Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Structure of SA-LDH
2.2. The Distribution of SA-LDH in PA11 Matrix
2.3. Flame Retardancy
2.4. Crystal Behaviors
2.5. Mechanical Properties
3. Materials and Methods
3.1. Materials
3.2. Preparation of SA-LDH
3.3. Sample Preparation
3.4. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moshynets, O.; Bardeau, J.-F.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Dzhuzha, O.; Potters, G.; Rogalsky, S. Antibiofilm activity of polyamide 11 modified with thermally stable polymeric biocide polyhexamethylene guanidine 2-naphtalenesulfonate. Int. J. Mol. Sci. 2019, 20, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, D.D.; Huang, Y.Q.; Sun, L.; Yeh, J.T. Oxygen barrier properties of organic montmorillonite modified polyamide 11/Poly (vinyl alcohol) films. Polym. Adv. Technol. 2021, 32, 165–172. [Google Scholar] [CrossRef]
- Frederico, G.D.A.; Veiga, A.G.; Da CPGomes AP, A.; Da Costa, M.F.; Rocco, M.L.M. Using XPS and FTIR spectroscopies to investigate polyamide 11 degradation on aging flexible risers. Polym. Degrad. Stab. 2022, 195, 109787. [Google Scholar]
- Alidadi-Shamsabadi, M.; Arefazar, A.; Shokoohi, S. Response surface analysis of PS/EPDM/PA6 ternary blends, effect of mixing sequence, composition, and viscosity ratio on the mechanical properties. J. Addit. Technol. 2019, 26, 282–290. [Google Scholar] [CrossRef]
- Venkatraman, P.; Gohn, A.M.; Rhoades, A.M.; Foster, E.J. Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing. Compos. Part B Eng. 2019, 174, 106988. [Google Scholar] [CrossRef]
- Hirai, T.; Kawada, J.; Narita, M.; Ikawa, T.; Takeshima, H.; Satoh, K.; Kamigaito, M. Fully bio-based polymer blend of polyamide 11 and Poly(vinylcatechol) showing thermodynamic miscibility and excellent engineering properties. Polymer 2019, 181, 121667. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Zhang, C.; Cao, M.; Jiang, S.; Wang, X.; Wang, B.; Hu, W.; Hu, Y. Halogen and halogen-free flame retarded biologically-based polyamide with markedly suppressed smoke and toxic gases releases. Compos. Part B Eng. 2020, 184, 107737. [Google Scholar] [CrossRef]
- Majka, T.M.; Leszczyńska, A.; Kandola, B.K.; Pornwannachai, W.; Pielichowski, K. Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites. Appl. Clay Sci. 2017, 139, 28–39. [Google Scholar] [CrossRef]
- Lu, C.; Gao, X.-P.; Yao, D.-H.; Cao, C.-L.; Luo, Y.-J. Improving flame retardancy of linear low-density polyethylene/nylon 6 blends via controlling localization of clay and intumescent flame retardant. Polym. Degrad. Stab. 2018, 153, 75–87. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, B.; Xu, M.; Guo, Z. Synergistic effects of nano-silica on aluminum diethylphosphinate/polyamide 66 system for fire retardancy. High Perform. Polym. 2016, 28, 140–146. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, H.; Zheng, S.; Guo, Y.; Tang, P.; Ding, Y.; Jia, W.; Pan, G.; Guo, Q. Dual-exterior surface modification of layered double hydroxides and its application in flame retardant biobased poly(trimethylene terephthalate). J. Appl. Polym. Sci. 2022, 45, e53059. [Google Scholar] [CrossRef]
- Mohammadi, A.; Wang, D.; Hosseini, A.; Vega, J.D. Effect of intercalation of layered double hydroxides with sulfonatecontaining calix [4]arenes on the flame retardancy of castor oil-based flexible polyurethane foams. Polym. Test. 2019, 79, 106055. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Q.-J.; Zeng, H.-Y.; Du, J.-Z.; Xu, S. Organic modification of Mo-decorated MgAl layered double hydroxide for polymer flame retardancy. Compos. Part A 2020, 129, 105717. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Shi, B.; Li, B. Flame retardance and smoke suppression of CFA/APP/LDHs/EVA composite. Appl. Sci. 2016, 6, 255. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Nan, D.; Yan, L. Flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings reinforced with layered double hydroxides. J. Coat Technol. Res. 2020, 17, 157–169. [Google Scholar] [CrossRef]
- Zhou, L.L.; Li, W.X.; Zhao, H.B.; Wang, J.S.; Zhao, B. NiTi-layered double hydroxide nanosheets toward high-efficiency flame retardancy and smoke suppression for silicone foam. Polym. Degrad. Stab. 2022, 204, 110104. [Google Scholar] [CrossRef]
- Zhou, L.-L.; Li, W.-X.; Zhao, H.-B.; Zhao, B. Comparative study of the M(II)Al (M=Co, Ni) layered double hydroxides for silicone foam: Characterization, flame retardancy, and smoke suppression. Int. J. Mol. Sci. 2022, 23, 11049. [Google Scholar] [CrossRef]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Sadiku, E.R.; Mokhena, T.C. Morphology, thermal stability, and flammability properties of polymer-layered double hydroxide (LDH) nanocomposites: A review. Crystals 2020, 10, 612. [Google Scholar] [CrossRef]
- Gu, Z.; Atherton, J.; Xu, Z. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chem. Commun. 2015, 51, 3024–3036. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Hajibeygi, M.; Mousavi, M.; Shabanian, M.; Vahabi, H. The effect of phosphorus based melamine-terephthaldehyde resin and Mg-Al layered double hydroxide on the thermal stability, flame retardancy and mechanical properties of polypropylene MgO composites. Mater Today Commun. 2020, 23, 100880. [Google Scholar] [CrossRef]
- Wu, T.; Cai, B.; Wang, J.; Zhang, C.; Shi, Z.; Yang, Q.; Hu, G.; Xiong, C. TEMPO-oxidized cellulose nanofibril/layered double hydroxide nanocomposite films with improved hydrophobicity, flame retardancy and mechanical properties. Compos. Sci. Technol. 2019, 171, 111–117. [Google Scholar] [CrossRef]
- Huang, S.-C.; Deng, C.; Wang, S.-X.; Wei, W.-C.; Chen, H.; Wang, Y.-Z. Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polym. Degrad. Stab. 2019, 165, 126–136. [Google Scholar] [CrossRef]
- Liu, X.; Gu, X.; Zhang, S.; Jiang, Y.; Sun, J.; Dong, M. Effects of dihydrogen phosphate intercalated layered double hydroxides on the crystal behaviors and flammability of polypropylene. J. Appl. Polym. Sci. 2013, 130, 3645–3651. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, M.; Li, S.; Zeng, H.; Du, J.; Chen, C.; Wu, K.; Tian, X.; Pan, Y. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Appl. Clay Sci. 2020, 185, 105348. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Gu, X.; Jiang, P.; Sun, J. Flammability and thermal behavior of polypropylene composites containing dihydrogen phosphate anion-intercalated layered double hydroxide. Polym. Compos. 2015, 36, 2230–2237. [Google Scholar] [CrossRef]
- Du, J.-Z.; Jin, L.; Zeng, H.-Y.; Shi, X.-K.; Zhou, E.-G.; Feng, B.; Sheng, X. Flame retardancy of organic-anion-intercalated layered double hydroxides in ethylene vinyl acetate copolymer. Appl. Clay Sci. 2019, 180, 105193. [Google Scholar] [CrossRef]
- Du, J.-Z.; Jin, L.; Zeng, H.-Y.; Feng, B.; Xu, S.; Zhou, E.-G.; Shi, X.-K.; Liu, L.; Hu, X. Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate. Appl. Clay Sci. 2019, 168, 96–105. [Google Scholar] [CrossRef]
- Peng, H.; Tjiu, W.C.; Shen, L.; Huang, S.; He, C.; Liu, T. Preparation and mechanical properties of exfoliated CoAl layered double hydroxide (LDH)/ polyamide 6 nanocomposites by in situ polymerization. Compos. Sci. Technol. 2009, 69, 991–996. [Google Scholar] [CrossRef]
- Herrero, M.; Benito, P.; Labajos, F.M.; Rives, V.; Zhu, Y.D.; Allen, G.C.; Adams, J.M. Structural characterization and thermal properties of polyamide 6,6/ Mg, Al/ adipate-LDH nanocomposites obtained by solid state polymerization. J. Solid State Chem. 2010, 183, 1645–1651. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, G.; Lin, J. Synthesis, rheology and morphology of nylon11/layered silicate nanocomposite. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2161–2172. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, X.; Lars, A. FT-IR Spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer 2002, 43, 2445–2449. [Google Scholar] [CrossRef]
- Huang, S.; Wang, M.; Liu, T.; Zhang, W.D.; Tjiu, W.C.; He, C.; Lu, X. Morphology, thermal and rheological behavior of Nylon 11/Multi-walled carbon nanotube nanocomposites prepared by melt compounding. Polym. Eng. Sci. 2009, 49, 1063–1068. [Google Scholar] [CrossRef]
- Sun, J.; Gu, X.; Zhang, S.; Coquelle, M.; Bourbigot, S.; Duquesne, S.; Casetta, M. Improving the flame retardancy of polyamide 6 by incorporating hexachlorocyclotriphosphazene modified MWNT. Polym. Adv. Technol. 2014, 25, 1099–1107. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Q. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur. Polym. J. 2002, 38, 1383–1389. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Ma, K. Morphology, thermal and mechanical behavior of polyamide6/ layered-silicate nanocomposites. Compos. Sci. Technol. 2003, 63, 331–337. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, S.; Sun, J.; Gu, X. Flame retardancy and thermal stability of polypropylene composite containing ammonium sulfamate intercalated kaolinite. Ind. Eng. Chem. Res. 2016, 55, 7669–7678. [Google Scholar] [CrossRef]
- Tang, W.; Gu, X.; Jiang, Y.; Zhao, J.; Ma, W.; Jiang, P.; Zhang, S. Flammability and thermal behaviors of polypropylene composite containing modified kaolinite. J. Appl. Polym. Sci. 2015, 132, 41761. [Google Scholar] [CrossRef]
- Tang, W.; Song, L.; Zhang, S.; Li, H.; Sun, J.; Gu, X. Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite. J. Mater. Sci. 2017, 52, 208–217. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, S.; Liu, T. Crystallization Behavior of polyamide11/multiwalled carbon nanotube composites. J. Appl. Polym. Sci. 2011, 122, 551–560. [Google Scholar] [CrossRef]
LDH (003) | SA-LDH (003) | |||||
---|---|---|---|---|---|---|
LDH | PA11/2.5LDH | PA11/5LDH | SA-LDH | PA11/2.5SA-LDH | PA11/5SA-LDH | |
2θ/° | 11.5 | 11.5 | 11.5 | 9.7 | 9.2 | 9.6 |
d/nm | 0.77 | 0.77 | 0.77 | 0.91 | 0.96 | 0.92 |
<D>/nm | 47.7 | 46.3 | 47.0 | 36.9 | 29.3 | 27.8 |
n * | 1.8 | 0.9 | 7.9 | 9.9 |
LOI (vol%) | UL-94 | |
---|---|---|
PA11 | 24.9 ± 0.2 | No rating |
PA11/2.5LDH | 25.0 ± 0.1 (↑0.1) | No rating |
PA11/5LDH | 25.3 ± 0.2 (↑0.3) | No rating |
PA11/2.5SA-LDH | 27.2 ± 0.3 (↑2.3) | No rating |
PA11/5SA-LDH | 27.5 ± 0.2 (↑2.5) | No rating |
pHRR/(kW/m2) | TTP (TPHRR)/s | THR/(MJ/m2) | FGI*/(kW/m2•s) | |
---|---|---|---|---|
PA11 | 678.7 ± 17 | 161 ± 3 | 93.2 ± 15 | 4.2 |
PA11/2.5LDH | 641.1 ± 15 (↓5.5%) | 180 ± 4 (↑19s) | 101.7 ± 16 (↑9.1%) | 3.6 |
PA11/5LDH | 617.3 ± 12 (↓9.0%) | 191 ± 3 (↑30s) | 99.2 ± 12 (↑6.4%) | 3.2 |
PA11/2.5SA-LDH | 628.7 ± 12 (↓7.3%) | 184 ± 3 (↑23s) | 101.2 ± 11 (↑9.0%) | 3.4 |
PA11/5SA-LDH | 592.9 ± 11 (↓12.6%) | 237 ± 3 (↑76s) | 101.8 ± 10 (↑9.1%) | 2.5 |
Tm/°C | Tc/°C | (Tm − Tc)/°C | ΔHm/(J/g) | ΔHc/(J/g) | |
---|---|---|---|---|---|
PA11 | 190.6 | 165.3 | 25.3 | 41.3 | 44.4 |
PA11/2.5LDH | 190.4 | 168.7 | 21.7 | 40.1 | 37.6 |
PA11/5LDH | 190.9 | 169.7 | 21.2 | 40.0 | 33.8 |
PA11/2.5SA-LDH | 189.7 | 166.5 | 23.2 | 40.8 | 40.3 |
PA11/5SA-LDH | 189.9 | 168.7 | 21.2 | 38.5 | 37.2 |
Tc/°C | |||||
---|---|---|---|---|---|
167 | 169 | 171 | 173 | ||
n | PA11 | 1.2 | 2.2 | 2.5 | 3.1 |
PA11/2.5LDH | 1.2 | 2.0 | 2.4 | 2.7 | |
PA11/5LDH | 1.2 | 1.4 | 1.9 | 2.2 | |
PA11/2.5SA-LDH | 1.2 | 1.5 | 2.0 | 2.8 | |
PA11/5SA-LDH | 1.2 | 1.6 | 2.3 | 2.9 | |
K | PA11 | 3.4 | 1.6 | 0.5 | 0.06 |
PA11/2.5LDH | 3.4 | 2.0 | 0.7 | 0.2 | |
PA11/5LDH | 4.1 | 2.2 | 1.3 | 0.5 | |
PA11/2.5SA-LDH | 3.4 | 1.8 | 0.9 | 0.2 | |
PA11/5SA-LDH | 5.5 | 2.9 | 1.2 | 0.2 | |
t1/2 | PA11 | 0.3 | 0.7 | 1.2 | 2.2 |
PA11/2.5LDH | 0.3 | 0.6 | 1.0 | 1.7 | |
PA11/5LDH | 0.2 | 0.4 | 0.7 | 1.2 | |
PA11/2.5SA-LDH | 0.3 | 0.5 | 0.9 | 1.6 | |
PA11/5SA-LDH | 0.3 | 0.4 | 0.8 | 1.4 |
Samples | Tensile Strength/Mpa | Elongation at Break/% |
---|---|---|
PA11 | 41.6 ± 3 | 264 ± 6 |
PA11/2.5LDH | 42.3 ± 3 | 222 ± 4 |
PA11/5LDH | 42.1 ± 1 | 197 ± 4 |
PA11/2.5SA-LDH | 46.3 ± 2 | 230 ± 3 |
PA11/5SA-LDH | 47.1 ± 2 | 205 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Yang, H.; Tang, W. Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides. Int. J. Mol. Sci. 2022, 23, 12818. https://doi.org/10.3390/ijms232112818
Peng C, Yang H, Tang W. Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides. International Journal of Molecular Sciences. 2022; 23(21):12818. https://doi.org/10.3390/ijms232112818
Chicago/Turabian StylePeng, Cun, Hua Yang, and Wufei Tang. 2022. "Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides" International Journal of Molecular Sciences 23, no. 21: 12818. https://doi.org/10.3390/ijms232112818
APA StylePeng, C., Yang, H., & Tang, W. (2022). Study on the Flammability, Crystal Behaviors and Mechanical Performance of Polyamide 11 Composites by Intercalated Layered Double Hydroxides. International Journal of Molecular Sciences, 23(21), 12818. https://doi.org/10.3390/ijms232112818