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Abstract: Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and
poor prognoses around the world. Within-cell polarity is crucial to cell development and function
maintenance, and some studies have found that it is closely related to cancer initiation, metastasis,
and prognosis. The aim of our research was to find polarity-related biomarkers which improve the
treatment and prognosis of HCC. For the knowledge-driven analysis, 189 polarity-related genes
(PRGs) were retrieved and curated manually from the molecular signatures database and reviews.
Meanwhile, in the data-driven part, genomic datasets and clinical records of HCC was obtained
from the cancer genome atlas database. The potential candidates were considered in the respect
to differential expression, mutation rate, and prognostic value. Sixty-one PRGs that passed the
knowledge and data-driven screening were applied for function analysis and mechanism deduction.
Elastic net model combing least absolute shrinkage and selection operator and ridge regression
analysis refined the input into a 12-PRG risk model, and its pharmaceutical potency was evaluated.
These findings demonstrated that the integration of multi-omics of PRGs can help us in untangling
the liver cancer pathogenesis as well as illustrate the underlying mechanisms and therapeutic targets.

Keywords: hepatocellular carcinoma; cell polarity; elastic net; overall survival; biomarker

1. Introduction

Liver disease is a global public health problem and causes approximately 2 million
deaths worldwide every year [1]. Hepatocellular carcinoma (HCC) accounts for 75–85% of
primary liver cancers and is a major global health problem. Most HCC cases are usually
detected at an advanced stage and have a poor prognosis. Therefore, understanding the
pathogenesis of HCC is crucial for treatment [2].

Cell polarity refers to the orchestrated establishment or maintenance of asymmetries
within differentiated cells, and is essential for the development of multicellular organisms,
wound healing, and immune response [3,4]. Some cells perform functions through the
process of polarization, including epithelial cells, odontoblasts, neurons, immune cells,
etc. [5]. Abnormal cell polarity may lead to developmental abnormalities, severe birth
defects, or tumorigenesis [6–9]. Disrupted cell polarity is considered a hallmark of human
cancer [10]. Lin et al. found that over-expression of nerve growth factors can accelerate
liver cancer progression by inducing defective cell polarity, transition between epithelial
and mesenchymal (EMT/MET), and cell cytoskeleton rearrangement, implying there might
be an underlying common mechanism of cell polarity between different cell types [11].
Cell polarity is mainly categorized into apico-basal polarity, planar cell polarity, and
anterior–posterior polarity. The latter two kinds of polarity were found mainly related to
neuron maturation and different development stages [3,12]; meanwhile the apico-basal
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polarity and related cell–cell adhesion were found to be more involved in many types of
cancer development [13].

Hepatocytes are responsible for most of the liver functions, including bile synthesis
and secretion, toxin elimination, etc. [14]. Harmonious function of hepatocytes relies on
its high-level polarity, which is considered the most complex even in known polarity
critical cell types such as immune cells or neurons. Hepatocytes have several apical
membranes and a basolateral plasma membrane. Bile canaliculi for bile secretion was
formed by the apical membranes of adjacent hepatocytes. Sinusoids, which are comprised
of the basolateral plasma membrane shared with neighboring cells, are the crucial location
for substance exchange with blood [15]. Hepatocyte polarization is also essential for
function such as biliary secretion, and loss of polarity leads to bile secretory failure and
even hepatotoxicity [16,17]. Current study mainly focuses on the apico-basal polarity of
hepatocytes in HCC development.

Several polarity-related genes (PRGs) have been investigated in the polarity estab-
lishment and maintenance concert. Hepatitis B and C promote hepato-carcinogenesis by
down-regulating E-cadherin and activating β-catenin. Hepatitis B virus entry into hepa-
tocytes depends on hepatocyte polarization [18]. Hepatitis C viral protein NS5A disrupts
cell polarity in the early stages of viral infection, triggering morphological changes in
hepatocytes and increasing the risk of oncogenic transformation [19]. LKB1/STK11 is a
kinase-activating kinase of AMPK, and this energy-sensing protein is activated during
polarization and interacts with energy production-related polarization. LKB1/STK11 is
frequently mutated or undergoes allelic loss in hepatocellular carcinoma [20]. However,
due to the complexity of within-cell polarization and the pathogenesis of liver diseases,
the molecular role and mechanism of hepatocyte polarization in liver diseases still require
further elucidation.

In this study, we focused on the PRGs with accumulated prior knowledge, and ex-
plored public multi-omics datasets and clinical records to investigate the association be-
tween transcriptomics, (epi-)genetics and prognosis of PRGs, aiming to illustrate their
potential role in liver cancer pathogenesis and to explore causative mechanisms for re-
vealed associations.

2. Results
2.1. Quantitative Screening of Curated Polarity-Related Genes

The flow chart of this study is shown in Figure 1. In total, the RNA-sequencing
data with detailed prognostic characteristics of 371 liver hepatocellular carcinoma (LIHC)
samples were obtained from the cancer genome atlas (TCGA) database. Based on prior
accumulated knowledge, 189 PRGs were extracted from the manually curated molecular
signatures database (MSigDB) and other rigorous reviews. The retrieval strategy is de-
scribed in the Methods section. Sixty-one out of 189 genes were screened out based on
their different expression, harboring known common variants or prognostic significance,
out of which at least two criteria were met. Finally, elastic net model combing least ab-
solute shrinkage and selection operator (LASSO) and ridge regression analysis reduced
the 61 variables down to a final 12-PRG signature model. Detailed parameters of each
screening step are described in following sections.
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Figure 1. Flowchart of data collection and analysis.

2.2. Expression Analysis of Prognostic Polarity-Related Genes and Pathways

Expression of curated PRGs was illustrated as a volcano plot in Figure 2A. Twenty-
two PRGs exhibited significant differential expression between 50 matched tumor and
normal tissues from liver hepatocellular carcinoma (LIHC) cohort. Detailed information of
189 PRGs expression can be found in Supplementary Table S1. Notably, three members from
the catenin super family, CTNNA1, CTNNA2, CTNNA3, were found to be dysregulated in
tumor tissues. CTNNA2 was the mostly upregulated in all PRGs, yet showed a different
direction to other family members.

To understand the expression changes of the selected 61 PRGs, we plotted the mRNA
expression of PRGs in four cancer types from the digestive system. In the panorama of gene
expression, we observed that LIHC samples hosted more DEGs, compared with the other
three functionally related organs in the digestive system. To some extent, the functional
relationship was depicted by the similarity of PRG expression patterns. For example, the
functionally mostly distal organ esophageal demonstrated the most deviation from the
liver in Figure 2B.
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Figure 2. The differential expression analysis of the selected polarity-related genes (PRGs) with
clinical value in different tumor tissues and paracancerous tissues of the digestive system from the
cancer genome atlas (TGCA) database. (A) Volcano plot of 61 PRGs expression change between
tumor and matching normal tissues from liver hepatocellular carcinoma (LIHC) with fold change >1.5
and FDR p < 0.05. CTNNA2 was separately illustrated. (B) The mRNA expression level of selected
polarity-related genes across colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach
adenocarcinoma (STAD), and LIHC datasets. The larger circle, the more statistically significant.
(C) EMT and cell cycle pathway are the mostly disrupted by the selected polarity genes across all
cancer types deposited in TCGA. The color in each cell indicates that the percentage of altered
pathway occurrence in evaluated cancer types. Red for activation, blue for inhabitation.
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Beyond single-gene comparation in digestive system samples, pathway analysis was
expanded to the scope of all 33 kinds of cancers. Results exhibited that epithelial-to-
mesenchymal transition (EMT), cell cycle, DNA damage, and apoptosis were the mostly
dysregulated pathways of PRGs against the background (Figure 2C). In particular, GAS1
and CDH1 from EMT pathway topped across all 33 cancers as the mostly activated and
inhibited, respectively, in Supplementary Figure S1 and Table S2.

2.3. Gene Set Variation Analysis (GSVA) of Polarity-Related Genes

Besides single-gene or pathway analysis, gene set variation analysis (GSVA) was
performed to characterize pathways or signature summaries from the 61-PRG dataset.
The GSVA score was calculated according to GSVA package, and it showed different
change patterns across LIHC, COAD, ESCA, and STAD in Figure 3A. LIHC and COAD
showed downregulated GSVA score in tumor samples, whereas ESCA showed the opposite
pattern. Similar to the single-gene analysis, LIHC showed more pathways affected by
PRGs. Pathway of apoptosis, EMT, hormone AR/ER, PI3kAT, RASMAPK and RTK were
correlated to GSVA alteration significantly in Figure 3B. Consistent with the tumor/normal
changes, when diving into substages of LIHC tumor samples, a downward trend of GSVA
score except for stage III was found in Figure 3C. In this step, ESCA showed a surprisingly
opposite trend in pathologic stages and clinical stages. The detailed distribution of GSVA
score for stages in LIHC were shown in Figure 3D.
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Figure 3. Gene set variation analysis (GSVA) of the selected PRGs with clinical value between
different pathologic stages in LIHC and other digestive system cancers. (A) Original GSVA score
between tumor and paracancerous tissues. (B) GSVA-altered pathways in different cancer types
from digestive system. (C) GSVA trend analysis of 61 polarity-related genes across digestive system
cancers. (D) Detailed trend analysis in LIHC cohort showed difference between pathological stages.
*, p < 0.05; #, FDR < 0.05.
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2.4. Genetic and Epigenetic Alteration of PRGs

To rank the most protistic or functional PRGs, single nucleotide variant (SNV) and
methylation data from TCGA was included in the investigation. The oncoplot in Figure 4A
showed the mutation rate in the 135 HCC patients who has at least one mutation in at least
one PRG from LIHC cohort. The top 10 PRGs with the most abundant SNV in LIHC were
AXIN1, PKHD1, PTPRB, CTNNA2, IGF1R, ABCB1, TJP1, CROCC, NCOA6, and CDH1. In
particular, almost 19% of the 135 patients had mutations across the AXIN1 gene. In addition,
if AXIN1 was singled out of the 61 PRGs, LIHC demonstrated the highest AXIN1 mutation
rate at 26% in all TCGA cancer types in Supplementary Figure S3. In association with
survival data, copy number variants (CNV) from LIHC exhibited significant correlation
with PFS and DFI in Figure 4B. For all of 61 PRGs, expression was almost negatively
correlated to the gene methylation in Figure 4C. All evidence suggests that PRGs are of
biological function in HCC development or recurrence.
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Figure 4. Mutation analysis of the selected PRGs with clinical value in LIHC and other digestive
system cancers. (A) Single nucleotide variants (SNV) of the top 10 PRGs in LIHC. (B) Survival
analysis of gene set copy number variants (CNV) across five digestive cancer types. (C) Correlation
between methylation and mRNA expression of the selected PRGs.

2.5. Protein–Protein Interaction and Prognostic Survial Analysis of PRGs

The curated 61 PRGs were applied to the STRING database for potential functional
relationship analysis. Figure 5A showed the known protein–protein interaction (PPI)
between each gene pair. Genes were ranked by the degree of connection. We found that
EGFR, CDH1, SRC, MAPK3, TJP1, CTNNA1, VCL, FYN, ABCB1, and ABCG5 were the
mostly connective genes to each other in the network, and detailed connective values were
shown in Supplementary Table S3. Meanwhile, all 61 PRGs were detected for survival
analysis. The overall survival curves of selected genes, CDH1, EGFR, MAPK3, and SRC,
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were shown in Figure 5B–D. Higher CDH1 or EGFR, or lower MAPK3 or SRC lead to better
outcomes according to the follow-up record in this LIHC cohort. Survival curves of other
PRGs can be found in Supplementary Figure S2.
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Figure 5. Network and survival curve of polarity-related genes with clinical value.
(A) Protein–protein interaction (PPI) network of prognostic polarity-related genes. Thickness of
connection denotes strongness of interaction evidence. The nodes with highest degree of connectivity
were circled. (B–E) Survival curves of selected top four genes emerged from PPI network.
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2.6. Twelve-PRG Signature Constructed by Elastic Net Survial Analysis

We performed the elastic net modeling, which combines least absolute shrinkage and
selection operator (LASSO)-based and ridges regression of survival analysis to determine
PRGs associated with the HCC outcome. The elastic net algorithm reduced the input of
61 selected PRGs to a 12-PRG signature, and the receiver operating curve (ROC) was shown
in Figure 6A. The detailed partial likelihood deviance changes when adjusting the penalty
parameter lambda in the algorithm were shown in Supplementary Figures S4 and S5. The
performance of the models to predict the outcomes of HCC patients was illustrated in
Figure 6B.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 19 
 

 

  

Figure 6. Elastic net-based survival approach for construction of risk score model. (A) Receiver op-

erating characteristic (ROC) of the 12-PRG risk score model. (B) Performance of risk score model to 

discriminate included 361 samples. (C) Recurrence of models generated by random seeding in 1000-

iteration simulation of elastic net modeling. (D) Validation of 12-PRG model on GSE14520 cohort. 

  

Figure 6. Elastic net-based survival approach for construction of risk score model. (A) Receiver
operating characteristic (ROC) of the 12-PRG risk score model. (B) Performance of risk score
model to discriminate included 361 samples. (C) Recurrence of models generated by random
seeding in 1000-iteration simulation of elastic net modeling. (D) Validation of 12-PRG model on
GSE14520 cohort.
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The risk model could be explicitly displayed as the following formula: Risk score =
ABCB1 × 0.0006848492 + AXIN1 × 0.007959001 + CDH1 × 0.0005628617 + CTNNA1 ×
0.0002723052 + G6PD × 0.002.875187 + PARD3 × 0.008414534 + RAP2A × 0.004491595
+ SLC4A2 × 0.00005756535 + SPAST × 0.0748737 − CD160 × 0.003580824 − LMO7 ×
0.01.638609 − PTPRB × 0.03787086, in which the gene symbol denotes its expression.

To evaluate the robustness of the model, a 1000 iteration of modeling were performed
to check the recurrence of the 12-PRG models. The 78.5% (785 out of 1000) recurrence
in Figure 6C exhibited the outperformance of the current 12-PRG model against others.
The area under curve (AUC) of ROC of GSE14520 (p = 0.018), GSE76427 (p = 0.043), and
GSE10143 (p = 0.022) in Figure 6D, Supplementary Figure S6 and Table S4.

2.7. Drug Sensitivity Prediction and Validation against the 12 PRGs

After refining 12 out of the original 61 PRGs, we explored the possible approved
drugs or promising molecules with neutralizing effect. The Genomics of Drug Sensitivity
in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) dataset was utilized
to detect the correlation of drug IC50 and targeted 12 PRGs expression. Bubble plot
in Figure 7A showed the correlation and FDR p value of therapeutic response between
12 PRGs and the top 30 drugs. Sorafenib, vinblastine and olaparib were selected to show
the detailed response. As an FDA-approved drug specifically for HCC, sorafenib-treated
cell lines can be divided into non-responder and responder groups. The mean expression
of the 12 PRGs was significantly down-regulated in responder groups, which indicated that
the risk proposed by 12 PRGs was reduced by the administration of sorafenib. By using the
AUC of 0.786 of sorafenib in Figure 7B as a benchmark, we examined all the top 30 drugs
showing correlation. Vinblastine and olaparib, which were not specifically designed or
approved for HCC treatment yet, emerged as comparable candidates to sorafenib from
the point of our 12-PRGs signature. The results in Figure 7C,D implied that these two
compounds might be promising candidates in application in HCC administration in the
future. Results for all the approved HCC drugs and top 30 GDSC drugs was found in
Supplementary Table S5. Most of CTRP drugs did not show exciting results in individual
investigation, as in in Supplementary Figure S7.
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performance on cell lines derived from liver tumor.

3. Discussion

The prognosis of HCC patients is poor, and usually left with very limited treatment
options [21]. Hepatocyte polarity is of more and more concern in the research of HCC. In
this study, we used the multi-omics data from TCGA to evaluate the knowledge-deduced
PRGs in a data-driven manner.

It is of no surprise that EMT, apoptosis and other pathways were found correlated
in HCC in both single and GSVA analysis in Figures 2C and 3B. EMT and its reverse
counterpart MET grant cells, especially tumor cells, to invade and metastasize. EMT
and polarity-related pathways share many genes because they are both related to the
cell skeleton or structure maintenance [22–24]. Depolarization of cells could be a sign of
disfunction which triggers apoptosis mechanism [25].

However, the function of PRGs in certain pathways could be controversial, and this
leads to the phenomena that a pathway is both activated or inhibited by PRG dysregulation.
In general, all curated PRGs participate in polarity establishment, maintenance, or other
related molecular procedures. However, the expression trend of certain PRGs could be
ambiguous or controversial. Take FAT atypical cadherin 1 (FAT1) as an example. Its
expression differs between cancers or even datasets of certain cancers [26–30]. CTNNA
is a family of genes encoding proteins that play an important role in cell–cell adhesion
by interacting with cadherins-1 (CDH1) and the actin filaments. CDH1 and actin are
both important factors in cell polarity, but usually located in different areas inside the cell.
Biallelic truncating mutations result in the loss of CTNNA2 in neurons, and lead to defects
in neurite stability and migration [31]. Therefore, the controversial results like CTNNA
family could be arbitrary if only expression data was considered to screen useful genes of
interest in this kind of analysis. In addition to the expression analysis, we introduce two
other factors of mutation rate and survival analysis for potential prognostic PRGs in the
following steps.
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Although there are totally 33 cancer types deposited in the TCGA data hub, only
22 types have 150 or more samples collected. Figure 2B showed that ESCA expression
patterns of PRGs differed from LIHC, the most in Figures 2B and 3A–C, which gave us a
hint that the pattern could be parallel to the distance physically or functionally between
organs. This is because normal samples from the pancreas, the most related organ of liver,
were insufficient for this analysis. It still needs to be investigated in more comprehensive
pan-cancer analysis to a solid conclusion.

AXIN1 is among the most frequently mutated genes in many types of cancer. Its
highest mutation rate of 7.12% is found in LIHC in Supplementary Figure S1. Therefore,
AXIN1 has great potential to serve as a target or prognostic biomarker in HCC treatment.
This gene encodes a cytoplasmic protein containing a regulation domain of G-protein
signaling a disheveled and axin domain. Its mature product degrades catenin beta-1
(CTNNB1) and plays the role of a negative regulator of the Wnt signaling pathway [32]. In
a conditional knockout mice model, loss-of-function-mutated AXIN1 is found to trigger
downstream of YAP/TAZ-centered hippo signaling pathway in hepatocarcinogenesis [33].

CDH1 is a crucial gene involved in cell polarity, EMT, and other related pathways in
HCC. From the TCGA–LIHC data, we found that CDH1 is a protective factor for HCC
patients, which is consistent with previous studies [34,35]. Again, although CDH1 and
other genes were picked by degree of connection in Figure 5A, this could be biased because
the connection relies on the amount of research accumulated and curated for that certain
gene [36]. Therefore, dependency on only one dimension of genomics data could lead to
biased conclusion. To avoid this bias, we conducted a screening strategy to cover three
dimensions of genomic data in addition to the manual curation of prior knowledge as
described in the Methods section.

The curse of dimension is still a big obstacle in biomedical research due to the limited
number of samples compared with the number of features [37]. Sadly, with the improve-
ment of the high-throughput technology, this problem will worsen in the future. One
comprising approach is to use the LASSO-like or ridge regression algorithm to reduce the
features to a reasonable scale in a clinically acceptable manner. Here, after a proper retrieval
strategy, back-to-back curation, and multi-omics analysis, 61 PRGs was shrunken to a final
12-PRG risk score model. The use of the elastic net algorithm which combines LASSO and
the ridge regression model allowed us to integrate PRGs from multiple evaluations into
one model, which performed better than that of single PRG or single strategy alone. Elastic
net evaluates the trade-off between LASSO and ridge by adjusting the alpha parameter,
and simply, LASSO and ridge are special cases when the alpha is set to 1 or 0, respectively.
The ability of minimizing the bias, elastic net model was used in accumulating studies for
small size cohorts [38].

From the GDSC drug screening data, we primarily got access to pharmaceutical po-
tency of the 12 PRGs. Two approved cancer drugs, vinblastine and olaparib, demonstrated
encouraging results in cell lines derived from liver tumor, as shown in Figure 7C,D. This
could be indirect evidence for possible expansion of those existing drug markets. However,
hepatocytes behave quite differently in terms of polarity characteristics in the traditional
in vitro 2D culture condition [39,40]. An in vitro collagen sandwich system sheds light on
the dilemma, in which primary hepatocytes are isolated and cultured inside two layers
of collagen, showing the exciting ability to re-establish cell polarity and maintain hepatic
functions [41]. Emerging 3D or organoid culturing system could provide more accurate
drug simulation data as in vivo hepatocyte in the future.

4. Materials and Methods
4.1. Patients and Datasets

TCGA is a free comprehensive data portal for cancer genome data, including mRNA ex-
pression, mutation profile, and methylation data (https://cancergenome.nih.gov
(accessed on 30 August 2022)). All 33 cancer types from the TCGA database were re-
trieved in pan-cancer analysis to obtain the landscape view of PRGs. Patients with LIHC

https://cancergenome.nih.gov
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contains data from 371 HCC tissues and 50 adjacent nontumorous liver tissues. The avail-
able genomic data and matching follow-up data (pathologic stage, histologic grade, overall
survival time, gender, and age) from LIHC were utilized for liver-specific PRG screening.
For inter-cancer comparation step, to make the results more readable in certain analysis,
only cancer types of the digestive system, like colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD),
and LIHC were exhibited. Notably, in some cases, PAAD and other cancers might not
generate results because of the insufficient matching of normal samples available.

4.2. Manual Screening of Polarity-Related Genes with Prior Knowledge

We retrieved the PRGs from the MSigDB database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp (accessed on 30 August 2022)) [42]. In our retrieval strategy, key-
word “Polarity OR Polarization” was used and filtered by organism of “Homo sapiens” to
extract all possible manually curated gene sets. Based on a back-to-back evaluation, the
pathway specifically related to immune or neuro cell activation was excluded first, and the
pathway related to planar, anterior, or posterior polarity was also excluded. After the man-
ual screening, the PRGs from “GOBP_ESTABLISHMENT_OF_EPITHELIAL_CELL_APICAL
_BASAL_POLARITY”, “GOBP_MAINTENANCE_OF_APICAL_BASAL_CELL_POLARITY”,
“HALLMARK_APICAL_SURFACE”,“KEGG_ADHERENS_JUNCTION”, “HALLMARK
_APICAL_SURFACE”, and others curated from rigorous reviews [15,43,44] were included
for following study, and more details were included in Supplementary Table S1.

4.3. Differential Expressed Gene Analysis of Polarity-Related Genes

RNA-seq expression of 50 normal liver samples and the matching tumor samples
from TCGA-LIHC patients was used for differentially expressed gene analysis. DEGs were
defined by R package edgeR with the criterion of fold change >1.5 and FDR p < 0.05. Then,
previously selected 189 curated PRGs were intersected with DEGs for expression analysis.
The volcano plot was illustrated by EnhancedVolcano package.

To evaluate the PRGs in a pathway level, the cancer proteome atlas (TCPA) database
covering 10 cancer-related pathways (TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, Hor-
mone ER, hormone AR, EMT, DNA damage response, cell cycle, apoptosis pathways) by
proteomic analysis by using 181 high-quality antibodies was retrieved [45]. The pathway
score is to sum all the relative protein level of all positive minus negative regulatory com-
ponents in a particular pathway. TCPA samples were divided into two groups based on
expression of gene of interest, and the pathway potentially affected is selected by t test
applied to pathway score difference of two groups [46].

GSVA is a gene set enrichment analysis which estimates the variation of gene set
activity (represented as GSVA score) over a specific cancer’s sample population in an
unsupervised manner. [47] The GSVA score represents the integrated level of the expression
of gene set, and was performed by applying GSVA package on the downloaded LIHC
expression dataset.

4.4. Genetical and Epigenetical Alteration of Polarity-Related Genes

Common mutations which emerged in at least 1% of the cohort were considered as
a criterion for the PRGs selection. The Oncoplot package was used for the exhibition of
SNV. The methylation level was linked to the mRNA expression for possible epigenetic
explanation.

4.5. Pan-Cancer Analysis of Gene Set Cancer Analysis

GSCA (http://bioinfo.life.hust.edu.cn/GSCA/ (accessed on 30 August 2022)) is an
interactive web application based on the TCGA database for pan-cancer investigation [48].
Between LIHC and other cancer types, gene differential expression, overall survival, single
nucleotide variation, CNV, methylation and pathway activity were compared by the facility
of the GSCA website.

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://bioinfo.life.hust.edu.cn/GSCA/
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4.6. Construction of the PRGs Protein–Protein Interaction Network

The STRING database version 11 (http://string-db.org/) aims to provide a global
view of all the available interaction data between biomedical terms, especially genes and
related terms [36]. To obtain known and predicted associations, PRGs were submitted to
STRINGDB for possible upstream, downstream, or interaction relationship. The results are
displayed in the form of radial layout by Cytoscape 7.2. Plugin cytoHubba was used to
rank the degree of connection between nodes.

4.7. Kaplan–Meier Plotter for Survival Analysis

The Kaplan–Meier plotter (https://kmplot.com/) curated gene expression data and
survival information from TCGA, GEO, and other recognized resources for prognostic
evaluation [49]. PRGs candidates were applied on KMPlot to investigate their potential
prognostic.

4.8. Construction of a Prognostic Risk Model by Elastic Net Algorithm

A two-out-of-three strategy was applied to 189 curated PRGs to get a more solid
candidate set which met at least two criteria: (1) differentially expressed in 50 tumor-
normal matching samples analysis, (2) harboring common mutations happening more than
1% of 371 subjects and (3) exhibiting potential prognostic value in single COX analysis.
Elastic net model, analysis was then employed to establish a prognostic model by using
the expression profile of the 61 screened PRGs. Elastic net combines the LASSO and ridge
regression approaches by evaluating the trade-off between the two approaches. A 12-gene
signature was identified based on the optimal value of AUC and λ in elastic net model.

4.9. Model Validation of the 12-PRGs Model

Two approaches were performed to validate the robustness of the 12-PRGs model.
First, to avoid the randomness introduced by the seeding steps in the elastic net, the model
construction was iterated 1000 times to check the recurrence of each possible models, and
the mostly recurrent one is the most promising [50]. Secondly, HCC studies with clinical
follow-up information and a reasonable cohort size were used as independent datasets.
GSE14520 [51,52], GSE10143 [53] and GSE76427 [54] were retrieved and their ROC [55] was
calculated to evaluate the model generated from TCGA-LIHC cohort.

4.10. Screening of Drugs Potentially Targeting the 12 PRGs Signature

GDSC and CTRP projects access to more than 1000 cell lines to evaluate interactions
with more than 500 drugs in a high-throughput manner [56]. The GDSC and CTRP data
was used to primarily evaluate current approved HCC drugs and potential innovative
compounds according to the lower vs. upper tercile of IC50 in vitro [57].

5. Conclusions

In this study, we conducted an in-depth exploration of polarity-related genes in HCC,
and a 12-gene risk score model was built to stratify HCC patients. This will facilitate
the future personalized treatment plan to prolong individual survival time. The 12 PRGs
also provided the community a bundle of refined targets for a better understanding of
hepatocyte polarity in HCC research.
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