellular carcinoma is targeted by liver-specific hsa-mir-122. Cancers 2021, 13, 2376. [Google Scholar] [CrossRef]
Variable | Controls (N = 1197) | Patients (N = 783) | p Value |
---|---|---|---|
Age (years) | 59.41 ± 7.08 | 62.73 ± 11.70 | |
<60 | 479 (40.0%) | 298 (38.1%) | p = 0.383 |
≥60 | 718 (60.0%) | 485 (61.9%) | |
Gender | |||
Male | 837 (69.9%) | 542 (69.2%) | p = 0.739 |
Female | 360 (30.1%) | 241 (30.8%) | |
Cigarette smoking | |||
No | 726 (60.7%) | 456 (58.2%) | p = 0.284 |
Yes | 471 (39.3%) | 327 (41.8%) | |
Alcohol consumption | |||
No | 1028 (85.9%) | 509 (65.0%) | p < 0.001 * |
Yes | 169 (14.1%) | 274 (35.0%) | |
HBsAg | |||
Negative | 1051 (87.8%) | 517 (66.0%) | p < 0.001 * |
Positive | 146 (12.2%) | 266 (34.0%) | |
Anti-HCV | |||
Negative | 1144 (95.6%) | 515 (65.8%) | p < 0.001 * |
Positive | 53 (4.4%) | 268 (34.2%) | |
Stage | |||
I + II | 570 (72.8%) | ||
III + IV | 213 (27.2%) | ||
Tumor T status | |||
T1 + T2 | 576 (73.6%) | ||
T3 + T4 | 207 (26.4%) | ||
Lymph node status | |||
N0 | 761 (97.2%) | ||
N1 + N2 + N3 | 22 (2.8%) | ||
Metastasis | |||
M0 | 753 (96.2%) | ||
M1 | 30 (3.8%) | ||
Vascular invasion | |||
No | 502 (64.1%) | ||
Yes | 281 (35.9%) | ||
Liver cirrhosis | |||
Negative | 321 (41.0%) | ||
Positive | 462 (59.0%) |
Variable | Controls (N = 1197) (%) | Patients (N = 783) (%) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
rs9914618 | ||||
GG | 759 (63.4%) | 480 (61.3%) | 1.000 (reference) | 1.000 (reference) |
GA | 385 (32.2%) | 269 (34.4%) | 1.105 (0.911–1.340) | 1.130 (0.724–1.381) |
AA | 53 (4.4%) | 34 (4.3%) | 1.014 (0.650–1.584) | 0.936 (0.589–1.488) |
GA + AA | 438 (36.6%) | 303 (38.7%) | 1.094 (0.908–1.317) | 1.051 (0.954–1.158) |
rs6501551 | ||||
AA | 895 (74.8%) | 599 (76.5%) | 1.000 (reference) | 1.000 (reference) |
AG | 275 (23.0%) | 166 (21.2%) | 0.902 (0.725–1.122) | 0.892 (0.711–1.119) |
GG | 27 (2.2%) | 18 (2.3%) | 0.996 (0.544–1.825) | 0.822 (0.435–1.551) |
AG + GG | 302 (25.2%) | 184 (23.5%) | 0.910 (0.738–1.124) | 0.941 (0.843–1.049) |
rs11655237 | ||||
CC | 761 (63.6%) | 497 (63.5%) | 1.000 | 1.000 |
CT | 388 (32.4%) | 260 (33.2%) | 1.026 (0.846–1.245) | 0.989 (0.809–1.210) |
TT | 48 (4.0%) | 26 (3.3%) | 0.829 (0.508–1.354) | 0.714 (0.428–1.194) |
CT + TT | 436 (36.4%) | 286 (36.5%) | 1.004 (0.833–1.211) | 0.979 (0.888–1.079) |
Variable | Controls (N = 718) (%) | Patients (N = 485) (%) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
rs9914618 | ||||
GG | 476 (66.3%) | 293 (60.4%) | 1.000 (reference) | 1.000 (reference) |
GA | 211 (29.4%) | 174 (35.9%) | 1.340 (1.046–1.717) p = 0.021 | 1.328 (1.036–1.703) p = 0.025 |
AA | 31 (4.3%) | 18 (3.7%) | 0.943 (0.518–1.717) | 0.913 (0.501–1.703) |
GA + AA | 242 (33.7%) | 192 (39.6%) | 1.289 (1.015–1.637) p = 0.037 | 1.129 (1.002–1.273) p = 0.047 |
rs6501551 | ||||
AA | 535 (74.5%) | 374 (77.1%) | 1.000 (reference) | 1.000 (reference) |
AG | 167 (23.3%) | 103 (21.2%) | 0.882 (0.668–1.166) | 0.877 (0.663–1.161) |
GG | 16 (2.2%) | 8 (1.6%) | 0.715 (0.303–1.688) | 0.702 (0.297–1.661) |
AG + GG | 183 (25.5%) | 111 (22.9%) | 0.868 (0.662–1.137) | 0.928 (0.811–1.063) |
rs11655237 | ||||
CC | 446 (62.1%) | 310 (63.9%) | 1.000 | 1.000 |
CT | 248 (34.5%) | 161 (33.2%) | 0.934 (0.731–1.194) | 0.917 (0.717–1.174) |
TT | 24 (3.4%) | 14 (2.9%) | 0.839 (0.427–1.648) | 0.812 (0.412–1.599) |
CT + TT | 272 (37.9%) | 175 (36.1%) | 0.926 (0.729–1.175) | 0.953 (0.845–1.075) |
Variable | Genotypic Frequencies | |||
---|---|---|---|---|
GG (N = 480) | GA + AA (N = 303) | OR (95% CI) | p Value | |
Clinical stage | ||||
Stage I/II | 350 (72.9%) | 220 (72.6%) | 1.00 | p = 0.925 |
Stage III/IV | 130 (27.1%) | 83 (27.4%) | 1.016 (0.735–1.403) | |
Tumor size | ||||
T1 + T2 | 353 (73.5%) | 223 (73.6%) | 1.00 | p = 0.986 |
T3 + T4 | 127 (26.5%) | 80 (26.4%) | 0.997 (0.720–1.382) | |
Lymph node metastasis | ||||
No | 471 (98.1%) | 290 (95.7%) | 1.00 | p = 0.073 |
Yes | 9 (1.9%) | 13 (4.3%) | 2.346 (0.990–5.557) | |
Distant metastasis | ||||
No | 464 (96.7%) | 289 (95.4%) | 1.00 | p = 0.361 |
Yes | 16 (3.3%) | 14 (4.6%) | 1.405 (0.676–2.921) | |
Vascular invasion | ||||
No | 305 (63.5%) | 197 (65.0%) | 1.00 | p = 0.675 |
Yes | 175 (36.5%) | 106 (35.0%) | 0.938 (0.694–1.266) | |
HBsAg | ||||
Negative | 317 (66.0%) | 200 (66.0%) | 1.00 | p = 0.992 |
Positive | 163 (34.0%) | 103 (34.0%) | 1.002 (0.739–1.357) | |
Anti-HCV | ||||
Negative | 308 (64.2%) | 207 (68.3%) | 1.00 | p = 0.233 |
Positive | 172 (35.8%) | 96 (31.7%) | 0.830 (0.612–1.127) | |
Liver cirrhosis | ||||
Negative | 193 (40.2%) | 128 (42.2%) | 1.00 | p = 0.573 |
Positive | 287 (59.8%) | 175 (57.8%) | 0.919 (0.687–1.231) |
Variable | Genotypic Frequencies | |||
---|---|---|---|---|
GG (N = 293) | GA + AA (N = 192) | OR (95% CI) | p Value | |
Clinical stage | ||||
Stage I/II | 215 (73.4%) | 141 (73.4%) | 1.00 | p = 0.989 |
Stage III/IV | 78 (26.6%) | 51 (26.6%) | 0.997 (0.660–1.505) | |
Tumor size | ||||
T1 + T2 | 217 (74.1%) | 143 (74.5%) | 1.00 | p = 0.918 |
T3 + T4 | 76 (25.9%) | 49 (25.5%) | 0.918 (0.978–1.484) | |
Lymph node metastasis | ||||
No | 289 (98.6%) | 182 (94.8%) | 1.00 | p = 0.013 * |
Yes | 4 (1.4%) | 10 (5.2%) | 3.970 (1.227–12.845) | |
Distant metastasis | ||||
No | 283 (96.6%) | 181 (94.3%) | 1.00 | p = 0.220 |
Yes | 10 (3.4%) | 11 (5.7%) | 1.720 (0.716–4.132) | |
Vascular invasion | ||||
No | 194 (66.2%) | 118 (61.5%) | 1.00 | p = 0.285 |
Yes | 99 (33.8%) | 74 (38.5%) | 1.229 (0.842–1.794) | |
HBsAg | ||||
Negative | 225 (76.8%) | 144 (75.0%) | 1.00 | p = 0.651 |
Positive | 68 (23.2%) | 48 (25.0%) | 1.103 (0.721–1.686) | |
Anti-HCV | ||||
Negative | 169 (57.7%) | 118 (61.5%) | 1.00 | p = 0.408 |
Positive | 124 (42.3%) | 74 (38.5%) | 0.855 (0.589–1.240) | |
Liver cirrhosis | ||||
Negative | 120 (41.0%) | 83 (43.2%) | 1.00 | p = 0.620 |
Positive | 173 (59.0%) | 109 (56.8%) | 0.911 (0.630–1.317) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.-T.; Yang, Y.-C.; Lee, H.-L.; Shih, P.-C.; Chen, L.-H.; Tang, C.-H.; Chang, L.-C.; Wang, H.-L.; Yang, S.-F.; Chien, M.-H. Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population. Int. J. Mol. Sci. 2022, 23, 12737. https://doi.org/10.3390/ijms232112737
Yuan L-T, Yang Y-C, Lee H-L, Shih P-C, Chen L-H, Tang C-H, Chang L-C, Wang H-L, Yang S-F, Chien M-H. Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population. International Journal of Molecular Sciences. 2022; 23(21):12737. https://doi.org/10.3390/ijms232112737
Chicago/Turabian StyleYuan, Lan-Ting, Yi-Chieh Yang, Hsiang-Lin Lee, Pei-Chun Shih, Li-Hsin Chen, Chih-Hsin Tang, Lun-Ching Chang, Hsiang-Ling Wang, Shun-Fa Yang, and Ming-Hsien Chien. 2022. "Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population" International Journal of Molecular Sciences 23, no. 21: 12737. https://doi.org/10.3390/ijms232112737
APA StyleYuan, L. -T., Yang, Y. -C., Lee, H. -L., Shih, P. -C., Chen, L. -H., Tang, C. -H., Chang, L. -C., Wang, H. -L., Yang, S. -F., & Chien, M. -H. (2022). Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population. International Journal of Molecular Sciences, 23(21), 12737. https://doi.org/10.3390/ijms232112737