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Abstract: We performed molecular dynamics simulation to elucidate the adsorption behavior of
hydrogen (H2), carbon dioxide (CO2), and methane (CH4) on four sub-models of type II kerogens
(organic matter) of varying thermal maturities over a wide range of pressures (2.75 to 20 MPa)
and temperatures (323 to 423 K). The adsorption capacity was directly correlated with pressure
but indirectly correlated with temperature, regardless of the kerogen or gas type. The maximum
adsorption capacity was 10.6 mmol/g for the CO2, 7.5 mmol/g for CH4, and 3.7 mmol/g for the
H2 in overmature kerogen at 20 MPa and 323 K. In all kerogens, adsorption followed the trend
CO2 > CH4 > H2 attributed to the larger molecular size of CO2, which increased its affinity toward
the kerogen. In addition, the adsorption capacity was directly associated with maturity and carbon
content. This behavior can be attributed to a specific functional group, i.e., H, O, N, or S, and an
increase in the effective pore volume, as both are correlated with organic matter maturity, which is
directly proportional to the adsorption capacity. With the increase in carbon content from 40% to
80%, the adsorption capacity increased from 2.4 to 3.0 mmol/g for H2, 7.7 to 9.5 mmol/g for CO2,
and 4.7 to 6.3 mmol/g for CH4 at 15 MPa and 323 K. With the increase in micropores, the porosity
increased, and thus II-D offered the maximum adsorption capacity and the minimum II-A kerogen.
For example, at a fixed pressure (20 MPa) and temperature (373 K), the CO2 adsorption capacity for
type II-A kerogen was 7.3 mmol/g, while type II-D adsorbed 8.9 mmol/g at the same conditions.
Kerogen porosity and the respective adsorption capacities of all gases followed the order II-D > II-C
> II-B > II-A, suggesting a direct correlation between the adsorption capacity and kerogen porosity.
These findings thus serve as a preliminary dataset on the gas adsorption affinity of the organic-rich
shale reservoirs and have potential implications for CO2 and H2 storage in organic-rich formations.

Keywords: hydrogen; carbon dioxide; methane; storage; kerogen; adsorption; molecular simulation

1. Introduction

Global warming is evident and has led to significant adverse impacts on various
Earth systems around the globe [1] due to the burning of fossil fuels and the continuous
release of greenhouse gases (GHG) [2,3]. In this context, the Paris Agreement was signed
by 195 parties to limit global warming to 2 ◦C in an attempt to maintain it below 1.5 ◦C by
2050 [4]. Two main strategies for reducing atmospheric concentrations of CO2 are negative
emissions technology and/or switching to low- or zero-carbon fuel sources [5,6]. First,
carbon capture and storage (CSS) technology is considered effective negative emission
technology that is a necessity, not an option, and can cut 19% of global CO2 emissions
by 2050 [7]. CCS involves capturing CO2 from stationary sources, e.g., fossil fuel power
plants, fuel processing plants, and other industrial plants, particularly iron, steel, cement,
and bulk chemical plants. Then, the captured CO2 is transported through pipelines or
ships for storage in underground geological formations, such as saline aquifers, depleted
reservoirs, and coal seams [8–11]. Renewable energy sources are low- or zero-carbon fuel
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sources, which have been recognized as an effective solution to mitigate the associated
global warming concern [12,13]. This is evident from large-scale renewable energy projects
to generate electricity and large-scale CO2 sequestration projects across the globe (e.g.,
Europe [14] and the Gulf region [15]). According to the World Energy Outlook, renewable-
based energy sources could supply 30% of the total global energy by 2040 [13]. In this
context, while CO2 geo-sequestration remains a major interest [3,16–20], the use of H2 as
clean energy and its storage, which originated a few decades ago [21,22], has recently gained
notable attention too [23–25]. The key benefit of hydrogen is its low carbon footprint, which
could revolutionize the global energy outlook as a fuel [26]; however, specific challenges are
associated with the low density and high diffusivity of H2 [27]. Although several initiatives
have been taken to mitigate serious climate change consequences, more efforts are still
needed to address global warming.

Subsurface geologic formations, i.e., depleted hydrocarbon reservoirs and saline
aquifers, have been explored for large-scale CO2 [28–33] as well as hydrogen (H2) stor-
age [34]. Recently, coal seams [26] and basaltic rocks [35] have also been investigated
for their H2 storage potential, albeit at a lab scale. Furthermore, shale rocks have been
evaluated for large-scale CO2 storage via adsorption trapping [36–38], while a recent study
investigated H2 storage in inactive shale [39]. While the idea of underground hydrogen
storage (UHS) focuses on energy storage, CO2 flooding in a medium comprised of shale
and coal offers double advantages, i.e., it addresses carbon capture and storage (CCS) and
enhances methane (CH4) recovery [34,40–42].

Shale rock is a clastic sedimentary rock in origin with fine-grained clastic sedimentary
rock and exists in many types and maturities [40,43]. Shale microstructure is formulated
by organic kerogen, inorganic minerals, and the cleat network [43,44]. Clay-based source
rock and clastic sedimentary formations (e.g., fine-grained limestones) contain abundant
kerogens, possibly 80–99% [45,46]. In kerogen-rich shales, gas can adsorb onto the rock
surface and absorb onto and within the pore space of the organic matter as well as some
clay minerals [47]. Particularly, the shale surface facilitates adsorption as a result of weak in-
teraction forces (van der Waals and electrostatic), as evidenced in classical observations [48].
Adsorption is typically affected by pressure, temperature, and surface roughness [47]. It
is well known that sorption (adsorption and absorption) is a reversible process due to
the absence of covalent bonds between the adsorbates (fluids) and the adsorbent (rock
surface) [47]. CO2 has a high adsorption tendency to organic matter [49]. The adsorption ca-
pacities of CO2 and CH4 in shale are affected by pressure, temperature, and maturity [47,50],
e.g., adsorption rises with pressure and maturity and declines with temperature, while the
adsorption trend exhibits mainly type 1. It is noteworthy that adsorption/desorption assists
in estimating the storage capability of gas in shale, whereas kinetic diffusion determines
the fluid flow in the porous media of shale [47]. This adsorption capacity is exceedingly
challenging and influenced by subsurface operating conditions, i.e., pressure and temper-
ature [51]; organic matter richness and surface area [47]; thermal maturity [52]; kerogen
type, i.e., type I–III [53]; and mineral type, which are montmorillonite, illite, kaolinite, and
chlorite [54]. Published experimental data suggest that shale exhibits a significant capacity
to adsorb different gases, such as CO2 and methane [50,55,56], arguably due to favorable
CO2-wetting characteristics [57]. This observation is also in agreement with molecular-level
quantification of CO2 and CH4 adsorption on shale [40,52,58]. Generally, methane exhibits
a 10–30 times lower adsorption capacity in shale than in coal [59], while CO2 can adsorb
5–10 times more than CH4 [50].

A range of experimental techniques (e.g., mercury intrusion capillary pressure (MICP)
and neutron scattering) are used to determine adsorption potential and pore size distribu-
tion [60], while the molecular dynamics (MD) modeling approach describes gas adsorption
in kerogen models, which act as an assembly of molecules [61]. Kerogen is composed of an
intrinsically complex amorphous carbon network with pore sizes ranging from angstrom
to micrometer sizes [62]. From a fundamental geochemical point of view, shale kerogen
demonstrates a range of physicochemical features, including but not limited to kerogen
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porosity, the maturity indicator, the hydrogen-to-carbon ratio, the oxygen-to-carbon ratio,
and the aromatic/aliphatic ratio [63]. Thus, a cross-plot of these features in a classic van
Krevelen diagram describes the kerogen of different deposition origins, including type I
(lacustrine), type II (marine), type III (terrestrial), and type IV (originating from residues),
and the molecular models of these kerogens have been investigated [61].

Out of all kerogen models, type II kerogen is known to be the main origin of unconventional
(shale) gas play [52,64]. Type II kerogen is further classified into four categories—immature, top
of oil window, middle/end-of-oil window, and overmature—and each model is character-
ized by its respective maturity indicators [52]. Thus, a few previous studies [52,65,66] have
investigated the gas adsorption potential of these four sub-models of type II kerogen. While
these investigations have revealed the gas adsorption potential of kerogen, the impact of
kerogen maturity on the gas adsorption potential of shales requires further investigation.
Moreover, while the area of underground hydrogen storage is advancing, there is still
limited research on H2 storage via adsorption trapping. Only a few studies have reported
the H2 adsorption potential of rocks, e.g., H2 adsorption on clay [51] and H2 adsorption in
coals [26], and these studies have reported a significant potential for hydrogen adsorption
that was sensitive to pressure and temperature. However, the effect of organic matter
residing in shale and its maturity has not been evaluated yet for H2 sorption potential.
Moreover, a comparison of H2 sorption capacity with CO2 and CH4 has not been reported,
but it is, nevertheless, of great importance in terms of exploring shale as a potential medium
for H2 storage.

This study, therefore, investigated the adsorption behavior of hydrogen (H2), carbon
dioxide (CO2), and methane (CH4) on four kerogen (organic matter) samples of varying
maturity (A < B < C < D) over a wide regime of pressures (2.75 to 20 MPa) and temperatures
(323 to 423 K). The molecular simulations were performed using the grand-canonical Monte
Carlo (GCMC) simulation module to mimic subsurface conditions. We also correlated
the adsorption capacity of CO2, CH4, and H2 to a range of kerogen structural parame-
ters, i.e., atom ratios, % of aromatic carbon, and oxygen atoms. These results provide a
fundamental understanding of gas storage in shales and particularly underpin the large-
scale CO2 and hydrogen storage potential in organic-rich shale reservoirs and associated
decarbonization strategies.

2. Result and Discussion
2.1. Gases Adsorption Behavior against Pressure

The adsorption of gases (CO2, CH4, and H2) was investigated for a broad range of
pressure regimes (2.75 to 20 MPa) on four kerogen structures (Figure 1a–d). Clearly, gas
adsorption on all types of kerogen structures increased with increasing pressure (Figure 1a).
Commonly, at a particular pressure and temperature, the adsorption of three gases followed
the order CO2 > CH4 > H2. As an example, for the pressure increment from 2.75 MPa
to 20 MPa at 323 K, CO2 adsorption on II-A kerogen increased nearly 2.2 times (from
3.8 mmol/g to 8.8 mmol/g), 3.4 times (1.6–5.6 mmol/g) in case of CH4, and 6.2 times
(0.49–3.0 mmol/g) in case of H2 (Figure 1a). Furthermore, the observed adsorption behav-
ior was likely to plateau beyond pressure 20 MPa. The highest adsorption capacity of CO2
confirmed its tendency to desorb CH4 during a coupled enhanced methane recovery and
CO2 sequestration in organic-rich shales, consistent with previous observations [38,50].
When the H2 adsorption was lowest and thus H2 could not desorb CH4 and CO2, the obser-
vations suggested the potential for H2 storage via adsorption trapping in shale formations.
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Figure 1. Gas adsorption behavior versus pressure at different temperatures on kerogen [52]; (a) II-
A, (b) II-B, (c) II-C, (d) II-D. 
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kerogen). Gas adsorption in II-A kerogen was directly correlated with pressure, which can 
be attributed to the enhanced van der Waals and electrostatic interactions between the gas 
molecules (adsorbates) and the surface (adsorbent) at a higher pressure that lead to phy-
sisorption.  

Similar trends were noted for gas adsorption on II-B (Figure 1b), II-C (Figure 1c), and 
II-D (Figure 1d), i.e., the increase in adsorption with the increase in pressure. At a low-
pressure, the relative adsorption capacities were higher than in the high-pressure range, 
which can be attributed to the fact that the highest adsorption energy is found in the small-
est pores at low pressure at first and then advances toward the larger pores with increased 
pressure, which in turn decreases the isosteric heat of adsorption [67]. This observation is 
an indication of pore filling by physisorption in microporous material, as first recom-
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Figure 1. Gas adsorption behavior versus pressure at different temperatures on kerogen [52]; (a) II-A,
(b) II-B, (c) II-C, (d) II-D.

Furthermore, for the immature type II-A kerogen, the highest recorded adsorption
capacity was 8.8 mmol/g for CO2 at 323 K and 20 MPa (but less than overmature II-D
kerogen). Gas adsorption in II-A kerogen was directly correlated with pressure, which
can be attributed to the enhanced van der Waals and electrostatic interactions between the
gas molecules (adsorbates) and the surface (adsorbent) at a higher pressure that lead to
physisorption.

Similar trends were noted for gas adsorption on II-B (Figure 1b), II-C (Figure 1c),
and II-D (Figure 1d), i.e., the increase in adsorption with the increase in pressure. At a
low-pressure, the relative adsorption capacities were higher than in the high-pressure
range, which can be attributed to the fact that the highest adsorption energy is found
in the smallest pores at low pressure at first and then advances toward the larger pores
with increased pressure, which in turn decreases the isosteric heat of adsorption [67]. This
observation is an indication of pore filling by physisorption in microporous material, as
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first recommended by Dubinin [68]—a small increase in adsorption with a further increase
in pressure until equilibrium is established. As a comparison, in the literature data from
Zhao et al. [37] for similar kerogen (without nanopores), the two data points for II-A, II-C,
and II-D (at 5 MPa and 323 K and 10 MPa and 323 K, plotted in Figure 1a,c,d) indicated a
relatively lower adsorption capacity under similar conditions compared with our results.
This underestimation could be attributed to the absence of nanopores with major control
over the adsorption behavior, and thus the presence of nanopores (as in our models)
suggests greater adsorption capacity.

It is worthwhile to note that the overall highest adsorption capacity was noted to
be 10.6 mmol/g for CO2 in immature II-D kerogen at 20 MPa and 323 K (Figure 1d). To
visualize this better, a nanopore layer model of type II-D kerogen is shown (Figure 2),
indicating the adsorption behavior of all gases, and a large cluster of CO2 molecules is
evident (Figure 2). In addition, all kerogen structures depicted mainly type I adsorption
behavior for gases, consistent with recent findings [52,69,70]. This observation is also in
agreement with CO2 and CH4 adsorptions on coal [71]. In the case of H2 adsorption,
however, no attempt on kerogen is available to compare with the results of this study. Note,
however, that here, the kerogen has a strong affinity for CO2, i.e., ~1.7 times than CH4
and 4.5 times more than H2, which can be attributed to kerogen functional groups, which
have a notable effect on the adsorption of CO2, CH4, and H2 because of their remarkable
adsorption energy for CO2 over CH4 and H2 [69]. It can be noted that kerogens exhibited
a small deviation from a type I adsorption behavior for H2 gas. This particular behavior
can be credited to the small molecular mass of H2 (2.016 g/mole [6]) or low density,
which promotes the weak intermolecular interaction of H2 with organic matter and affects
adsorption thermodynamics, and the associated bonding between adsorbate and adsorbent
is a strong function of the density of a gas [47].

Hence, in short, the results advise a significant capability for gas disposal in under-
ground organic-rich (kerogen) shale formations via adsorption trapping, especially for
overmature kerogens. Furthermore, the observed adsorption isotherms are of great impor-
tance to be used as input in reservoir-scale assessment to investigate organic-rich porous
media [71].
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2.2. Gases Adsorption Behavior against Temperature

The adsorption behavior on four kerogen structures of the gases (CO2, CH4, and
H2) was evaluated at 323 K, 373 K, and 423 K (Figure 3). Clearly, adsorption decreased
with increasing temperature for all kerogen structures. For example, at a fixed pressure
of 20 MPa for II-A kerogen, the adsorbed amount of CO2, decreased from 8.8 mmol/g to
5.8 mmol/g (i.e., a 66% reduction) when the temperature of the system was elevated from
323 K to 423 K (Figure 3a), indicating a prominent decline. Similar trends were evident
for CH4 and H2, i.e., a decline from 5.6 mmol/g to 3.7 mmol/g (↓66%) for CH4 and from
3.0 to 2.9 mmol/g (↓75%) for H2 for the same temperature increment (Figure 3a). At the
same temperature range at a fixed pressure of 20 MPa, the adsorption capacity of the
gases in other kerogens (II-B, II-C, and II-D) decreased with similar trends, as noted in
II-D (Figure 3b–d and Table 1). Thus, the adsorption capacity is sensitive to temperature,
and the low-temperature shale gas reservoir demonstrated greater gas storage potential
than the high-temperature shale formation. This phenomenon was also observed in shale
adsorption tests [52,72,73].

Table 1. Trend of adsorption in four kerogen structures with temperature increment at a fixed pressure.

Structure
Percentage of Decline in Adsorption from 323 K to 423 K

CO2 CH4 H2

II-A ↓77% ↓77% ↓75%

II-B ↓65% ↓65% ↓75%

II-C ↓77% ↓62% ↓74%

II-D ↓77% ↓64% ↓73%
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Figure 3. Gases adsorption trend versus temperature at 20 MPa on kerogen; (a) II-A, (b) II-B, (c) II-C,
(d) II-D.

The temperature directly caused the gas molecules to leave the adsorption site by
high kinetic energy and escape to the bulk-free phase, i.e., a reduction in the adsorbed
phase density with increasing temperature [26]. Consequently, the amount of adsorbed gas
decreased with increasing temperature [73]. Moreover, the wetting behavior of shale could
be another factor responsible for the lower adsorption of gases at higher temperatures. This
is evident from the reduction in the water’s advancing and receding contact angles with
increasing temperature on shale surfaces [74] as well as coal samples [75], i.e., the samples
showed less affinity toward CO2 at higher temperatures. However, further investigations
are required to confirm these relationships. Thus, low-temperature shale appears to be
most suitable for gas storage.

2.3. Gases’ Adsorption Capacity versus Thermal Maturity

The thermal maturity of a shale sample is known to influence its gas storage capacity.
While vitrinite reflectance (Vr) is typically used as an indicator of thermal maturity [76], here,
we used the elementary analysis of the four kerogen structures to establish the influence
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of maturity; this is because this study was based on kerogen models as opposed to a
physical shale sample. The percentage of aromatic fixed carbon (obtained from NMR [77])
was lowest in II-A kerogen (40%) and highest in II-D kerogen (80%). Similarly, the XPS
analysis demonstrated a similar trend [77]—the lowest aromatic carbon in II-A (40%) and
the highest in II-D kerogen (72%)—consistent with overmature kerogen. Thus, on the basis
of these model parameters, kerogen maturity was in the order of II-D > II-C > II-B > II-A.
The adsorption capacity of the three gases demonstrated a clear increase with increasing
kerogen maturity. This behavior can be attributed to specific functional groups, i.e., H, O, N,
and S, and an increase in effective pore volume, as both are correlated with organic matter
maturity, which is proportional to adsorption capacities [69,78,79]. Typically, at a particular
pressure and temperature, the adsorption capacity followed the trend II-A < II-B <II-C <
II-D, and the adsorption capacity increased with increasing carbon content (Figure 4). With
an increase in carbon content from 40% to 80%, the adsorption capacity increased from
2.4 to 3.0 mmol/g for H2 (Figure 4a), 7.7 to 9.5 mmol/g for CO2 (Figure 4b), and 4.7 to
6.3 mmol/g for CH4 (Figure 4c) at 15 MPa and 323 K. It is noteworthy to mention that
the carbon content develops microporous characteristics in shale and contributes to the
surface area and total pore volume. These factors can be attributed to a surge in absolute
H2, CO2, and CH4 adsorption above 50% of the carbon content (which can be referred to as
the critical carbon content).
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Thus, it was confirmed that highly mature kerogen mainly adsorbs more gas, prefer-
ably CO2 over CH4 and H2, while immature kerogen (II-A: carbon content = 40%) showed
the lowest adsorption capacity. These results suggest a positive correlation between kero-
gen maturity and the adsorption capacity of gases. These observations are consistent with
previous findings on CO2 and CH4 adsorption onto shale surfaces [52,53,78]. A recent
investigation by Arif et al. [26] also found a consistent increase in H2 adsorption in coals
with increasing carbon content [26].

2.4. Effect of Kerogen Porosity on Adsorption

The pore size distribution of the samples investigated here suggests that II-D exhibited
the largest porosity (= 0.144), followed by II-C (= 0.075), II-B (= 0.073), and II-A (= 0.056),
in descending order [80], i.e., the porosity increased with increasing thermal maturity
from II-A to II-D kerogens. This observation is in agreement with a previous study [81].
Accordingly, with an increase of micropores, porosity was increased, and thus II-D offered
the maximum adsorption capacity, and II-A kerogen offered the minimum. For example, at
a fixed pressure (20 MPa) and temperature (373 K), the CO2 adsorption capacity of type II-A
kerogen was 7.3 mmol/g, while type II-D adsorbed 8.9 mmol/g under the same conditions
(Figure 1). Thus, a higher kerogen porosity promoted greater gas adsorption. Similar trends
were evident for other gases (Figure 1).

Previous studies have evaluated the impact of pore size on gas adsorption potential
in kerogen structures and shale and have noted that the adsorption capacity is indirectly
correlated with the pore size increases [82–86]. The reason behind this could be limited
adsorption heat and interaction energy with increased pore size [83]. This observation un-
derpins the phenomenon of adsorption via enhanced specific surface area [86,87]. Notably,
smaller micropores (<2 nm), evident in all kerogens, can provide a greater surface area and
thus greater gas adsorption capacity [47]. However, the average pore sizes were almost the
same in all kerogens.

Our results are in alignment with past studies [80,88,89], i.e., adsorption is sensitive
to porosity. This can be attributed to the structural transformation, increased number of
pores, and active sorption sites from immature to overmature shale that provide strong
interaction sites to gases for adsorption. Small pore volumes were dominant in kerogens
II-A and II-B, while large pore volumes contributed to kerogen II-C and II-D [78]. Thus,
porosity’s effect on the adsorption is clearly evident—a direct correlation was observed
between kerogen porosity and adsorption capacity. Like the porosity effect, it is vital to
extend this work to the effect of fracture permeability [90] on adsorption.

3. Materials and Methods
3.1. Kerogen Structure

We used four kerogen molecular models of varying maturity, i.e., immature (type
II-A), top of oil window (type II-B), middle/end of oil window (type II-C), and postma-
ture kerogen (type II-D) were considered (Figure 5). These models are similar to those
of Ungerer et al. [91], which were based on the analytical data corresponding to the
work of Kelemen et al. [92]. The chemical compositions of the four kerogen models were
C252H294O24N6S3, C234H263O14N5S2, C242H219O13N5S2, and C175H102O9N4S2. Note that
such kerogen models exist in the organic-rich shale (e.g., Duvernay marine).
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Figure 5. Six kerogen units developed by Ungerer et al. [91], representative of real kerogen macro-
molecules before structural optimization. A single atomic unit of kerogen (also known as macro-
molecule) comprised of carbon (black), oxygen (red), sulfur (yellow), nitrogen (blue), and hydro-
gen (gray).

The chemical composition and physical properties of kerogen structures were in good
agreement with the experimental data (e.g., X-ray and Nuclear Magnetic Resonance) [92],
and the percentage of aromatic fixed carbon demonstrated a trend: the lowest aromatic
carbon in II-A and highest in II-D kerogen. Thus, the kerogen maturity and porosity
were in the order of II-D(overmature) > II-C(Middle and End Oil Window) > II-B(Top of Oil Window) >
II-A(immature). The pores size distribution demonstrated that II-D contained the largest
micropores, followed by II-C, II-B, and II-A in descending order.

Furthermore, immature kerogen had higher O/C and H/C ratios and lower aromatic-
ity than the oil window and post-mature kerogens, while the key element of the structures
was that the maturity increased as follows: II-A < II-B < II-C < II-D (see Table 2), which is
plotted on Van Krevelen diagram illustrated in Figure 6. Specifically, II-D had the largest
micropores, as evidenced by its high value of porosity compared with other considered
kerogen types. Specifically, II-D had the largest micropores, as evidenced by its high value
of porosity compared with other considered kerogen types.

Table 2. Details of the kerogen units used in this investigation [91,93].

Kerogen
Type

Chemical
Formula H/C O/C

Density of
Final

Configuration,
g/cm3

Maturity
Level Ø

IIA C252H294O24N6S3 1.17 0.095 1.126 Immature 0.056

IIB C234H263O14N5S2 1.12 0.06 1.103 Top of Oil
Window 0.073

IIC C242H219O13N5S2 0.91 0.054 1.168
Middle/End
of Oil
Window

0.075

IID C175H102O9N4S2 0.58 0.051 1.240 Overmature 0.144
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3.2. Kerogen Model Construction

A few previous MD simulation studies [52,58] have been carried out to develop
the condensed kerogen using a large-scale atomic/molecular massively parallel simula-
tor (LAMMPS) [80]. Polymer-consistent forcefield plus (pcff++) was used in molecular
dynamics [93]; it describes atom dispersion/repulsion (Lennard–Jones potential 6–9), inter-
molecular, and electrostatic interactions and has been recognized as a reliable forcefield for
thermodynamic characteristics [77,95].

Kerogen structures of different maturities and types containing different units were
used. A pressure of 20.7 MPa and a temperature of 350 K were considered to progress
the simulation and were supposed to be representative of reservoir conditions. The MD
simulation considered initialization (9.5 cutoff value and periodic boundary) and energy
minimization (molecular positions and velocity proper configuration). Subsequently, the
NVT (isochoric-isothermal) and NPT (isobaric-isothermal) simulations were run at 336 K
for 250 ps and 200 ps, respectively. Through three continuous NPT steps, the temperature
was gradually decreased from 350 K to 336 K to attain faster convergence of kerogen units,
as depicted by the final structure in Figure 7. To study the adsorption on the surface
of kerogen, a nanopore was created in kerogen to expose the pore space to host the gas
(i.e., CO2, CH4, or H2), which led to adsorption on the surface. Unlike absorption, the
adsorbed molecules do not penetrate the kerogen structure, and thus there was no chance
of internal structural changes. Thus, the sum of adsorption and absorption, sorption, is
equivalent to the total storage capacity. The kerogen model (e.g., II-D) used in this study is
visualized in Figure 8; the other kerogen structure depicts a similar illustration of active
space for adsorption.
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3.3. Simulation Detail

The sorption was simulated by the Monte Carlo (MC) technique using the grand-
canonical Monte Carlo (GCMC) approach [52,69,94] under a wide range of pressures (2.75
to 20 MPa) and temperatures (323 to 423 K). Moreover, ASPEN software was used with
the Peng–Robinson equation of state to calculate fugacity coefficients of host molecules
(i.e., H2, CH4, and CO2) and converted into chemical potential in the GCMC simulation.
Note that the host molecules were defined as united atoms. A molecular loading approach
was further adopted to validate the molecular simulation, which showed an acceptable
match between the empty cell yield density and the experimental NIST data for CO2, CH4,
and H2 (see Figure 9).
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Interaction between kerogen and host molecules took place using the 6–9 LJ function
(Equation (1)) with a grid spacing of 0.2 Å. For cross interactions, the Lorentz–Berthelot
mixing rules (Equations (2) and (3)) were used. Upon the adsorption of gas molecules over
kerogen up to a certain value, equilibrium was reached. The number of interactions was set
at 0.35 million. At the end of the simulation, the total average adsorbed gas molecules were
obtained as a function of chemical potential. Further explanation of the GCMC simulation
procedure can be found in the literature [52,58].
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where rij represents the charges, qi and qj are the separation distances from two force
centers, ε0 is the relative permittivity, σ denotes the zero-interaction potential force distance,
and ε is the highest amplitude.

4. Conclusions

In this study, the adsorption capacities of H2, CO2, and CH4 were modeled on four
kerogen structures of varying maturities under a wide range of pressures and temperatures.
The adsorption capability of organic-rich matter (kerogen) improved with increasing pres-
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sure and decreased with temperature, regardless of kerogen maturity and gas type. The
maximum adsorption was 10.6 mmol/g for CO2, 7.5 mmol/g for CH4, and 3.7 mmol/g for
H2 in overmature II-D kerogen at 20 MPa and 323 K. Furthermore, the adsorption capacity
was directly associated with thermal maturity, carbon content, and porosity at a certain
pressure and temperature, i.e., II-D presented the highest adsorption, while all kerogens
displayed mainly type I behavior for all gases. For all kerogens, adsorption followed
the trend CO2 > CH4 > H2, attributed to the larger CO2 molecular size, which increased
its affinity toward the kerogen. Furthermore, the available information from elementary
analysis in terms of the pore size distribution was consistent with the adsorption trends.
The porosity of kerogens and adsorption capacities of gases followed the order II-D > II-C >
II-B > II-A, showing a direct correlation between adsorption capacity and kerogen porosity.
Generally, overmature kerogen offered the maximum adsorption capacity at the maximum
pressure and minimum temperature.

These findings, therefore, contribute to the preliminary datasets of organic-rich shale
reservoirs in terms of kerogen adsorption affinity towards different gases and related logical
intellection of adsorption mechanisms in kerogens. In summary, the findings suggest that
mature shale formations with relatively high pressure and low temperature are highly
suitable for gas storage. These results are also important to understand the potential
of unconventional shale for the competitive potential of CO2 and H2 storage and thus
contribute to strategies for carbon emission/hydrogen economy. In addition, this work can
be extended in the presence of brine phase for its effect on adsorption.
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